Dr. Johannes Leuschner
Ehemaliger Mitarbeiter der WG Industrial Mathematics, Research Training Group π3ORCID iD: 0000-0001-7361-9523
Information: Email ends with @uni-bremen.de
Research Areas
- Computed Tomography
- Deep Learning
- Inverse Problems
Courses (Selection)
- Computerpraktikum (Wintersemester 2020/2021)
- Computerpraktikum (Wintersemester 2019/2020)
Theses (Selection)
- Modellierung von Geometrieabweichungen bei der Nano-Computertomographie (Tom Lütjen)
- Using Neural Networks to Denoise CT Images (Rudolf Herdt)
Publications (Selection)
- J. Leuschner.
Deep Learning for Computed Tomography Reconstruction: Learned Methods, Deep Image Prior, and Uncertaninty Estimation.
Dissertationsschrift, Universität Bremen, 2023.DOI: 10.26092/elib/2704
- J. Antorán, R. Barbano, J. Leuschner, J. M. Hernández-Lobato, B. Jin.
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior.
Transactions on Machine Learning Research, 12, 2023.online at: https://openreview.net/forum?id=FWyabz82fH
- T. Lütjen, F. Schönfeld, J. Leuschner, M. Schmidt, A. Wald, T. Kluth.
Learning-based approaches for reconstructions with inexact operators in nanoCTapplications.
Zur Veröffentlichung eingereicht.online at: https://aps.arxiv.org/abs/2307.10474
- R. Barbano, J. Antorán, J. Leuschner, J. M. Hernández-Lobato, B. Jin, Z. Kereta.
Image Reconstruction via Deep Image Prior Subspaces.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2302.10279
- M. Nittscher, M. F. Lameter, R. Barbano, J. Leuschner, B. Jin, P. Maaß.
SVD-DIP: Overcoming the Overfitting Problem in DIP-based CT Reconstruction.
Medical Imaging with Deep Learning (MIDL 2023), 10.07.-12.07.2023.
online at: https://2023.midl.io/papers/p014