UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Solving Algebraic Riccati Equations on
Parallel Computers Using Newton’s
Method with Exact Line Search

Peter Benner
Ralph Byers
Enrique S. Quintana-Orti
Gregorio Quintana-Orti

Report 98-05

Berichte aus der Technomathematik

Report 98-05 August 1998

Solving Algebraic Riccati Equations on
Parallel Computers Using Newton’s Method
with Exact Line Search

Peter Benner, »? Ralph Byers, >3 Enrique S. Quintana-Ort{, ©!2

Gregorio Quintana-Orti %!

aZentrum fir Technomathematik, Fachbereich 3/Mathematik und Informatik,
Universitat Bremen, D-2833} Bremen, Germany;
e-mail: benner@math.uni-bremen.de

b Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA;
e-mail: byers@math.ukans.edu

¢Departamento de Informdtica, Universidad Jaime I, 12.071-Castellon, Spain;
e-mails: quintana@inf.uji.es, gquintan@inf.uji.es

Abstract

We investigate the numerical solution of continuous-time algebraic Riccati equations
via Newton’s method on serial and parallel computers with distributed memory. We
apply and extend the available theory for Newton’s method endowed with exact line
search to accelerate convergence. We also discuss a new stopping criterion based on
recent observations regarding condition and error estimates. In each iteration step
of Newton’s method a stable Lyapunov equation has too be solved. We propose to
solve these Lyapunov equations using iterative schemes for computing the matrix
sign function. This approach can be efficiently implemented on parallel computers
using ScaLAPACK. Numerical experiments on an IBM SP2 multicomputer report
the accuracy, scalability, and speed-up of the implemented algorithms.

Key words: continuous-time algebraic Riccati equation, Lyapunov equation,
Newton’s method, matrix sign function, line search.

1 Partially supported by the CICYT project No. TIC96-1062-C03-C03.

2 Partially supported by the DAAD Acciones Integradas Hispano—Alemanas pro-
gram.

3 Partially supported by National Science Foundation awards DMS-9628626, CCR-
9732671 and by the NSF EPSCoR/K*STAR program through the Center for Ad-
vanced Scientific Computing.

28 August 1998

1 Introduction

Consider the (generalized) continuous-time algebraic Riccati equation (CARE)
0=R(X)=Q+A"XE+E"XA-E"XGXE, (1)

where A,E,G,Q, X € R, Q = QT, G = GT, and X = X7 is the sought-
after solution. Throughout this paper we assume that F is nonsingular. In
principle, by inverting, (1) can be reduced to a standard CARE, i.e., E = I,,,
where I,, denotes the n x n identity matrix. This is avoided here in order not
to introduce unnecessary rounding errors caused by a possible ill-conditioning
of E.

Algebraic Riccati equations are of fundamental importance in many analysis
and synthesis algorithms in control theory. They arise naturally in optimal
and robust control problems driven by linear autonomous first-order ordi-
nary differential equations (ODE) such as the linear-quadratic regulator or
the Ha-/Ho-control problems; see, e.g., [1,39,44,47,54,59]. As many methods
of nonlinear control use the linear system obtained from a linearization of the
nonlinear ODE around a working point, these methods also require the sound
and efficient solution of equations of the form (1). The generalized equations
of type (1) with E # I,, arise naturally from control systems driven by second-
order ODEs, descriptor systems, or partial differential equations (PDE). See,
e.g., [20,41,43,44,50,54]. In particular, in recent years, model reduction for
large-scale control problems has become one of the most important issues in
systems and control theory. Most of the recent algorithms in this area rely
in one way or another on the solution of equations of the form (1); see, e.g.,
[61,59] and the overview given in [52]. Moreover, factorization techniques for
rational matrix functions may lead to dense, unstructured, and large equations
of the form (1), see, e.g., [57].

In most applications from control theory, the desired solution of the CARE
(hereafter X,) is stabilizing in the sense that all the eigenvalues of the matrix
pencil E — A(A — GX,E) have negative real part. This will be denoted by
o(E,A—GX,E) C C . Throughout this paper we will assume that such a
stabilizing solution exists. Note that if it exists, it is unique [39]. For instance,
if (E71A, E7'GE™T) is stabilizable, (E~1A, Q) is detectable, and G, Q are
positive semidefinite (denoted by G > 0, @ > 0), then the stabilizing solution
X, exists, is unique, and, in addition, X, > 0 [39]. But note that these are
only sufficient conditions and by no means necessary. In particular, X, may be
indefinite if any of the above conditions is dropped and the stabilizing solution
still exists.

The need for parallel computing in this area can be seen from the fact that
already for control systems with state-space dimension n = 1000, (1) rep-
resents a set of nonlinear equations with 500500 unknowns (having already
exploited the symmetry of X,). Systems of such a dimension driven by ODEs
are not uncommon in chemical engineering applications, are standard for sec-

ond order systems, and represent rather coarse grids when derived from the
discretization of a PDE; see, e.g., [19,22,23,43,45,50].

One of the oldest and most well-known numerical methods for solving the
CARE is Newton’s method (or Kleinman’s iteration) [38]. This method itera-
tively approximates the solution of the CARE and requires, at each iteration,
the solution of a Lyapunov equation of the form

0=Q+A"YE+ E"YA, (2)

where A, E,Q,Y € R™", ¢ (E,A) C € ,and Q =Q".

Numerical methods for the standard Lyapunov equation (E = I,,) are studied
in [7,30]. In the initial stage of these methods, A is reduced to real Schur form
by means of the QR algorithm [27]. This is followed by a quite less expensive
back substitution process. The difficulties of parallelizing the QR algorithm on
distributed memory architectures are twofold: first, the algorithm is composed
of fine-grain computations with a low ratio of computation/communication;
second, the use of traditional block scattered data layouts leads to an un-
balanced distribution of the computational load [31,32]. Different approaches
have been proposed to avoid these drawbacks, namely, multishift techniques
which allow for larger grain computations [32,58], and a block Hankel distribu-
tion of the matrix that improves the balancing of the computational load [31].
The experimental studies, however, report parallelism and scalability results
which are not as good as those of the kernels arising in linear systems, e.g.,
matrix factorizations, triangular linear systems solvers, etc. See, e.g., [14,18].
In the generalized case, each iteration of Newton’s method requires the solution
of a generalized Lyapunov equation (E # I,). Numerical methods for this
equation are proposed in [24,46]. There, the matrix pair (E, A) is first reduced
to generalized real Schur form by means of the QZ algorithm [27]. This stage
is followed by a back substitution procedure. Unfortunately, we are not aware
of any available implementation of the QZ algorithm for parallel computers
with distributed memory. Moreover, since both the QR and the QZ algorithms
are composed of similar computations, the same problems as observed for the
QR algorithm can be expected in the parallelization of the QZ algorithm.

In this paper we study Newton’s method for solving the CARE. We will use
an exact line search technique to accelerate convergence in early stages of the
iteration. Our Lyapunov solvers are based on matrix sign function compu-
tations and only require computational kernels like matrix products, linear
system solvers, and matrix inversions. Very efficient implementations of these
operations for parallel computers with distributed architectures exist within
ScaLAPACK [14]. Thus, we avoid the parallelization difficulties in the QR/QZ
algorithms.

In Section 2 we summarize Newton’s method with exact line search for solving
the CARE and discuss the convergence theory. Moreover, we review the con-
dition number of the CARE for E = I,, and present an approximate condition
number of the CARE for the case F # I,,. Based on these condition numbers

and a recently given a posteriori residual bound for the relative error of an ap-
proximate solution of (1) we propose a reliable stopping criterion for Newton’s
method in order to solve the CARE to highest possible accuracy. From these
considerations we also obtain a forward error bound for the relative error of
the computed solution. In Section 3 we describe our serial Lyapunov solvers
based on matrix sign function iterations. A brief study of the computational
and communication cost of the parallel implementations is presented in Sec-
tion 4. In Section 5 we analyze the experimental accuracy, performance, and
scalability of our solvers on a parallel distributed architecture, the IBM sSpP2.
Concluding remarks are given in Section 6.

2 Newton’s Method for Continuous-Time Algebraic Riccati Equa-
tions

2.1 Newton’s method and exact line search

In [38], Kleinman shows that Newton’s method applied to the standard CARE,
converges to the desired stabilizing solution of the CARE. (See Theorem 1
below.) Variants of Newton’s method for solving the generalized CARE are
presented in [4,9,10,44]:

Algorithm 1 (Newton’s method for the generalized CARE).
Input: A E,G,Q € R™", G =G", Q =Q", Xo = X — an initial

guess.
Output: Approzimate solution X1 € R™™™ of (1).
FOR j =0,1,2,... “until convergence”

(2) Solve for N; the generalized Lyapunov equation

0 =R (X;)+ A] N;E + E"N; A;.

(3) Xjy1 = X;+Nj.

END FOR
We will discuss possible stopping criteria for the above algorithm in Sec-
tion 2.4. The properties of Algorithm 1 are summarized in the following the-
orem [38,44,39].
Theorem 1 If E is nonsingular, G > 0, (E7'A, E-'GE™T) is stabilizable,
the unique stabilizing solution X, exists, and Xy is stabilizing, then for the
iterates produced by Algorithm 1 we have:
(1) Alliterates X; are stabilizing, i.e., 0 (E, A—GX,;E) C C forallj € INy.
(2) X, <..<X;1 <X;<...< XL

(4) There exists a constant v > 0 such that

||Xj+1 - X*” S ’YHXJ - X*||27 .7 Z 1

Y

i.e., the X; converge globally and quadratic to X,.
Remark 2 A proof for the results collected in Theorem 1 for the case E = I,
using the same assumptions as above, can be found in [39]. The above theorem
for E # I, nonsingular is a trivial corollary of the results in [39] using the
equivalence of (1) to

0= Q+A"X+XA-XGX

obtained by setting A := E-'A, G :== E-'\GE™T, and X := ETXE [9]. This
equivalence is also used by Mehrmann in [44] to prove a version of Theorem 1
using the additional assumption @ > 0, i.e., assuming positive definiteness of
Q.

Note that part (ii) (monotone convergence) of Theorem 1 in general only holds
for 5 > 1. Nevertheless, the result holds for 5 = 0 if X is close enough to X,;
see [9, Section 4.1.2] and [37]. In general it is not unusual to have X, < X as
a simple scalar example shows: let

A=0, E=1, G=1, Q=102 X,=10*

Then X, = 0.1 and X; ~ 50 > X,. This shows one of the major difficulties
of Newton’s method: sometimes the first step is an enormous leap away from
Xo and X, and only returns slowly afterwards. Figure 1 demonstrates this
by displaying the relative errors ||.X, — X,||2/||X«||2 during the iterations of
Newton’s method applied to the above example.

o
T

11X, - X.ILIX.1,
3
T

i

o
&
T

L L L
0 5 10 15
number of iterations

Fig. 1. Slow initial convergence of Newton’s method.

The problem with the first step can be overcome and convergence of Newton’s
method can be accelerated by means of an exact line search [9,10]. Specifically,

Step 3. of Algorithm 1 is modified to

where ¢; € [0,2] is a local minimizer of

fi(t) = IR (X)) |3 = trace (R (X; + tN;)?)
= trace (R (Xj)2) (1 —)2 —2trace (R (X;)V;) (1 —t)2 (4)
+ trace (Vf) 4,

and V; = ETN;GN;E. In [9,10] it is proved that such a minimizer exists
in [0, 2] and minimizes the Frobenius norm of the next residual, denoted by
IR (X; +tN;) ||r- The restriction to the interval [0, 2] is necessary in order to
ensure that the X; remain stabilizing; see [9,8,10]. Although the computation
of the line search increases the cost of Newton’s method (mainly because of
the computation of V}), in practice this overhead is largely compensated by
a reduction in the number of iterations of Newton’s method and therefore in
the overall cost of the solver.
Also note that in most control applications, G is given in factored form G =
BB” with B € R™™. If this is exploited in the computation of V; and m < n,
then the additional cost caused by the line search procedure is negligible; for
details see the next section.
The following theorem taken from [9] summarizes the convergence properties
of the resulting algorithm as derived in [9,10].
Theorem 3 Under the assumptions of Theorem 1, assuming in addition that
(E7'A,E7'GE™T) is controllable and that the local minimizer t; € [0,2] of
fj in (4) satisfies t; > t, > 0 for all j € Ny, where t;, > 0 is a constant
tolerance threshold, then the sequence of approzimate solutions X; produced
by Algorithm 1 with Step 3. replaced by (3) has the following properties:

(1) X; is stabilizing for all j € IN,.

(71) ||R (Xj11) |lFr < ||R (X)) ||r and equality holds if and only if R (X,;) = 0.
(#1) lim;_ R (X;) = 0.

(v) In a neighbourhood of X, convergence is quadratic.
The assumptions of the above theorem are stronger than those of Theorem 1
as controllability is required. It is conjectured but not proved in [9,10] that this
can be relaxed to stabilizability. The controllability assumption is needed in
[10] to show that Property (iii) in the above theorem holds. Further note that
(i) can be proved using the assumptions of Theorem 1 without the additional
assumptions used above.
Global convergence of the residuals to zero without assuming controllability
may be ensured following a strategy based on the Armijo rule [3]. Here, we will

follow the presentation used in [17,33]. Let f : IR — IR be twice continuously
differentiable. If z; € IR’ is an approximation to a local minimizer of f(z) and
pj is a search direction for f from z;, then a step size parameter ¢; is accepted
if it satisfies the sufficient decrease criterion given by the Armijo rule

flaj+tp;) < f(z;) + at;(V f(z5)) pj, (5)

where o € (0,1). In order to translate (5) to the situation here, we use the
usual embedding of R™*" into R™ given by the map vec : R™" — R™,

vec (X) := [T11, %21, -+, T1ny T125 - -, Tp2y -, Tlpy - -+ 5 Ty

which is obtained by consecutively stacking the columns of a matrix into a
vector (see, e.g., [40, Chapter 12]). Setting = := vec (X) and

1
f (@) =Zvee (R (X)) vec (R (X))
1 1
= jtrace (R (X)" R (X)) = SR (X) I3

2 2

it can be shown (see, e.g., [26]) that
Vf(vec (X;)) = Fjrvec (R (X)) -

Here, I'; = (A — GX;E)" ® ET + ET ® (A — GX,E)" denotes the matrix
representation of the Lyapunov operator, mapping a symmetric matrix Z €

R™"™ to (A — GX,;E)'ZE + ET"Z(A — GXE). As all X; are stabilizing, it
follows that all I'; are nonsingular (see, e.g., [40, Chapter 13]). Hence,

p; = vec (N;) = =T 'vec (R (X))
is well defined and we obtain

(V /() pj = —vec (R (X;))" T;T; vec (R (X;))

. : (6)
= —vee (R (X)) vee (R (X,)) = ~ R (X,) [} < 0.

From (6) it can be deduced [17] that the Newton direction provides a descent
direction for f(vec (X)) from X,;. Moreover, the Armijo rule (5) translates to

IR (X5 +1:N;) [|[r < /1 = 2024(|R (X;) || - (7)

If we choose a constant « € (0,) and if the step sizes ¢; are chosen from
[tr, 2] for a given (small) constant ¢; > 0, then

0<1—2at; <1-2at;:=9*<1 (8)

for all 7 =0,1,2,.... Hence,
IR (X)) |17 < AR (Xo) |- (9)

Asy < 1,lim;j, ||R (X;) ||r = 0, i.e., we obtain global convergence of R (X)
to zero. But note that this does not necessarily imply X; — X,. It is currently
unclear what are the necessary conditions to ensure this. In practice, however,
convergence of R (X;) always yields X; — X..

Note that (7) can be checked using scalar operations only by evaluating f;
using (4) without having to form the residual matrix R (X; + t;V;).

Besides ensuring theoretical convergence, requiring (7) is also reasonable as
otherwise, a stagnation of the line search method is possible. The same ar-
guments can be used to explain why the assumption ¢; > ¢ is not only an
additional assumption but should be a requirement: choosing ¢; too small will
result in almost no progress towards the attractor of the iteration. How these
two requirements can be realized in an actual implementation is described in
the next section.

Remark 4 Theorem 3 and the derivation of global convergence remain valid
if A is stable and G is negative semidefinite; see [8]. This type of CARFEs
plays an important role in Ho control and model reduction; see, e.g., [59].

2.2 Remarks and implementation details

In many control applications, the CARE (1) can be written in the form
0=R(X)=Q+A"XE+FE'XA-X(B,Bf - B,B)X, (10)

where B, € IR™™ Lk = 1,2. For instance, the standard CARE from the
linear-quadratic regulator problem is in the form (10) by setting By = 0
while the case By # 0 for £k = 1 and k = 2 arises frequently in robust
control problems; see, e.g., [59] and the references given therein. In case m :=
my +mg > n/2, it is more efficient to compute G = BlBlT - BQBQT in advance
if no line searches are used [9]. On the other hand, the computation of V;
for the exact line search is always cheaper if the factors By are stored rather
than G if m < n. In particular, if m < n, using the factors, the additional
cost for forming V; and hence for the exact line search is O(n?) and therefore
negligible; see [9] for details of the computations and also for a procedure for
computing ¢;, avoiding the explicit computation of V.

The rate of convergence of Newton’s method strongly depends on the dis-
tance between the initial guess X, and X,. A feasible initial guess can be
obtained by procedures which are as expensive as one iteration of Newton’s
method [56]. Nevertheless, such solutions often lie far from X, and a high num-
ber of iterations of Newton’s method may be required to converge. A different
approach consists of finding an initial solution by means of a CARE solver
(the Schur vector method [42], the matrix sign function [49], etc.), but this

requires solving the CARE itself. Newton’s method is used most frequently

used for iterative refinement of approximate solutions computed by some other

method. Using the exact line search proposed in the last section often brings
the cost of Newton’s method down to that of the Schur vector method or

even below that; see [9,8] and Section 5. Also, if A is already stable, Xo = 0

is a feasible initial guess and Newton’s method with line search becomes a

competitive alternative as a solver for CAREs; see [8].

The assumptions of Theorem 3 and (7) are ensured by employing the following

considerations:

e Set a lower bound ¢, for the step size parameters ¢;. (Numerical experiments
indicate that t;, = 10™* is a reasonable choice). Select the parameter o €
(0, ;) for the Armijo rule. In concurrent optimization literature [17,33],
a = 10~* is proposed. Together with ¢; as above, 72 in (8) is ~ 1 — 1078
which may yield very slow convergence — something we try to avoid by
using line searches. Therefore we propose here a much larger value for .. In
our experiments, a = 0.2 worked very well.

e In each step, after having computed the local minimizer ¢; € [0, 2], we set
t; = max{t;,tr}.

e The condition (7) can be checked by evaluating f;(¢) using (4) rather than
by forming the residual matrix explicitly. If (7) is not satisfied in some step,
there are several options:

- Find another line search parameter ¢; by a backtracking strategy as de-
scribed in [17];

- decrease « or tr;

- perform a standard Newton step with ¢; = 1 — this may lead to a violation
of Theorem 3.

The second option usually results in a stagnation of the iteration as no

significant progress will be made. The third option can be considered as

restarting the Newton iteration from a new initial guess. Note that the

convergence theory given in Theorems 1 and 3 ensures that the new “starting

guess” is again stabilizing. One should limit the number of allowed restarts

and run the Newton iteration without line search if this number is exceeded.

This guarantees global convergence for the overall process.

In addition to the above, we also employ a criterion in order to overcome

possible stagnation. This criterion can be written as follows:

IR (X; +t;N;) ||r < tols||R (X,—js) ||r- (11)

For this, we only need to keep the norms of the last jg residuals. In case of stag-
nation we again “restart” the method using a Newton step. From numerical
experience, we suggest to use jg = 2, tolg = 0.9.

Each line search requires computing a local minimizer of the quartic polyno-
mial f;(t) = [|R (X; +tN;)||% over the interval [0, 2]. The Newton step N
corresponds to ¢ = 1. It is typical for the minimizer to be near ¢ = 1. Using
(4), it can be shown that f;(¢) is non-increasing at ¢t = 0 and nondecreasing

at t = 2 [8-10] and, in particular, all local minimizers—even endpoints—are
roots of the derivative f;(t). It also follows from (4) that if ¢ = 0 is a local
minimizer, then R (X;) = 0, X; = X,, N; = 0, and f;(t) = 0 [8-10]. It is
possible but unusual for ¢ = 2 to be a local minimizer. However, there are
circumstances in which one would expect a minimizer near ¢ = 2; see the
following remark.

Remark 5 In [29] it is shown that Algorithm 1 may also converge to the
unique maximal solution of the CARE even if a stabilizing solution does not
exist (if the stabilizing solution exists, it coincides with the mazimal one). In
this case, convergence is usually only linear. Under some circumstances which
are usually approached in later stages of the Newton iteration, it can be shown
that taking a double Newton step, i.e., X1 = X; + 2N, leads to the desired
solution.

With the above strategy, a double Newton step is always tried as this is nothing
but setting t; = 2. In that sense, Newton’s method with ezact line search
includes the algorithm proposed in [29].

All the above considerations were employed in [9] for testing Newton’s method
with exact line search for all examples of the CARE benchmark collection [11].
All examples were solved successfully, employing the standard stabilization
procedure from [53] for selecting X and also using X = 0 in case A is stable.
Restarts were only encountered for two examples — in both cases due to the
stagnation detected by (11).

In many applications in control theory, the solution of the CARE is used to
compute the optimal control via the feedback law

u(t) = —R'B" X, Ex(t).

Hence, instead of computing X, we may in that case as well compute the
product Xg := X,FE directly. This can be used in Algorithm 1 as follows.
Initialize (X g)o such that A—G(Xg)o is stable. Solving the Lyapunov equation
in Step 2. of the iteration for (Ng); := N;E, we can compute (Xg)j11 =
(XE);+ (Ng);j and A; = A — G(Xg);. Note that the residual R (X;) and the
matrix V; needed for the line search procedure can also be computed using
(Xg); and (Ng),; without solving for X; or N;. We then get lim;_,oo(Xg); =
Xg. This approach saves at least solving a linear system with coefficient matrix
E when solving the Lyapunov equations (see Section 3) and one matrix-matrix
multiplication in each iteration step.

2.3 Condition estimation

Newton’s method also provides an appropriate condition estimate for the
CARE [4,15,34]. Consider the standard CARE

0=R(X)=Q+ATX + XA - XGX. (12)

10

Let A, G, and Q, be ‘matrices “near” A, G, and @, respectively, and define
AA=A—-A AG=G—-G,and AQ = @ — @. The condition number Kcarr
of the standard CARE (12) is defined in [4,15,34] as

. [AX]|
Kcare (lsli%sur’{ STX| [AA] < S[IA[L [[AG] < §[|G| |AQI < 6]l
Here, ||-|| denotes the 2-norm of a matrix. As computing this condition number

is in general not possible, usually the approximate condition number for (12)
given in [15] is used:

_ e iel + [IelHlAl + [&

KB ’
Xl

(13)

where A, := A — GX, and the linear operators 2, ©, II mapping IR"*" to
IR™ ™ are defined as

Z)=ATZ + ZA,
0(2) =077 X, + X.2) (14)
M(Z)=Q Y(X.ZX,)

It can be shown that using the Frobenius norm, (1/9)Kp < Kcare < 4Kp
[15] while for the matrix 2-norm, (1/3)Kp < Kcarg < Kp [34]. Computable
upper and lower bounds Ky and K7, respectively, for Kcarg and Kp are

given in [34]: Let || - || denote the 2-norm and define
o 1 %llQl + 2y Zollll Z [l Al + 1| 2l Gl
U-— ’
[Xl
i - 1Zolll@ll + 2[| Z: Il All + (| Z[lI&]
i 12Xl ’

where Z;, i = 0, 1,2, are the solutions of the Lyapunov equations
(X)) +A-GX)"Z;+ Z;(A-GX,)=0, i=0,1,2. (15)

The approximate condition number Kpg is then bounded by K; < Kg < Ky
which implies %KL < Kcare < Ky. In case K7, is close to Ky, we have a
highly accurate estimation of the condition number of the CARE.

We can use the solution of the CARE computed by Newton’s method to
estimate the condition of the standard CARE by means of K;, and K. Note
that the equations (15) are of the same form as the Lyapunov equations that
have to be solved during the Newton iteration and can therefore be solved by
the same methods as suggested in Section 3.

The computationally expensive 2-norm can be estimated, e.g., as the geometric
mean of the 1-norm and the infinity norm (|| - || & /|| - ||| - [|o0)-

11

The condition number of the CARE in case E # [, has so far been addressed
only in [4] where a condition number

cond (F) cond (ET) Q]

Kap = :
|1 X[- 1B - [|ET]| - sep (AcE~L, —(AE1)T)

with cond (E) := ||E|| - ||E}||, is suggested. This condition number provides
no information about the possible influence of perturbations in the coefficient
matrices A and G and we therefore suggest an alternative here. For this pur-
pose, we employ the ideas used in the standard case [15,34] and transform the
CARE to the mathematical equivalent form

0=0Q+ATX + XA - XGX, (16)

where A := AE~!, Q :== E-TQE~". Note that X, is the stabilizing solution of
(16) if and only if it is the stabilizing solution of (1). Moreover, the coefficient
G in the quadratic term is not changed by this transformation. Using the
approximate condition number Kz we get that

127 N IQI -+ IOIH AL+ T IGI

Kp= (17)
X
QY ||E! E71|||A I
< IHETP QI + 1Ol IE 1A+ T |G — KB (18)
X
Here, Q() = (A-—GX,)"Z+ Z(A-GX,),0(2)=Q " (ZTX, + X, Z), and
1(Z) YX.ZX,). Now let Z;, i =0, 1,2, be the solutions of the Lyapunov
equatlons
(X)) +(A-GX)"Zi+ Zi(A-GX,) =0, i=0,1,2. (19)

The observations from [34] used to bound Kg by K7, and Ky, that is, || Zy|| =
12711, 20120l < 18] < 2y/[1Zo]l | Za]l, and [|Zs]| = ||TI], lead to bounds K"

and K, [(]E) for the approximate condition number K](_E,E). If

IZol IE~H I 1N + 2/l Zoll 1 Za [l TIE A+ | Z2l Gl

K® = ’
X
k() N2 NETIP QN + 214 [B AN+ 1 ZIIG]

Xl

then KiE) < K,(3E) < K((]E). In order to compute KéE), K[(]E), we now have to
determine (or estimate) the 2-norms of 4, G,Q, E~! and we have to solve the
three Lyapunov equations in (20). Note that solving the equations in (19) is
equivalent to solving the generalized Lyapunov equations

ET(X,)'E+(A-GX,E\'Z;E + E"Z;(A — GX,E) = 0 (20)

12

for + = 0,1,2. These have now the same form as the generalized Lyapunov
equations that have to be solved in Step 2. of the Newton iteration in Algo-
rithm 1. We will use this to design an almost optimal stopping criterion for
Newton’s method in the next section.

Remark 6 a) Note that the condition number Kl(gE) s only an upper bound for
the real condition number of (1). This may be very conservative as it is based
on transforming the CARE to a mathematical equivalent equation by inverting
E. An estimate of the “real” condition number should better be based on the
original formulation. This topic is under current investigation.

b) 1t is pointed out in [34] that 2,/||Zs]| || Z=|| may significantly over-estimate
IO||. An improved bound is therefore suggested in [34]. As this is computa-
tionally more involved and in most practical circumstances, Ky and Ky as
introduced here come out to be very close, we only implemented the conserva-
tive bounds presented here.

2.4 Stopping criteria

Usually, convergence of Newton’s method is based on either ||R (X;)|l <
tol|| X;|| or ||| < tol||X;|| for some user-defined tolerance threshold tol
[4,44,54]. The first criterion is based on the scaled residual norm while N;
can be regarded as an estimate for the absolute error X, — X; — at least in
the final iterations. The threshold tol is usually of the form ce where ¢ is some
constant depending on n (usually ¢ = 10n or ¢ = 100n) and ¢ is the machine
precision.

We suggest here to split the iteration into two stages. In our implementations
we employ a tolerance threshold tol = c- /¢ and the stopping criterion based
on the residual. Once this stopping criterion is satisfied, usually two additional
iterations are enough to reach the attainable accuracy due to the quadratic
convergence of Newton’s method close to the solution. Moreover, this approach
avoids possible stagnation of the method due to an un-attainable stopping
criterion [9,12].

A more reliable stopping criterion can be based on the following observations.
It is well-known [47] that the Newton iteration is able to improve the relative
accuracy of an approximate solution X; of the CARE as long as

1 X = Xjll > eKcarpl| Xl

This may be used as follows: once the relaxed stopping criterion suggested
above is satisfied, we may in each subsequent iteration solve four Lyapunov
equations with the same coefficient matrix A; and the right hand sides R (X),
ETX}E, t = 0,1,2, in order to obtain an estimate of the condition number

Kp or K4 of the CARE as well as the new Newton direction N;. That is,
we use A; as an approximation to A — GX,F and X; as an estimate to X,.
This is justified in the vicinity of the solution. We may then decide to stop

13

the iteration if the current iterate satisfies
INI| < ce K il X1 (21)

This is based on estimating the current absolute error using V;. Here, c is again
some small constant, e.g., ¢ = 10n (For large n, this may be too conservative
and /n may yield better results). The stopping criterion (21) is justified using
a result from [55] translated to the situation here: let ||.|| denote either the
2-norm or the Frobenius norm and let Q,(Z) = (A—GX;E)'ZE+E"Z(A -
GX,E) for Z € R™". If

A1 195 (R (X)IGH < 1, (22)
then
1 - Xl _ 2 19, R)
L e T T M R
2095 (R ()] (23)
<R

From Algorithm 1 it follows that Q;'(R (X)) = —N;. (Note that X is sta-
bilizing for all j by Theorem 3 and hence (2; is invertible.) Furthermore, close
to the solution, || X;|| & || X.||. Therefore, (23) yields the following bound for
the relative error of the current iterate Xj:

15 = X[l 12X = Xl 2Nl

Xl 1% X;

In case we have estimated the condition number of the CARE using 2; and

X, as approximations to 2 and X,, respectively, we can also use the tighter
bound

1 = Xl 11X = Xl _ 2 Nl
Xl 1] L+ /1= 4 Nl 6] Xl

(25)

Note that [|Q; || is a by-product of the condition estimation using the above
approach such that checking (22) and evaluating the bound for the relative
error in (24) or (25) requires no additional computations. The quantity on the
right hand side of inequality (24) or (25) can then also be used as a forward
error estimate for the computed Riccati solution.

In Section 3.3 we show that the additional cost required to estimate the condi-
tion number of the CARE (which then gives the forward error bound and the
stopping criterion basically for free) reduces significantly taking into account
that all Lyapunov equations to be solved have the same coefficient matrices
and only the right hand sides differ. Nevertheless, the refined stopping cri-
terion involving condition and forward error estimation is only offered as an

14

option due to the additional cost required. On the other hand, investing this
additional cost not only yields a solution of highest attainable accuracy but
also a measure for the reliability of the computed result via condition and
error estimates.

3 Solving Lyapunov Equations with the Matrix Sign Function

We have observed that Newton’s method and the condition estimation of the
CARE require the solution of Lyapunov equations. Furthermore, the overall
performance of Newton’s method is determined by the performance of the
Lyapunov solver. Therefore, we describe in this section several efficient algo-
rithms for solving standard and generalized stable Lyapunov equations based
on the matrix sign function.

3.1 The standard Lyapunov equation
Consider a matrix Z € IR™", with no eigenvalues on the imaginary axis; let

J 0| .
Z=5 S
0 J*

be its Jordan decomposition [27], where the Jordan blocks in J~ € IRF** and
Jt e RMPRX("=k) contain, respectively, the eigenvalues of Z in the open left
and right complex planes. The matriz sign function of Z is defined as

~I, 0
sign (Z) = S 0’“] S, (26)
n—k

Note that sign (Z) is unique and independent of the order of the eigenvalues
in the Jordan decomposition of Z; see, e.g., [39]. Many other definitions of the
sign function can be given; see [36] for an overview.

The matrix sign function has proved useful in many problems involving spec-
tral decomposition as (I, — sign (Z))/2 defines the skew projector onto the
stable Z-invariant subspace parallel to the unstable subspace. (By the stable
invariant subspace of Z we denote the Z-invariant subspace corresponding to
the eigenvalues of Z in the open left half plane.)

Applying Newton’s method to Z2 = I,,, where the starting point is chosen as
Z, we obtain the Newton matrix sign function iteration

1
Zo—Z, FORj=012..., Zyie ;(Z+2"), (27)

which converges globally and quadratically to sign (Z) = lim;_,o Z; [49].

15

Although the convergence of the Newton matrix sign function iteration is glob-
ally quadratic, the initial convergence may be slow. Acceleration is possible,
e.g., via determinantal scaling [16],

Cj = |det (Zj)|7%’ Zj A Cij’

where det (Z;) denotes the determinant of Z;. Other acceleration schemes can
be employed; see [5] for a comparison of these schemes.

Many iterative methods to compute the matrix sign function are known [35].
Among these, the Halley iteration

Zo+ Z, FORj=0,1,2,..., Zj<+ Z;(3L,+ Z;)(In+32Z])",(28)
and the Newton-Schulz iteration,
. 1
Zy +— Z, FOR j=0,1,2,..., Zj1 < §Zj(31n - Z3), (29)

are especially well suited to parallel computers with distributed memories as
their dominant computational cost comes from matrix products. The higher
computational cost of the Halley matrix sign function iteration can be bal-
anced by its cubic convergence. Usually this is not the case, though, as the
examples in Section 5 indicate. The Newton-Schulz matrix sign iteration re-
quires no inverses but is only locally convergent. Its convergence can only
be guaranteed in case ||ZZ — I,]| < 1 for some suitable norm. Therefore, the
Newton-Schulz matrix sign function iteration has to be combined with some
initial iteration to obtain a globally convergent “hybrid” algorithm.

Roberts [49] was the first to use the matrix sign function for solving Lyapunov
(and Riccati) equations. In the proposed method, the solution of the Lyapunov
equation (2) with E = I, and 0(A) ¢ C is computed by applying the

Newton iteration (27) to the Hamiltonian matrix H = [S _%T] correspond-

ing to (2). The solution matrix ¥ can then be determined from the stable
H-invariant subspace given by the range of the projector (I, — sign (H))/2.
Roberts also shows in [49] that, when applied to H, the Newton matrix sign
function iteration (27) can be simplified to

AO A Aa QO — Qa
FOR j = 0,1,2, ...
Aj—l—l < (AJ + A;l) /2,
Qjs1 (Qy + AJ'_TQjAJ'_l) /2,

(30)

and that Y = im0 Q;- The sequences for A; and Q; require O(6n°) flops
per iteration so that 56 iterations are as expensive as the Bartels—Stewart
method [7].

16

The structure of H can also be exploited to obtain efficient variants for the
Halley iteration (28),

Ay + A, Qo + Q,
FOR j = 0,1,2, ...
Ajp1 = Aj (3L, + A2) (I, + 34%) 1, (31)
Qj+1 A ((Aj - 3Aj+1)T(A?Qj - QJAJ') +
+ Q,; (3L, + ;13)) (I,+3A2)71,
and for the Newton-Schulz iteration (29),
Ay A, Qo + Q,
FOR j = 0,1,2,. ..
Ay A;(31, — A?)/Q,
Qi1 (8L, — A42) - AT(ATQ; — Q;4))).

The approximate computational costs per iteration for (31) and (32) are
O(2n?) and O(12n®) flops, respectively. See [13] for details.

(32)

3.2 The generalized Lyapunov equation

Gardiner and Laub present in [21] a generalization of the matrix sign function
for matrix pencils L — AM, with L and M nonsingular. They consider the
generalized Newton matrix sign function iteration (with determinantal scaling)
LO — L,,
FOR j =0,1,2,...
N (33)
¢; = (| det(L;)|/| det(M)[)™
Ljs1 < (Lj+ ML M)/ (2¢).
The iterates satisfy lim; o L; = Msign (M~'L).
In case o (F,A) C €, we can apply iteration (33) to the matrix pencil

to obtain Hy, := Ksign (K~'H). The generalized Newton iteration can then
be simplified [9,12] to

17

AO — Aa QO — Qaa

FOR j =0,1,2, ...
Ay (A + BAE) 2
Qi1+ (@ + ETA;TQ;AT'E) /2.

(34)

with a cost of (’)(23—677,3) flops per iteration, and the solution Y is obtained from

Yy = EE*T (hm QJ> EL.
2 j—o00
The stopping criterion for the iteration (34) is based on lim; ., A; = —E [12].
Similar stopping criteria can be employed in case E = I,, for iterations (27),
(28), and (29). For details of the iterative scheme (34), its implementation and
numerical properties see [12].

3.8 Lyapunov equations with multiple right-hand sides

In order to estimate the condition number of the standard CARE by the
method described in Section 2.3, we have to solve three Lyapunov matrix
equations with the same coefficient matrix (4 — GX,F). In case the Bartels-
Stewart method is employed, this matrix is reduced to the real Schur form
once and the three equations can be solved then by backward substitution.
In case we use one of our matrix sign function solvers, the cost can also be
reduced by using only one iteration with Ay = A—GX, F, and three iterations
with QO = ETX!E,i=0,1,2. In case this is used as suggested in Section 2.4,
X, is replaced by the current iterate X;.

In general, solving several Lyapunov equations with the same coefficient matrix
and different right-hand sides can be achieved in the same way. For r equations,
one needs one iteration for the A;’s and 7 iterations for the solutions Y. If
the right-hand 51de matrlces are Q , £ =1,...,r, then we have to initialize
the iterations by Q = QY. A coarse-grain parallelism could be used here if
we have r processors (or clusters of processors): compute A; and broadcast it
to the r logical processors, each of them holding one Q;‘?l, the Qy) can then
be computed independent of each other.

This procedure is rather expensive with respect to workspace requirements
as for each Q®-iteration, in general an additional workspace of size n is
required. This workspace can be saved exploiting the symmetry of the Q

In that case, the computations have to be performed using only BLAS Level
2 subroutines. Despite saving the additional workspace and also reducing the
cost of an update

QY QY + AT\ A

from 4n® flops to 3n3, the execution time on most processor architectures will

18

be increased compared to forming the matrix products using the BLAS Level
3 matrix multiplication routines. So implementing this approach you either
have to sacrifice speed of computations or workspace requirements.

3.4 Implementation details

In practice, the generalized Newton matrix sign function iteration for the Lya-
punov equations often requires 7-12 iterations. The experimental results in [12]
show that even with 20 iterations, a serial implementation of the generalized
Lyapunov solver based on the matrix sign function is faster than the general-
ized Bartels-Stewart method (O(%n?) flops, mainly for the QZ algorithm).
This is due to the high efficiency of the computational kernels involved in the
matrix sign function iterations. Moreover, we can expect even higher gains on
parallel distributed architectures.

The cost of the Newton matrix sign function iteration for the generalized
Lyapunov equation can be further reduced by computing an initial QR fac-
torization of F, F = Qg Rgp. We may then set

A« QLA and F <+ QLE:=Ry.

This only requires an additional update of the computed solution X by X
QrXQL (step (3) in Algorithm 2). With this transformation, the matrix mul-
tiplications with E in Algorithm 2 only require multiplication by a triangular
matrix and the linear systems to be solved in order to obtain X in the last
stage are triangular systems. Nevertheless, the experimental studies in [12]
report, higher execution times of this approach due to the lower efficient im-
plementation of the computational kernels for triangular matrix operations.

As in Newton’s method, in our implementations of the matrix sign function
iterations we employ a tolerance threshold tol = ¢ - y/e. Once the stopping
criterion is satisfied, we perform two additional iterations. Due to the quadratic
convergence of the iterations (cubic for Halley), this is usually enough to reach
the attainable accuracy and avoids possible stagnation of the iterations [9,12].
The convergence of the Newton-Schulz iteration is only guaranteed in case
|HZ — I,|| < 1. We have therefore developed a hybrid matrix sign function
iteration solver composed of the Newton and Newton-Schulz iterations. Specif-
ically, the Newton iteration is applied until ||Hg+1 — Hg|| < 1 and, from then
on, the Newton-Schulz iteration is used. This “switching” criterion shows a
good behavior in practice. Other less effective criteria have also been tested.
For instance, the criterion used in [6], ||Hy.1 — Hi|| < v/2n, does not guarantee
the convergence of the Newton-Schulz iteration; |Hy — Iop||||Hk + Lon|| < 1
tends to switch too late, and ||HZ — I5,|| < 1 is computationally too expensive.

19

4 Parallelization Issues and Performance Analysis

Our parallel algorithms are implemented using ScaLAPACK (scalable linear
algebra package) [14]. This is a public-domain parallel library for MIMD com-
puters which provides scalable parallel distributed subroutines for many ma-
trix algebra kernels available in LAPACK [2]. The ScaLAPACK library em-
ploys BLAS and LAPACK for serial computations, PB-BLAS (parallel block
BLAS) for parallel basic matrix algebra computations, and BLACS (basic
linear algebra communication subprograms) for communication.

The efficiency of the ScaLAPACK kernels depends on the efficiency of the
underlying computational BLAS/PB-BLAS routines and the communication
BLACS library. BLACS can be used on any machine which supports either
PVM [25] or MPI [28], thus providing a highly portable environment.

In ScalLAPACK, the user is responsible for distributing the data among the
processes. Access to data stored in a different process must be explicitly re-
quested and provided via message-passing.

The implementation of ScaLAPACK employs a block-cyclic distribution sche-
me [14], which is mapped into a logical p, X p. grid of processes. Each process
owns a collection of (MB x NB) blocks, which are locally and contiguously
stored in a two-dimensional array in “column-major” order (see Figure 2).

1 2 3 45 6 7 8 9 P00 P01 P02

P00 P00 P01 P01 P02 P02 P00 PO PO1 all al2 ai7 a8 | at3 at4 al9 | ai5 al6
a2l a22 a27 a28 | a23 a24 a29 | a25 a26
P00 P00 P01 POT P02 P02 P00 POO PO1

abl ab2 ab7 ab8 | ab53 ab4 ab9 | ab55 ab6

PIO- P10 P1TPI1 P12 P12 P10 PIO P a61 a62 a67 a68 | a63 ab4 a69 | a65 a6

P10 P10 PI1 P11 P12 P12 PI0 P10 P

ad1 a32 | a37 a38 | a33 a34 | a39 | ad5 a3k
P00 POO | P01 POT | P02 P02 | P00 PQO | PO1 adl a42 | a47 a8 | ad3 ad4 | ad9 | ad5 ad6

P00 PO | POT P01 | P02 P02 POO POO | PO

a7l a72 | a77 a78 | a73 a74 | a79 | a75 a76
o Pi0| P11 Pt P12 Pr2| P10 P10 | Pis a1 aB2 | a87 aB8 | 83 a4 | 289 | a85 adh

co ~N o o = W D -

P10 P10 | P11 P11 P12 P12 PI0 P10 | P11

P10 P11 P12

Fig. 2. Block-cyclic data storage scheme of an 8 X 9 matrix, p, X p,=2 x 3 and
MBXNB=2 X 2.

For scalability purposes, we only employ square topologies (p, = p.) with each
process mapped onto a different processor. The following parameters are used:
- n: Size of the problem.
- p= /P X /p: Dimension of the square grid of processors.
- 7: Execution time required for a double-precision floating-point arith-
metic operation.
a (latency): Time required to communicate a zero-length message be-
tween two processors.
B (reciprocal of bandwidth): Time required to communicate a double-
precision floating-point number between two processors.

20

For simplicity, we assume here that the time required to perform any floating-
point arithmetic operation is constant. In practice this execution time depends
strongly on several architecture-dependent factors. We also assume a linear
model for communication (i.e., the time required to communicate an message
of length m is a + fm).
We have employed the following (double precision) routines from Scal.A-
PACK [14] in our CARE solvers:

- PDGETRF: LU factorization with partial pivoting.

- PDTRSV: Solution of a triangular linear system.

- PDGETRI: Matrix inversion using the LU factors.

- PDGEMM: Matrix product.
Following the performance model in [6], we present in Table 1 approximate
computation and communication costs for these routines (lower order expres-
sion have been neglected).

Parallel | Computation Communication cost

routine cost Latency Bandwidth*

PDGETRF | 3x D7 | (6+ logp)nx a | (3+logp) x 25 8

PDTRSV ”{T nXx o (1+%logp)x:l/—%ﬁ

PDGETRI | 4 x 27 M X (2+ 3 logp) x 25 8

PDGEMM 2><"7f'r (14 3 logp)y/px a (1+%1ogp)x?/_;5
Table 1

Approximate computation and communication costs for several parallel routines in
ScaLAPACK.

The number of calls to these subroutines in our CARE solvers depends on the
number of iterations of Newton’s method, the matrix sign function iterative
scheme employed for solving the Lyapunov equation (Newton, Halley, Newton-
Schulz, or generalized Newton), and the number of iterations of the matrix
sign function for the Lyapunov solver.

In Table 2 we show the number of subroutine calls required by the Lyapunov
solver employed in a single iteration of Newton’s method for the CARE. In the
table, “iter” stands for the number of iterations necessary for the convergence
of the corresponding matrix sign function iteration for the Lyapunov equation.
From the data in Tables 1 and 2 we construct the theoretical performance
model for our parallel CARE solvers in Tables 3 and 4. Note that the perfor-
mance model only refers to a single iteration of Newton’s method.

We have observed moderate differences between the theoretical results ob-
tained from our performance model and the experimental results; these differ-
ences are due to simplifications and approximations in the theoretical model;
e.g., constant cost for any type of floating-point arithmetic operation, linear
model for communications, imbalance cost and lower order terms in compu-
tations/communications are neglected, etc.

21

Iteration for PDGETRF PDTRSV PDGETRI PDGEMM

Lyapunov eq.

Newton iter 4 X iter iter 7

Halley iter 4 X iter - 7+ 6 X iter

Newton-Schulz - - — 7+ 6 X iter

Generalized Newton | 2+ iter | 4 4+ 2 X iter — 8 + 3 x iter
Table 2

Number of calls to different parallel routines from ScalLAPACK required by a single
iteration of Newton’s method for the CARE.

Tteration for Computation cost
Lyapunov eq. X %3 T
Newton 14 4+ 6 x iter
Halley 14 + % X iter
Newton-Schulz 14 4+ 12 x iter
Generalized Newton 8 + 2 x iter
Table 3
Computation cost of a single iteration of Newton’s method for the CARE.
Iteration for Communication cost
Lyapunov eq. Latency X « Bandwidth~! X% Jéj
Newton 7(1+ 3 logp)y/P + 7(1+ 3 logp) +
(12 + logp)n x iter (9+ % logp) X iter
Halley (14 % logp)(7 + 6 x iter),/p + | (1 + 3 logp)(7 + 6 x iter) +
(10 + logp)n x iter (74 13 logp) x iter
Newton-Schulz | (1 + 1 logp)(7 + 6 x iter)\/p (14 3 logp)(7 + 6 x iter)
Generalized (14 3 logp)(8 +3 x iter) /P + | (14 35 logp)(8 + 3 x iter) +
Newton (8 + logp)(2 + iter)n (54 I logp)(2 + iter)
Table 4

Communication cost of a single iteration of Newton’s method for the CARE.

5 Numerical Experiments

In this section we compare the performance of our CARE solvers for several
benchmark examples. Some of these problems (Examples 7, 8, and 9) are
generated with the Fortran routine carex.f [11]. For comparisons of Newton’s
method with and without line search see [9,8,10].

The experiments were performed using Fortran 77 and IEEE double-precision
arithmetic (¢ ~ 2.2 x 107'%) on an 1BM SP2 platform. We made use of the
vendor-supplied BLAS (essl), and the LAPACK library [2]. BLACS are in-
stalled on top of MPI.

22

5.1 Serial performance of CARFE solvers

In the following examples we compare the performance of the serial CARE

solvers based on Newton’s method. We denote the solvers for the standard

CARE (F = I,,) by DGECRxx and those for the generalized CARE (E # I,,)

by DGGCRxx. Unless otherwise explicitly stated, all the methods employ the

exact line search acceleration. The suffix —xx identifies the Lyapunov equation

solver employed in the algorithm as follows:

DGECRBS and DGGCRBS: The Bartels-Stewart method.

DGECRNE and DGGCRNE: The Newton iteration.

DGECRHA: The Halley iteration.

— DGECRNS: The hybrid iteration (Newton iteration followed by Newton-
Schulz iteration).

In case A is stable, we use Xy, = 0,, as the starting guess in our CARE solvers;
otherwise, we use an initial solution Xy = X computed by means of the Schur
vector method (we use in this case our routines DGECRSV and DGGCRSV [48]
for the standard and the generalized CARE, respectively). The reported test
results were obtained using the simple two-stage stopping criterion suggested
in Section 2.4. That is, the tolerance threshold is set to tol = 10-n-+/¢ in the
stopping criterion of both the matrix sign function iterations and Newton’s
method for the CARE and two additional iteration steps are performed once
the criterion is satisfied. The figures report the time required by Newton’s
method to refine the initial solution X, to “maximum” accuracy.

Example 7 This example describes a mathematical model of position and
velocity control of a string of high-speed vehicles [42]. The condition number
of the example only grows very slowly with n.

The left-hand plot in Figure 3 reports the execution time of the CARFE solvers
with Xy = X (initial solution by the Schur vector method) and n=249, 499,
749, and 999. Newton’s method requires only three iterations to converge in
these cases (||R (Xo) ||lr & 1.0 x 1071% and ||R (X3) || ~ 1.0 x 107 ™). (Ac-
tually, two iterations of Newton’s methods are enough to reach the mazrimum
accuracy but, as we perform two iterations after the convergence criterion is
satisfied, we get an overall number of three iterations.)

On average, solving the Lyapunov equations in this example requires 11 itera-
tions of the Newton matrix sign function iteration, 8+ iterations of the hybrid
(Newton+Newton-Schulz) matriz sign function iteration, and 6 iterations of
the Halley matriz sign function iteration.

Example 8 The system matrices and the solution matrices of this example
are circulant [{2]. The ezact solution is known a priori and the condition
number is small and independent of n.

The right-hand plot in Figure 3 reports the execution time of the CARFE solvers
with Xo = X and n=250, 500, 750, and 1000. Three iterations of Newton’s
method are enough to obtain || X, — Xs3||r/|| X.||Fr & 1.0x 10712 (||R (Xo) ||F =
1.0x 1072 and ||R (X3) ||r &~ 1.0x107%). Two iterations of Newton’s methods

23

are enough to reach the maximum accuracy. The third iteration is due to our
relazed stopping criterion.

On average, solving the Lyapunov equations in this example requires 6 itera-
tions of the Newton matriz sign function iteration, 3+3 iterations of the the
hybrid (Newton+Newton-Schulz) matriz sign function iteration, and 5 itera-
tions of the the Halley matriz sign function iteration.

2000 1 2000
1500 1500
4] 4]
0 o
2] 2]
£ c
91000 <1000
£ E
F F
500 1 500
0 . . .] 0
200 400 600 800 1000 200 400 600 800 1000
Problem dimension (n) Problem dimension (n)

Fig. 3. Execution time of Newton’s method for Examples 7 (left) and 3 (right) on
the 1BM sP2. Legend: symbols “——" for DGECRBS, “—-+-—" for DGECRNE, “---0---”
for DGECRNS, and “——x ——" for DGECRHA.

Examples 7 and 8 show that, in the standard case, the best solver is the
one based on the Newton iteration for the Lyapunov equation (DGECRNE). For
medium and large-size problems (n > 500), the solver based on the hybrid
iteration (DGECRNS) is also more efficient than the one based on the Bartels-
Stewart method (DGECRBS). In Example 7, the cubic convergence of the solver
based on the Halley iteration (DGECRHA) is overrun by its higher computational
cost.

Example 9 This is Example 18 from [11], parameterized by the following
seven arguments: « = 1072, B =1, v=1, 5 = 0.2, B, = 0.3, 71 = 0.2, and
Yo = 0.3. We use our generalized CARE solvers on the generalized problem;
no attempt is made to exploit the special structure of this problem.

The left-hand plot in Figure 4 reports the execution time of the CARE solvers
for n=250, 500, 750, and 1000. The solution computed by the generalized
Schur vector method DGGCRSV satisfies |R (X) |lr &~ 1.0 x 10°8. Starting the
iteration at Xy = 0,,, Newton’s method requires five iterations to converge for
this problem (in both algorithms, DGGCRBS and DGGCRNE, ||R (X;) ||» ~ 1.0 x
10712). The execution time of Newton’s method based on solving the Lyapunov
equations with the Bartels-Stewart method is close to that of the generalized
Schur vector method. Newton’s method based on the generalized Newton matrix
sign function iteration is far more efficient as this approach is up to 5 times

24

as fast as the other two methods. Also note that in order to refine the solution
computed by the Schur vector method to the mazximal attainable accuracy, 1-2
iterations of Newton’s method are necessary, increasing the overall cost of the
Schur vector method even more.

4
,x10
12000f
10000f
~ 2
5 8000} 5
o o)
o 7]
< £1.5
s 6000 -
£ E
[=
4000f 1
2000f 0.5
Ot]))] ok = - ‘ N
200 400 600 800 1000 200 400 600 800 1000
Problem dimension (n) Problem dimension (n)

Fig. 4. Execution time of Newton’s method for Example 9 on the 1BM sP2. Legend:
symbols “—{—" for DGGCRSV, “—*—" for DGGCRBS, and “— - 4+ - —” for DGGCRNE. In
the right-hand plot, “-- - *--- for DGGCRBS without exact line search, and “---+4---”
for DGGCRNE without exact line search.

This example also illustrates the benefits of using the exact line search. We
modify the parameters of the problem to o = 1074, =1, v =100, 5, = 0.1,
B2 = 0.5, v1 = 0.2, and v, = 0.3. The right-hand plot in Figure 4 reports the
execution time of the CARE solvers with/without ezact line search for n=250,
500, 750, and 1000. Starting the iteration at Xy = 0,, the use of the exact
line search in Newton’s method reduces the number of iterations from 17 to 6
(IR (X¢) || = 1.0 x 10713).

Example 10 We generate random matriz pairs

A = Vpdiag (a1, ..., an) Wy, E = V,W,,

where the scalars oy, ..., a, are uniformly distributed in [—10,0), and W, is
an n X n lower triangular matriz. In the standard case, V,, = W, ' so that
E = 1,; in the generalized case, V, is an n X n matriz with unit entries on and
below the anti-diagonal and all other entries equal to zero. Then, we construct
two random n X n symmetric positive semidefinite matrices, X, and G, with
I X.llr = ||Gllr = 1. Matriz Q is then constructed as Q@ = —(ATX.E +
ETX,A— ETX,GX,E).

Figure 5 shows the ezecution time of the CARE solvers with X = 0, and
n=250, 500, 750, and 1000. In this example we only report the results of

the first iteration of Newton’s method. The number of iterations of Newton’s

25

method should be roughly the same for all CARE solvers since they only differ
in the Lyapunov solver that s employed.

4
10
10°
£ £
o 0
E 2 E
=10 F
10°
200" 400 600 800 1000 200 400 600 800 1000
Problem dimension (n) Problem dimension (n)

Fig. 5. Execution time of one iteration of Newton’s method for the standard case
(left) and the generalized case (right) of Example 10 on the 1BM sP2. Legend:
symbols “—x—" for DGECRBS and DGGCRBS, “— - 4+ - —” for DGECRNE and DGGCRNE,
“..0--." for DGECRNS, and “—— x——" for DGECRHA.

This example shows that both in the standard and generalized case, the best
solvers are those based on the Newton matriz sign function iteration (DGECRNE
and DGGCRNE). In the standard case solver DGECRNS is also more efficient than
solver DGECRBS for medium and large-size problems, while the most expensive
standard CARE solver is algorithm DGECRHA in all cases.

5.2 Parallel performance of the CARE solvers

The 1BM spP2 architecture consists of 80 RS6000 sSP2 THIN nodes at 120
MHz, and 256 MBytes RAM per processor. Internally, the nodes are connected
by a TB3 high performance switch. The latency is 31 microseconds and the
bandwidth is about 90 MBytes/sec. We use BLACS (on top of MPI), and
ScaLAPACK |[2,14] to ensure the portability of the algorithms to other serial
and parallel architectures.

In Figure 6 we analyze the performance of the parallel implementations of the
CARE solvers. The compared codes are PDGECRNE, PDGECRNS, PDGECRHA, and
PDGGCRNE, based on solving the Lyapunov equations by the Newton, hybrid,
Halley, and generalized Newton iteration. Parallel solvers for the Schur vector
method and Newton’s method based on Bartels-Stewart algorithm are not
implemented due to the lack of the necessary matrix algebra kernels in the
current version of the ScaLAPACK library.

We only report the Mflop rate (millions of flops per second) per node on square
grids of 1, 4, 9, and 16 nodes of one iteration of Newton’s method. This ratio

26

is independent, of the number of iterations and is computed by dividing the
number of flops required for each algorithm by the product of the runtime and
the number of nodes.

To analyze the scalability of the solvers, we fix the dimension of the problem
per node in the experiment to n/,/p = 500, 750, and 1000. The figures report
a high scalability of our solvers as there is only a slight decrease in the Mflop
rate when the number of processors is increased from 4 to 16. This result agrees
with the scalability of the basic building blocks involved in the CARE solvers
(matrix product, LU factorization, triangular linear systems, etc.) In some
cases, increasing the ratio n/,/p from 750 to 1000 reduces the performance of
the algorithms. Further experiments showed that this is due to the cache size
of this architecture.

200 1 200
[0} [0}
ke ke
2150 2150
© ©
Q Q
8 8
2100 2100
> b
50 50
0 1 4 9 16 0 1 4 9 16
Number of Processors Number of Processors
200 1 200
[0} [0}
ke k]
2150 2150
© ©
Q Q
8 8
2100 2100
> b
50 50
0 1 4 9 16 0 1 4 9 16
Number of Processors Number of Processors

Fig. 6. Mflop rate per node of the parallel solvers PDGECRNE (upper left) and
PDGECRHA (upper right) PDGECRNS (lower left) and PDGGCRNE (lower right) on the
1BM SP2. Legend: symbols “ .. x--.” for n/,/p = 500, “-- +.-.” for n/,/p = 750,
and “--o0---” for n/,/p = 1000.

27

Consider T'(n, p) as the execution time of an algorithm for solving a problem of
size n using p processors. The speed-up of the algorithm is defined as the ratio
Sp(n,p) = T(n,1)/T(n,p). We are usually interested in the speed-up of an
algorithm for large n; however, due to memory size restrictions on the IBM SP2,
we can only solve problems with n/,/p up to 1000 and therefore we can only
compute the speed-up for problems of size n=1000. We will therefore compute
an approximation of this measure as follows. Assume that T'(n, p) = kn3/p for
some constant k; we have then T'(n,/p, p) = T'(n,p)-p,/p and we can compute
an estimated speed-up as

Sp(n,p) = #\/}—i)p) 'p\/;B.

In case we keep n/,/p fixed at 1000 we obtain the estimated speed-ups in
Table 5. The results show that parallel solvers based on Halley and Newton-
Schulz matrix sign function iterations present higher speed-ups. This is due to
the higher number of involved matrix products as these are specially efficient
on parallel distributed architectures.

Notice that a higher Mflop rate or a higher speed-up does not necessarily
imply a more efficient CARE solver since the efficiency also depends on the
number of iterations of the matrix sign function iterative schemes required to
solve each Lyapunov equation.

Algorithm | p=4 | p=9 | p=16

DGECRNE 2.96 | 5.94 | 9.84
DGECRHA 3.20 | 6.69 | 14.35
DGECRNS 2921 6.00 | 11.29
DGGCRNE 2.90 | 6.44 | 10.77

Table 5
Estimated speed-ups S,(n,p) of the parallel CARE solvers (n/ v/P=1000).

6 Concluding Remarks

We have analyzed the convergence theory and implementation of Newton’s
method with exact line search for solving standard and generalized CAREs.
Our algorithms employ matrix sign function iterations (e.g., Newton, Newton-
Schulz, and Halley) for solving the Lyapunov equations arising in each iter-
ation step of Newton’s method. Based on known condition estimates for the
standard CARE and their extension to the generalized case we propose a re-
liable stopping criterion. From this we also obtain a forward error bound for
the relative error of the computed solution.

Unlike the Bartels-Stewart method which is based on the QR/QZ algorithm,
our parallel implementations are composed of medium-grain scalable compu-

28

tational kernels. The experimental results on serial computers and an 1BM SP2
parallel distributed platform show high accuracy, performance, and scalability
of our solvers.

Acknowledgement

We thank the Mathematics and Computer Science Division at Argonne Na-
tional Laboratory for the use of the IBM sP2.

References

[1] B. D. O. Anderson and J. B. Moore. Linear Optimal Control. Prentice-Hall,
Englewood Cliffs, NJ, 1971.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.
LAPACK Users’ Guide. STAM, Philadelphia, PA, second edition, 1995.

[3] L. Armijo. Minimization of functions having Lipschitz-continuous first partial
derivatives. Pacific J. Math., 16:1-3, 1966.

[4] W.F. Arnold, IIT and A.J. Laub. Generalized eigenproblem algorithms and
software for algebraic Riccati equations. Proc. IEEE, 72:1746-1754, 1984.

[5] Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox,
Part I. In R.F. Sincovec et al, editor, Proceedings of the Sixth SIAM Conference
on Parallel Processing for Scientific Computing, 1993. See also: Tech. Report
CSD-92-718, Computer Science Division, University of California, Berkeley, CA
94720.

[6] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley.
The spectral decomposition of nonsymmetric matrices on distributed memory
parallel computers. SIAM J. Sci. Comput., 18:1446-1461, 1997.

[7] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX+XB = C:
Algorithm 432. Comm. ACM, 15:820-826, 1972.

[8] P. Benner. Numerical solution of special algebraic Riccati equations via an
exact line search method. In Proc. European Control Conf. ECC 97, Paper 786.
BELWARE Information Technology, Waterloo, Belgium, 1997. CD-ROM.

[9] P. Benner. Contributions to the Numerical Solution of Algebraic Riccati
Equations and Related Figenvalue Problems. Logos—Verlag, Berlin, Germany,
1997. Also: Dissertation, Fakultat fiir Mathematik, TU Chemnitz—Zwickau,
1997.

[10] P. Benner and R. Byers. An exact line search method for solving generalized
continuous-time algebraic Riccati equations. IEEFE Trans. Automat. Control,
43(1):101-107, 1998.

29

[11] P. Benner, A.J. Laub, and V. Mehrmann. A collection of benchmark
examples for the numerical solution of algebraic Riccati equations I:
Continuous-time case. Technical Report SPC 95_22, Fakultat fiir Mathematik,
TU Chemnitz—Zwickau, 09107 Chemnitz, FRG, 1995. Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html.

[12] P. Benner and E.S. Quintana-Orti. Solving stable generalized Lyapunov
equations with the matrix sign function. Technical Report SFB393/97-
23, Fakultat fir Mathematik, TU Chemnitz, 09107 Chemnitz, FRG, 1997.
Available from http://www.tu-chemnitz.de/sfb393/sfb97pr.html.

[13] P. Benner, E.S. Quintana-Orti, and G. Quintana-Orti. Solving linear matrix
equations via rational iterative schemes. In preparation.

[14] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R.C. Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[15] R. Byers. Numerical condition of the algebraic Riccati equation. Contemp.
Math., 47:35-49, 1985.

[16] R. Byers. Solving the algebraic Riccati equation with the matrix sign function.
Linear Algebra Appl., 85:267-279, 1987.

[17] J. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ,
1983.

[18] J.J. Dongarra, A. Sameh, and D. Sorensen. Implementation of some concurrent
algorithms for matrix factorization. Parallel Comput., 3:25-34, 1986.

[19] Z. Gaji¢ and X. Shen. Parallel Algorithms for Optimal Control of Large Scale
Linear Systems. Springer-Verlag, London, GB, 1994.

[20] J. D. Gardiner. Stabilizing control for second-order models and positive real
systems. ATAA J. Guidance, Dynamics and Control, 15(1):280-282, 1992.

[21] J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function
solution for algebraic Riccati equations. Internat. J. Control, 44:823-832, 1986.

[22] J.D. Gardiner and A.J. Laub. Solving the algebraic Riccati equation on a
hypercube multiprocessor. In G. Fox, editor, Hypercube Concurrent Computers
and Applications, Vol. II, pages 1562-1568. ACM Press, New York, 1988.

[23] J.D. Gardiner and A.J. Laub. Parallel algorithms for algebraic Riccati
equations. Internat. J. Control, 54:1317-1333, 1991.

[24] J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of the Sylvester
matrix equation AXB+CXD = E. ACM Trans. Math. Software, 18:223-231,
1992.

[25] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine — A User’s Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

30

[26] A.R. Ghavimi, C. Kenney, and A.J. Laub. Local convergence analysis of
conjugate gradient methods for solving algebraic Riccati equations. I[IEEE
Trans. Automat. Control, 37:1062-1067, 1992.

[27) G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins
University Press, Baltimore, second edition, 1989.

[28] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 1994.

[29] C.-H. Guo and P. Lancaster. Analysis and modification of Newton’s method
for algebraic Riccati equations. Math. Comp., 67:1089-1105, 1998.

[30] S.J. Hammarling. Numerical solution of the stable, non-negative definite
Lyapunov equation. IMA J. Numer. Anal., 2:303-323, 1982.

[31] G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the
unsymmetric algebraic eigenvalue problem: myths and reality. SIAM J. Sci.
Comput., to appear.

[32] G. Henry, D.S. Watkins, and J.J. Dongarra. A parallel implementation of the
nonsymmetric QR algorithm for distributed memory architectures. Technical
Report LAPACK Working Note 121, University of Tennessee at Knoxville, 1997.

[33] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM,
Philadelphia, PA, 1995.

[34] C. Kenney and G. Hewer. The sensitivity of the algebraic and differential
Riccati equations. SIAM J. Cont. Optim., 28:50-69, 1990.

[35] C. Kenney and A.J. Laub. Rational iterative methods for the matrix sign
function. SIAM J. Matriz Anal. Appl., 12:273-291, 1991.

[36] C. Kenney and A.J. Laub. The matrix sign function. IEEE Trans. Automat.
Control, 40(8):1330-1348, 1995.

[37] C. Kenney, A.J. Laub, and M. Wette. Error bounds for Newton refinement of
solutions to algebraic Riccati equations. Math. Control, Signals, Sys., 3:211—
224, 1990.

[38] D. L. Kleinman. On an iterative technique for Riccati equation computations.
IEEE Trans. Automat. Control, AC-13:114-115, 1968.

[39] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford
University Press, Oxford, 1995.

[40] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press,
Orlando, 2nd edition, 1985.

[41] I. Lasiecka and R. Triggiani. Differential and Algebraic Riccati Equations
with Application to Boundary/Point Control Problems: Continuous Theory
and Approzimation Theory. Number 164 in Lecture Notes in Control and
Information Sciences. Springer-Verlag, Berlin, 1991.

31

[42] A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE
Trans. Automat. Control, AC-24:913-921, 1979.

[43] A.J. Laub and J.D. Gardiner. Hypercube implementation of some parallel
algorithms in control. In M.J. Denham and A.J. Laub, editors, Advanced
Computing Concepts and Techniques in Control Engineering, pages 361-390.
Springer-Verlag, Berlin, 1988.

[44] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory
and Numerical Solution. Number 163 in Lecture Notes in Control and
Information Sciences. Springer-Verlag, Heidelberg, July 1991.

[45] P. Pandey, C. Kenney, and A.J. Laub. A parallel algorithm for the matrix sign
function. Int. J. High Speed Computing, 2:181-191, 1990.

[46] T. Penzl. Numerical solution of generalized Lyapunov equations. Adv. Comp.
Math., 8:33-48, 1997.

[47] P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods
for Linear Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

[48] E.S. Quintana-Orti. Algoritmos Paralelos Para Resolver Ecuaciones
Matriciales de Riccati en Problemas de Control. PhD thesis, Universidad
Politécnica de Valencia, 1996.

[49] J.D. Roberts. Linear model reduction and solution of the algebraic Riccati
equation by use of the sign function. Internat. J. Control, 32:677-687,
1980. (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge
University, Engineering Department, 1971).

[50] I.G. Rosen and C. Wang. A multi-level technique for the approximate solution
of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal.,
32(2):514-541, 1995.

[61] M.G. Safonov and R.Y. Chiang. Model reduction for robust control: A Schur
relative error method. Int. J. Adapt. Cont. and Sign. Proc., 2:259-272, 1988.

[62] G. Schelfhout. Model Reduction for Control Design. PhD thesis, Dept.
Electrical Engineering, KU Leuven, 3001 Leuven—Heverlee, Belgium, 1996.

[63] V. Sima. An efficient Schur method to solve the stabilization problem. IEEE
Trans. Automat. Control, AC-26:724-725, 1981.

[64] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure
and Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[65] J.-G. Sun. Residual bounds of approximate solutions of the algebraic Riccati
equation. Numer. Math., 76:249-263, 1997.

[56] A. Varga. On stabilization methods of descriptor systems. Sys. Control Lett.,
24:133-138, 1995.

[67] A. Varga and T. Katayama. Computation of J—-inner—outer factorizations of
rational matrices. Internat. J. Robust and Nonlinear Cont., 8:245-263, 1998.

32

[68] D.S. Watkins and L. Elsner. Chasing algorithms for the eigenvalue problem.
SIAM J. Matriz Anal. Appl., 12:374-384, 1991.

[69] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-
Hall, Upper Saddle River, NJ, 1996.

33

Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte
— Vertrieb durch den Autor —

Reports Stand: 2. September 1998

98-01. Peter Benner, Heike Faflbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

