Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Dr. Daniel Otero Baguer

Contact Sitemap Impressum [ English | Deutsch ]
Bild Dr. Daniel Otero Baguer

Dr. Daniel Otero Baguer

Research Assistant WG Industrial Mathematics

Room: MZH 2130
Email: otero@math.uni-bremen.de
Phone: (0421) 218-63816

Projects

  1. DIAMANT - Digital Image Analysis and Imaging Mass Spectrometry to Differentiate Non-small Cell Lung Cancer (01.01.2020 - 31.12.2022)
  2. SFB 1232: Farbige Zustände - TP P02: Heuristische, statistische und analytische Versuchsplanung (01.07.2016 - 30.06.2020)

Courses (Selection)complete list

  1. Oberseminar Mathematical Parameter Identification (RTG-Seminar) (Sommersemester 2022)
  2. Oberseminar Mathematical Parameter Identification (RTG-Seminar) (Sommersemester 2021)

Theses (Selection)complete list

  1. Interpretability and Explainability of Neural Networks applied in Digital Pathology (Rudolf Herdt)
  2. Theorie und Anwendung des Analytic-Deep-Prior-Ansatzes (Clemens Arndt)
  3. Invertible U-Nets for Memory-Efficient Backpropagation (Nick Heilenkötter)

Publications (Selection)complete list

  1. R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
    Model Stitching and Visualization How GAN Generators can Invert Networks in Real-Time.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2302.02181

  2. J. Le Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner , J. Schaller , P. Maaß.
    Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
    MDPI Journal of Imaging, 71 7(4), Meisenbach Verlag, Bamberg, 2021.

    DOI: 10.3390/jimaging7040071

  3. J. Leuschner, M. Schmidt, D. Otero Baguer, P. Maaß.
    LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction.
    Scientific Data, 8(109), 2021.

    DOI: 10.1038/s41597-021-00893-z

  4. S. Dittmer, T. Kluth, P. Maaß, D. Otero Baguer.
    Regularization by architecture: A deep prior approach for inverse problems.
    Journal of Mathematical Imaging and Vision, 62(3):456-470, Springer Verlag, 2020.

    DOI: 10.1007/s10851-019-00923-x
    online at: http://link.springer.com/article/10.1007/s10851-019-00923-x

  5. D. Otero Baguer, J. Leuschner, M. Schmidt.
    Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
    Inverse Problems, 36(9), IOPscience, 2020.

    DOI: 10.1088/1361-6420/aba415