Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > Working Groups > AG Inverse Problems and Imaging > Publications

Contact Sitemap Impressum [ English | Deutsch ]

Publications of AG Inverse Problems and Imaging

Monographies (2)

  1. K. Bredies, D. Lorenz.
    Mathematical Image Processing.
    Applied and Numerical Harmonic Analysis, Birkhäuser, 2018.

    DOI: 10.1007/978-3-030-01458-2

  2. K. Bredies, D. Lorenz.
    Mathematische Bildverarbeitung:.
    , Vieweg Verlag, 2011.

Articles (76)

  1. R. Gower, D. Lorenz, M. Winkler.
    A Bregman-Kaczmarz method for nonlinear systems of equations.
    Computational Optimization and Applications, 87:1059-1098, 2024.

    DOI: 10.1007/s10589-023-00541-9
    online at: https://arxiv.org/abs/2303.08549

  2. L. Tondji, I. Necoara, D. Lorenz.
    Acceleration and restart for the randomized Bregman-Kaczmarz method.
    Linear Algebra and its Applications, 699:508-538, 2024.

    DOI: 10.1016/j.laa.2024.07.009
    online at: https://arxiv.org/abs/2310.17338

  3. L. Tondji, I. Tondji, D. Lorenz.
    Adaptive Bregman-Kaczmarz: An approach to solve linear inverse problems with independent noise exactly.
    Inverse Problems, 40(9), 095006, IOPscience, 2024.

    DOI: 10.1088/1361-6420/ad5fb1
    online at: https://arxiv.org/abs/2309.06186

  4. M. Upadhyaya, S. Banert, A. B. Taylor, P. Giselsson.
    Automated tight Lyapunov analysis for first-order methods.
    Erscheint in Mathematical Programming

    online at: https://arxiv.org/abs/2302.06713

  5. C. Brauer, N. Breustedt, T. de Wolff, D. Lorenz.
    Learning variational models with unrolling and bilevel optimization.
    Analysis and Applications, 22(3):569-617, World Scientific, 2024.

    DOI: 10.1142/S0219530524400037
    online at: https://arxiv.org/abs/2209.12651

  6. D. Lorenz, J. Marquardt, E. Naldi.
    The degenerate variable metric proximal point algorithm and adaptive stepsizes for primal-dual Douglas-Rachford.
    Optimization, :1-27, Taylor & Francis, 2024.

    DOI: 10.1080/02331934.2024.2325552
    online at: https://arxiv.org/abs/2302.13128

  7. S. Banert, O. Öktem, J. Adler, J. Rudzusika.
    Accelerated Forward-Backward Optimization using Deep Learning.
    Erscheint in SIAM Journal on Optimization

    online at: https://arxiv.org/abs/2105.05210

  8. D. Lorenz, F. Schneppe.
    Chambolle-Pock’s primal-dual method with mismatched adjoint.
    Applied Mathematics & Optimization, 87(22), 2023.

    DOI: 10.1007/s00245-022-09933-5
    online at: https://arxiv.org/abs/2201.04928

  9. N. K. Bellam Muralidhar, C. Gräßle, N. Rauter, A. Mikhaylenko, R. Lammering, D. Lorenz.
    Damage identification in fiber metal laminates using bayesian analysis with model order reduction.
    Computer Methods in Applied Mechanics and Engineering, Part B 403, 2023.

    DOI: 10.1016/j.cma.2022.115737
    online at: https://arxiv.org/abs/2206.04329

  10. D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
    Deep learning methods for partial differential equations and related parameter identification problems.
    Inverse Problems, 39(10), 2023.

    DOI: 10.1088/1361-6420/ace9d4

  11. S. Banert, P. Giselsson, H. Sadeghi.
    Incorporating history and deviations in forward–backward splitting.
    Numerical Algorithms, , 2023.

    DOI: 10.1007/s11075-023-01686-8

  12. D. Lorenz, F. Schneppe, L. Tondji.
    Linearly convergent adjoint free solution of least squares problems by random descent.
    Inverse Problems, 39(12), 125019, 2023.

    DOI: 10.1088/1361-6420/ad08ed
    online at: https://arxiv.org/abs/2306.01946

  13. S. Banert, P. Giselsson, M. Morin.
    Nonlinear Forward-Backward Splitting with Momentum Correction.
    Set-Valued and Variational Analysis, 31(37), 2023.

    DOI: 10.1007/s11228-023-00700-4

  14. A. Ebner, J. Frikel, D. Lorenz, J. Schwab, M. Haltmeier.
    Regularization of inverse problems by filtered diagonal frame decomposition.
    Applied and Computational Harmonic Analysis, 62:66-83, 2023.

    DOI: 10.1016/j.acha.2022.08.005
    online at: https://arxiv.org/abs/2008.06219

  15. K. Bredies, E. Chenchene, D. Lorenz, E. Naldi.
    Degenerate preconditioned proximal point algorithms.
    SIAM Journal on Optimization, 32(3), 2022.

    DOI: 10.1137/21M1448112
    online at: https://arxiv.org/abs/2109.11481

  16. F. Schöpfer, D. Lorenz, L. Tondji, M. Winkler.
    Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems.
    Linear Algebra and its Applications, 652:132-154, 2022.

    DOI: 10.1016/j.laa.2022.07.003
    online at: https://arxiv.org/abs/2201.08620

  17. D. Lorenz, L. Tondji.
    Faster randomized block sparse Kaczmarz by averaging.
    Numerical Algorithms, 91:1417-1451, 2022.

    DOI: 10.1007/s11075-022-01473-x
    online at: https://arxiv.org/abs/2203.10838

  18. D. Nganyu Tanyu, D. Schulz, T. Tatietse, T. Lukong.
    Long Term Electricity Load Forecast Based on Machine Learning for Cameroon’s Power System.
    Energy and Environment Research, 12(1), 2022.

    DOI: 10.5539/eer.v12n1p45
    online at: https://ccsenet.org/journal/index.php/eer/article/view/0/47276

  19. D. Ghilli, D. Lorenz, E. Resmerita.
    Nonconvex flexible sparsity regularization: theory and monotone numerical schemes.
    Optimization, 71(4):1114-1140, 2022.

    DOI: 10.1080/02331934.2021.2011869
    online at: https://arxiv.org/abs/2111.06281

  20. A. Mikhaylenko, N. Rauter, N. K. Bellam Muralidhar, T. Barth, D. Lorenz, R. Lammering.
    Numerical analysis of the main wave propagation characteristics in a steel-CFRP laminate including model order reduction.
    Acoustics, 4(3):517-537, 2022.

    DOI: 10.3390/acoustics4030032
    online at: https://arxiv.org/abs/2206.04329

  21. D. Lorenz, H. Mahler.
    Orlicz space regularization of continuous optimal transport problems.
    Applied Mathematics & Optimization, 85(14), 2022.

    DOI: 10.1007/s00245-022-09826-7
    online at: https://arxiv.org/abs/2004.11574

  22. C. Clason, D. Lorenz, H. Mahler, B. Wirth.
    Entropic regularization of continuous optimal transport problems.
    Journal of Mathematical Analysis and Applications, 494(1), 2021.

    DOI: 10.1016/j.jmaa.2020.124432
    online at: http://arxiv.org/abs/1803.02848

  23. N. K. Bellam Muralidhar, N. Rauter, A. Mikhaylenko, R. Lammering, D. Lorenz.
    Parametric model order reduction of guided ultrasonic wave propagation in fiber metal laminates with damage.
    Modelling, 2(4):591-608, 2021.

    DOI: 10.3390/modelling2040031
    online at: https://www.preprints.org/manuscript/202109.0312/v1

  24. D. Lorenz, C. Meyer, P. Manns.
    Quadratically regularized optimal transport.
    Applied Mathematics & Optimization, 83:1919-1949, 2021.

    DOI: 10.1007/s00245-019-09614-w
    online at: https://arxiv.org/abs/1903.01112

  25. C. Brauer, D. Lorenz.
    Complexity and applications of the homotopy principle for uniformly constrained sparse minimization.
    Applied Mathematics & Optimization, 82(3):1-34, 2020.

    DOI: 10.1007/s00245-019-09565-2

  26. B. Komander, D. Lorenz, L. Vestweber.
    Denoising of image gradients and to- tal generalized variation denoising.
    Journal of Mathematical Imaging and Vision, 61(1):21-39, 2019.

    DOI: 10.1007/s10851-018-0819-8
    online at: http://arxiv.org/abs/1712.08585

  27. F. Schöpfer, D. Lorenz.
    Linear convergence of the Randomized Sparse Kaczmarz method.
    Mathematical Programming, 173(1):509-536, 2019.

    DOI: 10.1007/s10107-017-1229-1
    online at: http://arxiv.org/abs/1610.02889

  28. D. Lorenz, Q. Tran-Dinh.
    Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence.
    Computational Optimization and Applications, 74(1):67-92, 2019.

    DOI: 10.1007/s10589-019-00106-9
    online at: http://arxiv.org/abs/1801.03765

  29. C. Brauer, D. Lorenz, A. Tillmann.
    A primal-dual homotopy algorithm for ℓ1 -minimization with ℓ∞ -constraints.
    Computational Optimization and Applications, 70:443-478, 2018.

    DOI: 10.1007/s10589-018-9983-4
    online at: http://arxiv.org/abs/1601.10022

  30. D. Lorenz, L. M. Mescheder.
    An extended Perona-Malik model based on probabilistic models.
    Journal of Mathematical Imaging and Vision, 60(1):128-144, 2018.

    DOI: 10.1007/s10851-017-0746-0
    online at: http://arxiv.org/abs/1612.06176

  31. D. Lorenz, K. Wirths.
    Sarrus rules for matrix determinants and dihedral groups.
    The College Mathematics Journal, 49(5):333-340, 2018.

    DOI: 10.1080/07468342.2018.1526019
    online at: https://arxiv.org/abs/1809.08948

  32. D. Lorenz, S. Rose, F. Schöpfer.
    The randomized Kaczmarz method with mismatched adjoint.
    BIT Numerical Mathematics, 48(4):1079-1098, 2018.

    DOI: 10.1007/s10543-018-0717-x
    online at: http://arxiv.org/abs/1803.02848

  33. D. Lorenz, J. Lorenz, C. Brauer.
    Rank-optimal weighting or “How to be best in the OECD Better Life Index?”.
    Social Indicators Research, 134:75-92, 2017.

    DOI: 10.1007/s11205-016-1416-0
    online at: http://arxiv.org/abs/1608.04556

  34. D. Lorenz, E. Resmerita.
    Flexible sparse regularization.
    Inverse Problems, 33(1), 2016.

    DOI: 10.1088/0266-5611/33/1/014002
    online at: http://arxiv.org/abs/1601.04429

  35. D. Lorenz, T. Pock.
    An inertial forward-backward method for monotone inclusions.
    Journal of Mathematical Imaging and Vision, 51(1):311-325, 2015.

    DOI: 10.1007/s10851-014-0523-2
    online at: http://arxiv.org/abs/1403.3522

  36. D. Lorenz, C. Kruschel.
    Computing and analyzing recoverable supports for sparse reconstruction.
    Advances in Computational Mathematics, 41(6):1119-1144, 2015.

    DOI: 10.1007/s10444-015-9403-6
    online at: http://arxiv.org/abs/1309.2460

  37. D. Lorenz, K. Bredies, S. Reiterer.
    Minimization of non-smooth, non- convex functionals by iterative thresholding.
    Journal of Optimization Theory and Applications, 165(1):78-112, 2015.

    DOI: 10.1007/s10957-014-0614-7

  38. D. Lorenz, A. Tillmann, M. E. Pfetsch.
    Solving basis pursuit: Subgra- dient algorithm, heuristic optimality check, and solver comparison.
    ACM Transactions on Mathematical Software (TOMS), 41(2), 2015.

    DOI: 10.1145/2689662
    online at: http://www.optimization-online.org/DB_HTML/2011/07/3100.html

  39. D. Lorenz, A. Tillmann, M. E. Pfetsch.
    An infeasible-point subgradient method using adaptive approximate projections.
    Computational Optimization and Applications, 57(2):271-306, 2014.

    DOI: 10.1007/s10589-013-9602-3
    online at: http://arxiv.org/abs/1104.5351

  40. D. Lorenz, B. Komander, M. Fischer, M. Petz, R. Tutsch.
    Data fusion of surface normals and point coordinates for deflectometric measurements.
    Journal of Sensors and Sensor Systems, 3:281-290, 2014.

    DOI: 10.5194/jsss-3-281-2014

  41. D. Lorenz, J. Lellmann, C. Schönlieb, T. Valkonen.
    Imaging with Kantorovich-Rubinstein discrepancy.
    SIAM Journal on Imaging Sciences, 7(4):2833-2859, 2014.

    DOI: 10.1137/140975528
    online at: http://arxiv.org/abs/1407.0221

  42. D. Lorenz, M. Matz, K. Schumacher, K. Hatlapatka, K. Baumann.
    Observer-independent quantification of insulin granule exocytosis and pre-exocytotic mobility by TIRF microscopy.
    Microscopy and Microanalysis, 20(1):206-218, 2014.

    DOI: 10.1017/S1431927613013767

  43. E. Herrholz, D. Lorenz, G. Teschke, D. Trede.
    Sparsity and Compressed Sensing in Inverse Problems.
    Lecture Notes in Computational Science and Engineering, 102:365-379, Springer Verlag, 2014.

    DOI: 10.1007/978-3-319-08159-5_18

  44. D. Lorenz, C. Kruschel, J. S. Jørgensen.
    Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized x-ray CT.
    Inverse Problems in Science and Engineering, 23:1283-1305, 2014.

    DOI: 10.1080/17415977.2014.986724
    online at: http://arxiv.org/abs/1409.0214

  45. D. Lorenz, S. Wenger, F. Schöpfer.
    The linearized Bregman method via split feasibility problems: Analysis and generalizations.
    SIAM Journal on Imaging Sciences, 2(7), 2014.

    DOI: 10.1137/130936269
    online at: http://arxiv.org/abs/1309.2094

  46. D. Lorenz, S. Wenger, M. Magnor.
    Fast image-based modeling of astronomical nebulae.
    Computer Graphics Forum, 32(7), 2013.
  47. D. Lorenz, P. Maaß, Q. M. Pham.
    Gradient descent for Tikhonov functionals with sparsity constraints: theory and numerical comparison of step size rules.
    Electronic Transactions on Numerical Analysis, 39:437-463, 2012.
  48. D. Lorenz, S. Wenger, M. Ament, S. Guthe, A. Tillmann, D. Weiskopf, M. Magnor.
    Visualization of astronomical nebulae via distributed multi-gpu compressed sensing tomography.
    IEEE Transactions on Visualization and Computer Graphics, 18(12):2188-2197, 2012.

    DOI: 10.1109/TVCG.2012.281

  49. D. Lorenz, S. Schiffler, D. Trede.
    Beyond convergence rates: exact recovery with the Tikhonov regularization with sparsity constraints.
    Inverse Problems, 27(8), 085009(17pp), IOPscience, 2011.

    Paper selected in "2011 Highlights for Inverse Problems"

    DOI: 10.1088/0266-5611/27/8/085009
    online at: arXiv.org e-Print archive

  50. D. Lorenz, K. Chen.
    Image sequence interpolation using optimal control.
    Journal of Mathematical Imaging and Vision, 41(3):222-238, 2011.

    DOI: 10.1007/s10851-011-0274-2
    online at: http://arxiv.org/abs/1008.0548

  51. D. Lorenz, E. Resmerita, K. Frick.
    Morozov’s principle for the augmented Lagrangian method applied to linear inverse problems.
    Multiscale Modeling & Simulation, 9(4):1528-1548, 2011.

    DOI: 10.1137/100812835
    online at: http://arxiv.org/abs/1010.5181

  52. D. Lorenz.
    A projection proximal-point algorithm for ℓ¹ -minimization.
    Numerical Functional Analysis and Optimization, 31(2):172-190, 2010.

    DOI: 10.1080/01630560903381712
    online at: http://arxiv.org/abs/0904.1523

  53. D. Lorenz, A. Rösch.
    Error estimates for joint Tikhonov- and Lavrentiev-regularization of constrained control problems.
    Applicable Analysis - An International Journal, 89(11):1679-1692, 2010.

    DOI: 10.1080/00036811.2010.496360
    online at: http://arxiv.org/abs/0909.4648

  54. D. Lorenz, B. Jin.
    Heuristic parameter-choice rules for convex variational regularization based on error estimates.
    SIAM Journal on Numerical Analysis, 48(3):1208-1229, 2010.

    DOI: 10.1137/100784369
    online at: http://arxiv.org/abs/1001.5346

  55. D. Lorenz, K. Chen.
    Image sequence interpolation based on optical flow, segmentation, and optimal control.
    IEEE Transactions on Image Processing, 21(3):1020-1030, 2010.

    DOI: 10.1109/TIP.2011.2179305

  56. D. Lorenz, J. Lorenz.
    On conditions for convergence to consensus.
    IEEE Transactions on Automatic Control, 55(7):1651-1656, 2010.

    DOI: 10.1109/TAC.2010.2046086
    online at: http://arxiv.org/abs/0803.2211

  57. K. Bredies, D. Lorenz, P. Maaß.
    A generalized conditional gradient method and its connection to an iterative shrinkage method.
    Computational Optimization and Applications, 42(2):173-193, Springer Verlag, 2009.

    DOI: 10.1007/s10589-007-9083-3

  58. B. Jin, D. Lorenz, S. Schiffler.
    Elastic-Net Regularization: Error estimates and Active Set Methods.
    Inverse Problems, 25(11), 2009.

    DOI: 10.1088/0266-5611/25/11/115022

  59. L. Denis, D. Lorenz, D. Trede.
    Greedy Solution of Ill-Posed Problems: Error Bounds and Exact Inversion.
    Inverse Problems, 25(11), 115017(24pp), 2009.

    DOI: 10.1088/0266-5611/25/11/115017
    online at: arXiv.org e-Print archive

  60. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, D. Trede.
    Inline hologram reconstruction with sparsity constraints.
    Optics Letters, 34(22):3475-3477, 2009.

    DOI: 10.1364/OL.34.003475
    online at: HAL (Hyper Articles en Ligne) open archive

  61. D. Lorenz.
    On the role of sparsity in inverse problems.
    Journal of Inverse and Ill-posed Problems, 17(1):69-76, 2009.

    DOI: 10.1515/JIIP.2009.007

  62. D. Lorenz, K. Bredies.
    Regularization with non-convex separable constraints.
    Inverse Problems, 25(8), 085011, 2009.

    DOI: 10.1088/0266-5611/25/8/085011

  63. D. Lorenz, R. Griesse.
    A semismooth Newton method for Tikhonov functionals with sparsity constraints.
    Inverse Problems, 24(3), 035007, 2008.

    DOI: 10.1088/0266-5611/24/3/035007
    online at: http://dx.doi.org/10.1088/0266-5611/24/3/035007

  64. D. Lorenz.
    Convergence rates and source conditions for Tikhonov regularization with sparsity constraints.
    Journal of Inverse and Ill-posed Problems, 16(5):463-478, 2008.

    DOI: 10.1515/JIIP.2008.025
    online at: http://dx.doi.org/10.1515/JIIP.2008.025

  65. K. Bredies, D. Lorenz.
    Iterated hard shrinkage for minimization problems with sparsity constraints.
    SIAM Journal on Scientific Computing, 30(2):657-683, 2008.
  66. K. Bredies, D. Lorenz.
    Linear Convergence of iterative soft-thresholding.
    Journal of Fourier Analysis and Applications, 14(5):813-837, Springer Verlag, 2008.

    DOI: 10.1007/s00041-008-9041-1

  67. K. Bredies, D. Lorenz.
    On the convergence speed of iterative methods for linear inverse problems with sparsity constraints.
    Journal of Physics, Conference Series, 124(1):2031-2043, 2008.
  68. D. Lorenz, D. Trede.
    Optimal Convergence Rates for Tikhonov Regularization in Besov Scales.
    Inverse Problems, 24(5), 055010(14pp), 2008.

    DOI: 10.1088/0266-5611/24/5/055010
    online at: arXiv.org e-Print archive

  69. S. Dahlke, D. Lorenz, P. Maaß, C. Sagiv, G. Teschke.
    The Canonical Coherent States Associated With Quotients of the Affine Weyl-Heisenberg Group.
    Journal of Applied Functional Analysis, 3(2):215-232, 2008.
  70. K. Bredies, T. Bonesky, D. Lorenz, P. Maaß.
    A Generalized Conditional Gradient Method for Non-Linear Operator Equations with Sparsity Constraints.
    Inverse Problems, 23:2041-2058, 2007.
  71. T. Bonesky, K. Bredies, D. Lorenz, P. Maaß.
    A generalized conditional gradient method for nonlinear operator equations with sparsity constraints.
    Inverse Problems, 23(5), 2007.

    DOI: 10.1088/0266-5611/23/5/014

  72. D. Lorenz.
    Non-convex variational denoising of images: Interpolation between hard and soft wavelet shrinkage.
    Current Developments in Theory and Applications of Wavelets, 1(1):31-56, 2007.
  73. E. Klann, D. Lorenz, P. Maaß, H. Thiele.
    Shrinkage versus Deconvolution.
    Inverse Problems, 23:2231-2248, 2007.

    DOI: 10.1088/0266-5611/23/5/025

  74. D. Lorenz.
    Solving variational methods in image processing via projections - a common view on T V -denoising and wavelet shrinkage.
    Zeitschrift für angewandte Mathematik und Mechanik, 87(1):247-256, 2007.

    DOI: 10.1002/zamm200610300

  75. K. Bredies, D. Lorenz, P. Maaß.
    An optimal control problem in medical image processing.
    Systems, Control, Modeling and Optimization, 202:249-259, Springer Verlag, 2006.

    DOI: 10.1007/0-387-33882-9_23

  76. K. Bredies, D. Lorenz, P. Maaß.
    Mathematical Concepts of Multiscale Smoothing.
    Applied and Computational Harmonic Analysis, 19(2):141-161, Elsevier, 2005.

    DOI: 10.1016/j.acha.2005.02.007

Proceedings (12)

  1. L. Tondji, D. Lorenz, I. Necoara.
    An accelerated randomized Bregman-Kaczmarz method for strongly convex linearly constraint optimization.
    2023 European Control Conference (ECC).

    DOI: 10.23919/ECC57647.2023.10178390

  2. C. Brauer, Z. Zhao, T. Fingscheidt.
    Learning to de- quantize speech signals by primal-dual networks: an approach for acoustic sensor networks.
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    DOI: 10.1109/ICASSP.2019.8683341

  3. D. Lorenz, H. Mahler.
    Orlicz-space regularization for optimal transport and algorithms for quadratic regularization.
    NeurIPS Workshop on Optimal Transport and Machine Learning, Vancouver, Canada.

    online at: https://arxiv.org/abs/1909.06082

  4. C. Brauer, C. Clason, D. Lorenz, B. Wirth.
    A Sinkhorn-Newton method for entropic optimal transport.
    NIPS Workshop on Optimal Transport and Machine Learning.

    online at: http://arxiv.org/abs/171006635

  5. B. Komander, D. Lorenz.
    Denoising of image gradients and constrained total generalized variation.
    International Conference on Scale Space and Variational Methods in Computer Vision,.

    DOI: 10.1007/978-3-319-58771-4_35

  6. C. Brauer, D. Lorenz, T. Gerkmann.
    Sparse reconstruction of quantized speech signals.
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

    DOI: 10.1109/ICASSP.2016.7472817

  7. C. Brauer, D. Lorenz.
    Cartoon-texture-noise decomposition with transport norms.
    Scale Space and Variational Methods.
    LNCS, pp. 142-153, Springer Verlag, 2015.

    DOI: 10.1007/978-3-319-18461-6_12

  8. D. Lorenz, F. Schöpfer, S. Wenger, M. Magnor.
    sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing.
    IEEE International Conference on Image Processing.

    Recognized as one of the “Top 10%” papers

    DOI: 10.1109/ICIP.2014.7025269
    online at: http://arxiv.org/abs/1403.7543

  9. D. Lorenz, J. Lorenz.
    Convergence to consensus by general averaging.
    POSTA 09.
    Lecture Notes in Control and Information Sciences , B. Rafael, S. Romero (Eds.), pp. 91-100, Springer Verlag, 2009.

    DOI: 10.1007/978-3-642-02894-6_9

  10. D. Lorenz, K. Bredies.
    Iterated hard-thresholding for linear inverse prob- lems with sparsity constraints.
    PAMM.
    Proceedings in Applied Mathematics and Mechanics, pp. 2060061-2060062, 2008.
  11. K. Bredies, D. Lorenz, P. Maaß.
    An optimal control problem in image processing.
    PAMM.
    Proceedings in Applied Mathematics and Mechanics, 6(1):859-860, 2006.

    DOI: 10.1002/pamm200610409

  12. C. Brauer, D. Lorenz, L. Tondji.
    Group equivariant networks for leakage detection in vacuum bagging.
    30th European Signal Processing Confer- ence, EUSIPCO 2022.

    online at: https://eurasip.org/Proceedings/Eusipco/Eusipco2022/pdfs/0001437.pdf

Preprints (6)

  1. M. M. Alves, D. Lorenz, E. Naldi.
    A general framework for inexact splitting algorithms with relative errors and applications to Chambolle-Pock and Davis-Yin methods.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2407.05893

  2. D. Lorenz, M. Winkler, A. Leitão, J. C. Rabelo.
    On inertial levenberg-marquardt type methods for solving nonlinear ill-posed operator equations.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2406.07044

  3. D. Nganyu Tanyu, J. Ning, A. Hauptmann, B. Jin, P. Maaß.
    Electrical Impedance Tomography: A Fair Comparative Study on Deep Learning and Analytic-based Approaches.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2310.18636

  4. D. Lorenz, M. Winkler.
    Minimal error momentum Bregman-Kaczmarz.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2307.15435

  5. D. Nganyu Tanyu, I. Michel, A. Rademacher, J. Kuhnert, P. Maaß.
    Parameter Identification by Deep Learning of a Material Model for Granular Media.
    Zur Veröffentlichung eingereicht.

    DOI: 10.48550/arXiv.2307.04166
    online at: https://arxiv.org/abs/2307.04166

  6. D. Lorenz, E. Bednarczuk, T. H. Tran.
    Proximal Algorithms for a class of abstract convex functions.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2402.17072