Dr. Gael Rigaud
Ehemaliger Mitarbeiter der WG Industrial MathematicsPrivate Homepage: https://www.f08.uni-stuttgart.de/organisation/team/Rigaud/
Courses (Selection)
- Moderne Verfahren der Bildgebung und Bildverarbeitung (Sommersemester 2021)
- Mathematische Grundlagen der Datenanalyse und Bildverarbeitung (Wintersemester 2020/2021)
- Deep Learning Methods for Inverse Problems (Sommersemester 2020)
Publications (Selection)
- J. Gödeke, G. Rigaud.
Imaging based on Compton scattering: model uncertainty and data-driven reconstruction methods.
Inverse Problems, 39(3), 2023. - C. Arndt, A. Denker, J. Nickel, J. Leuschner, M. Schmidt, G. Rigaud.
In Focus - hybrid deep learning approaches to the HDC2021 challenge.
Inverse Problems and Imaging, , 2022.DOI: 10.3934/ipi.2022061
- G. Rigaud.
3D Compton scattering imaging with multiple scattering: analysis by FIO and contour reconstruction.
Inverse Problems, 37(6), 2021.online at: https://iopscience.iop.org/article/10.1088/1361-6420/abf22b
- L. Kuger, G. Rigaud.
Modeling and Reconstruction Strategy for Compton Scattering Tomography with Scintillation Crystals.
Crystals, 11(6), 2021. - L. Kuger, G. Rigaud.
Joint fan-beam CT and Compton scattering tomography: analysis and image reconstruction.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2008.06699