Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Dr. Johannes Leuschner

Contact Sitemap Impressum [ English | Deutsch ]
Bild Dr. Johannes Leuschner

Dr. Johannes Leuschner

Ehemaliger Mitarbeiter der WG Industrial Mathematics, Research Training Group π3

ORCID iD:  0000-0001-7361-9523

Information: Email ends with @uni-bremen.de

Research Areas

Courses (Selection)complete list

  1. Computerpraktikum (Wintersemester 2020/2021)
  2. Computerpraktikum (Wintersemester 2019/2020)

Theses (Selection)complete list

  1. Modellierung von Geometrieabweichungen bei der Nano-Computertomographie (Tom Lütjen)
  2. Using Neural Networks to Denoise CT Images (Rudolf Herdt)

Publications (Selection)complete list

  1. J. Leuschner.
    Deep Learning for Computed Tomography Reconstruction: Learned Methods, Deep Image Prior, and Uncertaninty Estimation.
    Dissertationsschrift, Universität Bremen, 2023.

    DOI: 10.26092/elib/2704

  2. J. Antorán, R. Barbano, J. Leuschner, J. M. Hernández-Lobato, B. Jin.
    Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior.
    Transactions on Machine Learning Research, 12, 2023.

    online at: https://openreview.net/forum?id=FWyabz82fH

  3. T. Lütjen, F. Schönfeld, J. Leuschner, M. Schmidt, A. Wald, T. Kluth.
    Learning-based approaches for reconstructions with inexact operators in nanoCTapplications.
    Zur Veröffentlichung eingereicht.

    online at: https://aps.arxiv.org/abs/2307.10474

  4. R. Barbano, J. Antorán, J. Leuschner, J. M. Hernández-Lobato, B. Jin, Z. Kereta.
    Image Reconstruction via Deep Image Prior Subspaces.
    Zur Veröffentlichung eingereicht.

    online at: https://arxiv.org/abs/2302.10279

  5. M. Nittscher, M. F. Lameter, R. Barbano, J. Leuschner, B. Jin, P. Maaß.
    SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction.
    Medical Imaging with Deep Learning (MIDL 2023), 10.07.-12.07.2023.

    online at: https://2023.midl.io/papers/p014