Dr. Christian Etmann
Ehemaliger Mitarbeiter der AG Technomathematik, Research Training Group π3E-Mail: cetmann@math.uni-bremen.de
Forschungsgebiete
- Deep Learning
- Imaging mass spectrometry
- Regularisierung bei maschinellem Lernen
- Nonsmooth Analysis
Projekte
- Neuronale Netze im MALDI Imaging (seit 01.10.2016)
- BMBF-MaDiPath: Massenspektrometrisches Profiling/Grading für onkologische Routineanwendungen der digitalen Pathologie (01.10.2015 - 30.09.2018)
Veranstaltungen (Auswahl)
- Machine Learning (Sommersemester 2018)
- Mathematical Foundations of Machine Learning (Sommersemester 2019)
Abschlussarbeiten (Auswahl)
- A Representer Theorem for the Activation Functions of Neural Networks (Daniel Klosa)
- Deep-Learning-Konzepte zur Optimierung von ISTA-Verfahren (Alexander Denker)
Publikationen (Auswahl)
- C. Etmann.
Double Backpropagation with Applications to Robustness and Saliency Map Interpretability.
Dissertationsschrift, Universität Bremen, 2020. - C. Etmann.
A Closer Look at Double Backpropagation.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/1906.06637
- C. Etmann, S. Lunz, P. Maaß, C. Schönlieb.
On the Connection Between Adversarial Robustness and Saliency Map Interpretability.
36th International Conference on Machine Learning, 09.06.-15.06.2019, Los Angeles, USA.
PMLR 97, 97:1823-1832, 2019.online unter: http://proceedings.mlr.press/v97/etmann19a.html
- C. Etmann, M. Schmidt, J. Behrmann, T. Boskamp, L. Hauberg-Lotte, A. Peter, R. Casadonte, J. Kriegsmann, P. Maaß.
Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/1912.05459
- J. Behrmann, C. Etmann, T. Boskamp, R. Casadonte, J. Kriegsmann, P. Maaß.
Deep Learning for Tumor Classification in Imaging Mass Spectrometry.
Bioinformatics, 34(7):1215-1223, Oxford University Press, 2018.