Logo Uni Bremen

Zentrum für Industriemathematik

ZeTeM > Über das ZeTeM > Mitarbeiter*innen > Ivan Mykhailiuk

Kontakt Sitemap Impressum [ English | Deutsch ]
Bild  Ivan Mykhailiuk

Ivan Mykhailiuk

Wissenschaftlicher Mitarbeiter der AG Optimierung und Optimale Steuerung, Research Training Group π3

Raum: NEOS 3250
E-Mail: ivamyk@uni-bremen.de
Telefon: (0421) 218-59897
ORCID iD:  0000-0003-1610-2899

Lebenslauf

2017-2019
  • InterMaths Joint MSc in Applied and Interdisciplinary Mathematics, L'Aquila (Italy), Lviv (Ukraine).
  • Thesis: "Integrability Analysis and Exact Solutions of Some Nonlinear Dynamical Systems".
2013-2017
  • BSc in Informatics, Ivan Franko National University of Lviv (Ukraine).

Forschungsgebiete

Projekte

  1. Int2Grids - Integration von intelligenten Quartiersnetzen in Verbundnetze (01.05.2020 - 31.12.2023)

Publikationen (Auswahl)vollständige Liste

  1. I. Mykhailiuk, C. Büskens.
    Parametric Stability Score for Local Solutions of Constrained Parametric Nonlinear Programs.
    GAMM 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics , 15.08-18.08.2022.
    Proceedings in Applied Mathematics & Mechanics, 22(1), Wiley, 2023.

    DOI: 10.1002/pamm.202200254

  2. I. Mykhailiuk, K. Schäfer, C. Büskens.
    Parametric stability score and its application in optimal control.
    IFAC-PapersOnLine, 55(16):172-177, Elsevier, 2022.

    DOI: 10.1016/j.ifacol.2022.09.019

  3. I. Mykhailiuk, K. Flaßkamp, C. Büskens, K. Schäfer.
    On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems.
    GAMM 91st Annual Meeting of the international Association of Applied Mathematics and Mechanics, online, 15.03.2021 - 19.03.2021.
    Proceedings in Applied Mathematics & Mechanics, 20(1), WILEY-VCH, 2021.

    DOI: 10.1002/pamm.202000281

  4. I. Mykhailiuk, K. Schäfer, C. Büskens.
    Stability Score for Local Solutions of Unconstrained Parametric Nonlinear Programs.
    GAMM 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics , 15.08-18.08.2022.
    Proceedings in Applied Mathematics & Mechanics, 21(1), Wiley, 2021.

    DOI: 10.1002/pamm.202100215

  5. I. Mykhailiuk, K. Schäfer, K. Flaßkamp, C. Büskens.
    Preferable Minima in Nonlinear Optimization: Definition and Algorithmic Approaches.
    , 2020.

    online unter: https://hessenbox.uni-kassel.de/dl/fi226HzF3AJV3g4LFWM4fWE6/daily_program_2020.pdf?inline