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Abstract

In this paper we survey some computational methods for linear-quadratic
optimization problems as they appear in control theory. As a model we use
the classical linear-quadratic regulator (LQR) problem. This is an optimal
control problem for a linear time-invariant dynamical system in the sense
that a quadratic performance criterion is to be minimized. Most of the mod-
ern (robust) control problems for linear-time invariant systems can also be
considered as optimization problems with quadratic performance criterion
and their solution often requires the same basic numerical methods as the
LQR problem. We review several alternative problems that provide a solu-
tion to the LQR problem. From the point of view of numerical computations
the most intriguing result is that the optimal control can be derived from a
particular solution of an algebraic Riccati equation. The desired solutions of
these algebraic Riccati equations can be obtained by methods of numerical
linear algebra and therefore the solution can be determined without dis-
cretization error and with low computational cost. Different strategies that
re-present the current state of the art for the numerical solution of these
algebraic Riccati equations are discussed.
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2 1 INTRODUCTION

1 Introduction

We consider the numerical solution of the continuous-time autonomous linear-
quadratic optimal control problem

Minimize
ty
7@w) = 5 [ GO Qu® +u) Ru(v) d (1)
0
subject to the dynamics
#(t) = Az(t) + Bu(t), t>0, z(0)=2° (2)
y@) = Cz@t), 20, ®3)

where A € R"*", B € R"*™, C € R”*", Q € R?*?, R € R™™, Q = Q7,
R=R",and R >0, i.e., R is positive semidefinite. Moreover,

u € PCp[0,t5] := {u(t) € R™; u(t) piecewise continuous on [0,t¢]}.

The system (2)—(3) describes a linear time-invariant dynamical system where
z(t) € R™ are the states, u(t) € R™ are the inputs (or controls) and y(t) € R?
are the outputs of the system.

This problem serves as the standard problem in classical control theory since
the fundamental work of Kalman and Bucy [39, 40] and has been treated in nu-
merous books and publications since then; see, e.g., [3, 5, 27, 62] and many more.
Though linear systems seldom describe reality, the analysis and synthesis problems
for nonlinear systems are frequently solved using linearizations around working
points. Solving these linearized problems requires again working with the above
model. Some classes of nonlinear problems can even be tackled directly with a
linear model [51].

The computational methods for solving the optimal control (linear-quadratic
optimization) problem (1)—(3) mostly make use of the fact that under moderate
assumptions, the optimal control is given by the feedback law

ue(t) == — R 'BTX,()z(t), t>0, (4)

where for t; < oo, X.(t) is the unique solution of the Riccati matriz differential
equation

X(t) = R(X(t) := F+ATX(t) + X(t)A - X(t)GX (1), (5)

with terminal condition X (t¢) = 0 while for t; = co, X,(t) = X, is time-invariant
and given as a particular solution of the algebraic Riccati equation (ARE)

0 = R(X) := F+ATX + XA - XGX, (6)



where F := CTQC and G := BR™!BT. The solution of (6) yielding the opti-
mal control as given in (4) is the unique stabilizing solution X, i.e., A — GX,
is stable in the sense that all its eigenvalues are in the open left half plane C™.
The performance index is then given by J(2°,u,) = 1z{ X.zo while the tra-
jectory implied by the optimal control is given by inserting (4) into (2) and then
integrating, yielding

z.(t) = eATGXItg >0, (7)

Several extensions of the optimal control problem (1)—(3) can also be solved via
this approach; see, e.g., [69] for a nice overview of such extensions.

During the past 20 years more sophisticated control strategies have been de-
veloped; see, e.g., [30, 36, 68, 72]. These strategies take into account robustness of
a control law (given as a controller or regulator) with respect to external pertur-
bations. The computation of such modern H»- and H-controllers frequently also
boils down to the solution of AREs of the form (6), just the coefficient matrices A,
G, and F' are derived in a different way and are more or less complicated expres-
sions in terms of the system matrices. Therefore, the computational methods for
optimal control problems as given in (1)—(3) carry over to robust control problems.

In most control applications, the model (1)—(3) is used to study the long-
time behavior of the (controlled) physical system. We will therefore focus on the
infinite time horizon case t; = co. Most optimal and robust control problems for
linear, time-invariant systems with infinite time horizon can be expressed as linear-
quadratic optimization problems that can be solved via AREs. In the survey of
numerical methods for linear-quadratic optimization we will therefore concentrate
on solution methods for algebraic Riccati equations of the form (6).

The remainder of this paper is organized as follows: in Section 2 we will sum-
marize some basic properties of linear time-invariant systems and then see how
the optimal control problem (1)—(3) can be transformed to other problems which
all provide solution strategies of the optimization problem. The most frequently
used strategy is the approach based on solving AREs. Therefore we review some
basic properties of these quadratic matrix equations in Section 3. Computational
methods for the numerical solution of AREs are then discussed in Section 4. Some
conclusions are given in Section 5.

2 Linear—Quadratic Optimal Control and Related Problems

First, we introduce some notation from linear algebra. By A (A4) we denote the
spectrum of a square matrix A € R™*", i.e., the set of its eigenvalues. Analogously,
we write A (A, E) for the generalized spectrum of a matrix pencil A — AE, i.e., the
set of its finite and infinite eigenvalues. A matrix is called stable if A(A) C C™.

A linear, time-invariant system (LTI system) in state-space presentation is
given by

z(t) = Az(t) + Bu(t), t>0, z(0) = =g,

(8)
y(t) = Cx(t) +Duft), t=0,
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where A € R™", B € R™™™, C € RP*", D € RP*™. Here, we will assume
D = 0. The case D # 0 does not impose any additional mathematical difficulties
(see, e.g., [69]), only the notation becomes more complicated.

We will also need some properties of LTI systems.

Definition 2.1 Let A € R™", Be R™*™, C € RP*",
a) The following conditions are equivalent to the controllability of the matrix
pair (A, B):

(i) For all zy € R™ there exist t; > 0 and u € PCp,[0,11] such that x(t1) = z1.
(ii) rank ([B,AB, A’B,...,A""'B]) = n.
(#ii) rank ([A — AL,,B])) = n for all XA € C.

b) The following conditions are equivalent to the observability of the matriz
pair (C, A):

(i) The matriz pair (AT,CT) is controllable.
(ii) rank ([CT, (CA)T, (CA2)T, ..., (CA™Y)T|T) = n.
(iii) rank ([AT — XI,CT]T) = n for all X € C.

¢) The following conditions are equivalent to the stabilizability of the matriz
pair (A, B):

(i) rank ([A — AI,B])) = n for all A € C with Re(\) > 0.
(i1) There exists K € R™*™ such that A+ BK is stable.

d) The following conditions are equivalent to the detectability of the matriz
pair (C, A):

(i) The matriz pair (AT,CT) is stabilizable.
(i) rank ([AT — XI,CT1T) = n for all X € C, Re(X) > 0.
(iii) There exists K € R™™P such that A+ KC is stable.
() If z(t) is a solution of £ = Ax and Cx(t) =0, then lim;_, ., z(t) = 0.
e) A matriz K € R™*" is stabilizing for (A, B) iff A+ BK is stable.

In the following subsections, we will review the standard theory of the optimal
control problem (1)—(3) and its relation to other (under certain assumptions) math-
ematically equivalent problems. This theory can also be found in many textbooks
(e.g., [3, 5, 27, 61, 69] and numerous others). We will use a compact presentation,
following in part the derivation in [62]. First, we turn our attention to the problem
of finding an optimal control u(t) for (1)—(3).
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2.1 Existence of solutions of the linear-quadratic optimal control prob-
lem

Consider the general cost functional given by

ty
T = [ gttu)d
0
where the system is described by the set of ordinary differential equations

&(t) = f(t,z,u),

with initial condition £(0) = z° and no target condition z(ts) is prescribed.
In our case, the function g is given by

(z,u) = g(x(t),u(t))
(z(t)TCTQCx(t) + u(t)" Ru(t))

g(t,x,u)

I
Q

N = N =

(¥ Qy(®) + u(t) " Ru(t)) -
while the governing differential equation is defined via the function
[t z,u) = fz,u) = f(x(t),u(t) = Ax(t) + Bu(t).

Next, we define the Hamilton function by

H(z,u,p) = —g(z,u) +pt)" f(z,u),
N - OH .
where the components of the co-state p(t) € R"™ satisfy f1;(t) = ~ . for j =
J
1,...,n, which is in our case equivalent to
(t) = CTQCw(t) — AT (). 9)

From the Pontryagin Maximum Principle for autonomous systems as given,
e.g., in [62, Theorem 4.3] or [54, Theorem V.3] (and many other references) applied
to our problem, we obtain:

Proposition 2.2 Letu,(t) € PC,[0,t7] and let z, be the trajectory determined by

#(t) = Az(t)+Bu(t), ©(0) = 2°. Then in order for u, to be optimal, i.e., J (u.) <

J (u) for all w € PCy[0,t¢], it is necessary that the following two conditions hold.
(1) H(z,us, 1) > H(x,u, 1) on [0,tf] for all u € PCp[0,15];

(ii) p(ts) =0
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Condition (i) is called the mazimum condition while (ii) is a transversality condi-
tion.

H
As u is not constraint, we obtain from Proposition 2.2(i) that e 0 for
J
j=1,...,m, and hence it follows that

—Ru(t)+ BT u(t) = 0 (10)

must hold on [0,ts] for an optimal control. Moreover, the second derivative test
implies R > 0 as a necessary condition for the existence of an optimal control
minimizing the objective functional 7 (u).

Collecting all equations, i.e., the state equations together with the initial con-
ditions, (9) together with the transversality condition, and (10), we obtain

z(t) = Az(t) + Bu(t), z(0) = 22,
pt) = CTQCxz(t)— ATu(t),  u(ty) =0,
0 = Ru(t)—BTpu(t).
These equations can be combined to the two-point boundary value problem
I, 0 0 T A 0 B z 2(0) = z°
0 I, 0 L= co0rQc —-AT 0 v, . _0’ (11)
0 0 0 7 0 -BT R u ulty) =0.

Note that 4 only appears formally, so that (11) does not pose additional smooth-
ness properties for u. Actually, (11) is a boundary value problem for a differential-
algebraic equation where the co-state p and the control u are related by a purely
algebraic equation. Assuming R nonsingular, 4 can be removed from the system,
yielding an ordinary boundary value problem; see the next section.

Due to the special structure of the autonomous linear-quadratic optimal control
problem, the conditions derived from the Pontryagin Maximum Principle yield
necessary and sufficient conditions for existence of an optimal control. These are
summarized in the following theorem which is contained in any textbook treating
this class of problems (see, e.g., [5, 27] and many others).

Theorem 2.3 a) If u, € PCp,[0,1tf] is an optimal control for the linear-quadratic
optimization problem (1)-(3), then there exists a co-state u(t) € R™ such that

[(e ()T, (us(t)T, (u(t))T]T satisfies the two-point boundary value problem (11).

b) If [(z ()7, (uc ()7, (u(t))T]T satisfies the two-point boundary value prob-
lem (11) and Q,R are positive semidefinite, then J(u.) < J(u) for all u €
PCr[0,tf] and for all (x,u) satisfying (2).

The above theorem yields conditions for the existence of a solution of the op-
timal control problem by transforming the constrained optimization problem to
a boundary value problem. This problem can in principle be solved using any
feasible (analytical or numerical) method. Next we will see that the solution of
our problem can be obtained from an initial-value problem or even an algebraic
equation (in case ¢ty = 0o) which is much easier to solve.
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2.2 From two-point boundary value problems to Riccati equations

Assuming that R is nonsingular (i.e., together with R > 0 this implies that R is
positive definite, denoted here by R > 0), (10) is equivalent to

u(t) = R™'BT pu(t) (12)
such that the state equations can be written as
#(t) = Axz(t) + Bu(t) = Axz(t) + BR'BT u(t). (13)
Using (13), the two-point boundary value problem (11) can be re-written as

3] - [ "= )(28) St

Making the ansatz u(t) := —X(t)z(t), the terminal condition for the co-state
transforms to pu(ty) = —X(ty)z(ty), which together with p(ty) = 0, and the fact
that z(ts) is unspecified implies X (¢;) = 0. Employing

we obtain from the first differential equation in (14)
i(t) = Ax(t) — BR 'BTX(t)x(t)
while the second yields
CTQCz(t) + ATX(t)x(t) = —X()x(t) — X (t)&(t)
= —X(t)z(t) — X(#)(Az(t) — BR BT X (t)x(t)).
The latter equation is equivalent to

(X(t) + XA+ ATX(t) — X())BR™'BTX () + CTQC) z(t) = 0

for all t € (0,t). Hence, as z(t) is unspecified, we obtain the Riccati matriz
differential equation (RDE)

X(t) = —(CTQC+X(t)A+ATX(t) - X(t)BR 'BTX (1)), (15)

i.e., an autonomous nonlinear matrix-valued differential equation. Together with
X (tf) = 0 this yields an initial value problem in reverse time. From the theory
of (autonomous) Riccati differential equations it follows that there exists a unique
solution X,(t), t € [0,tf], of the RDE with terminal condition X (t¢) = 0 for any
ty < o0; see, e.g., [66].

Transposing equation (15) we see that X (t)7 has to satisfy the same differential
equation as X (t) on the whole interval [0,¢7]. From the uniqueness of the solution
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of the initial value problem given by (15) together with the terminal condition it
follows that X,.(t) = X.(t)7, i.e., the solution X, (¢) is symmetric.

Under the given assumptions we obtain that the two-point boundary value
problem (14) has a unique solution given by

w(t) = X.Oz.(t),  teotyl,
where z.(t) is the unique solution of the linear initial value problem
#(t) = (A— BR 'BTX,(t))z(t), z(0) = 2°.
Summarizing all results, we obtain the following theorem.

Theorem 2.4 If ) >0, R > 0, and ty < oo, then there exists a unique solution
of the linear-quadratic optimal control problem (1)—(3). The optimal control is
given by the feedback law

u(t) = —R'BT X, (t)z(t), (16)
where X, (t) satisfies the RDE
X(t)=—(CTQC + X(t)A+ ATX(t) — X(t)BR'BT X (t))

with terminal condition X (t§) = 0. Moreover, for any initial value z° the optimal

cost 1s
T () = 5 @) X.(0)a”.

The optimal control is therefore given as a closed-loop control, i.e., the system state
is used to determine the input via the feedback law (16). The matrix K. (¢) :=
R 'BTX,(t) is called the optimal gain matriz.

Remark 2.5 Note that X (t) is independent of z°.

So far we have considered the case of a finite time horizon. We will now turn
our attention to the infinite time case.
2.3 The infinite time case: t; = oo

In this section we will assume R > 0, @ > 0, that the matrix pair (A4, B) is
stabilizable, and that the matrix pair (CTQC, A) is detectable. Moreover, we will
require J (ux(+)) < oo where

J () = %/Ooo (z(t)TCTQCx(t) + u(t)" Ru(t)) dt.

Under the above assumptions we can make the following observations:
lim u(t) #0 = Ju()) =
t—o0
tl_i)m z()TCTQCx(t) > 0 = J(u(’) =
oo
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From this, we obtain as necessary conditions

tlirgou(t) =0 (17)
tli)rgox(t)TCTQC:c(t) = 0. (18)

Condition (18) together with the detectability of (CTQC, A) (see Definition 2.1)
implies
tlg&x(t) = 0. (19)
Now we examine the asymptotic behavior of the finite time solution X.(t)
of the Riccati matrix differential equation derived in the last section. Define
X(t,ty) = X(ty —t). Then X satisfies the differential equation

X = CTQC + XA+ ATX - XBR'BTX (20)

with initial condition )Z'(O,tf) = X (ty) = 0 for any t; < oo.
Now fix ¢, and let t; go to infinity. From the last section we know that X exists

and is unique for any ¢ € [0,%f] and every t; < co. Assume that limy, , X (t,1y)

is unbounded. This implies that X (0) = X (ts,ts) is unbounded for t; — oo,
and hence, J(u(-)) = (z°)7X(0)z° is unbounded for t; — oo. Therefore, in

order to obtain a finite optimal cost J (u), we require that lim;, .., X (t,15) exists.
Denoting this limit by Xo(t), observing that the boundedness of X (¢,¢;) implies

limg, oo X(t,t7) = 0, and taking limits in (20), we obtain the algebraic Riccati
equation (subsequently denoted by ARE)

0 = R(Xs) = CTQC + XA+ ATX, — X . BR'BTX . (21)

As X (t) has to satisfy the same equation for any ¢ € [0, 00), it is clear that the
solution is time-invariant, i.e., Xoo(t) = Xoo-

Remark 2.6 The quadratic matriz equation (21) is often referred to as continuous-
time ARE in order to distinguish it from the discrete-time ARFE arising in discrete
linear-quadratic optimization problems.

In contrast to the RDE with terminal condition, the solution of the ARE is
not unique. There may be infinitely many solutions; for a deeper insight into the
sets of solutions of AREs see [48] and the references therein. We will see now that
among those, we need a particular one. First of all, as X, is the limit of the
symmetric solutions Xy, (t) for t; — oo of the RDE, X, has to be symmetric as
well. Still, this constraint does not limit the number of solutions sufficiently.

Let us consider the closed-loop system resulting from applying the optimal
control U, given by

i(t) = (A—BR'BTX,)z(t) =: A.x(t), z(ty) = 2°.
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The unique solution of this initial-value problem clearly is z.(t) := e*tzy. From

(19) we know that lim; , o 2«(¢) = 0 which implies that A (A,) C €~ must hold.
So we need to choose the particular solution of the ARE that makes A, stable. This
solution is called the stabilizing solution. Fortunately, under standard assumptions
of control theory, this solution exists and is unique.

Theorem 2.7 If F > 0, G > 0, (A,Q) is stabilizable, (F,A) is detectable, then
the ARE
0 = F+ATX + XA-XGX (22)

has a unique, symmetric, stabilizing solution X, >0, i.e., A(A—GX,) C C .

For a proof, see, e.g., [48] or many of the references given therein.

There exist many related theorems, relaxing some of the conditions given in
the theorem in one or the other direction. Under very mild conditions it can be
shown that if the stabilizing solution of the ARE exists, it is unique. Assuming in
addition that (F, A) is observable, we also get that X > 0. Stabilizing solutions
may also exist if any of the definiteness assumptions or detectability is removed;
in that case, X, may be indefinite. See [48] for the most complete account of
the solution theory of AREs. In robust control, the existence of the stabilizing
solution of the ARE is often related to the existence of a controller, satisfying
some robustness criterion, via the so-called bounded real lemma; see, e.g., [30] and
many other references.

For the linear-quadratic optimization problem considered here, Theorem 2.7
has the following consequence.

Theorem 2.8 If Q > 0, R > 0, (A, B) is stabilizable, and (CTQC, A) is de-
tectable, then the linear-quadratic optimal control problem (1)-(3) with t;y = oo
has a unique solution given by

u (t) = — R 'BTX,x(t).

where X, 1is the unique stabilizing solution of the ARE (22) with F = CTQC,
G =BR'BT.

So far we have seen that the linear-quadratic optimal control/optimization
problem under certain assumptions has a unique solution which can be found
equivalently via solving a boundary value problem or an RDE/ARE, depending
on whether ¢ty < co or ¢y = oo. This implies three alternative approaches for the
computational solution of the linear-quadratic optimization problem:

e Solve the control problem as constrained optimization problem. This requires
to discretize the integral expression as well as the differential equation and to
form a quadratic program which can then be solved by any method feasible
for quadratic programming.

e Solve the two-point boundary value problem (14) by any numerical method
feasible for linear boundary value problems.
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¢ Solve the Riccati differential equation (15) if ¢ < 0o, or the algebraic Riccati
equation (22) if t; = oo.

The first two approaches will not be considered here any further. They both in-
volve a discretization error, even if exact arithmetic could be used. Moreover,
the discretized system will become very large for the quadratic programming ap-
proach, resulting in huge requirements concerning computational work as well as
workspace. For the boundary value approach, boundary conditions are only given
for half the variables at the left boundary while boundary conditions for the re-
maining variables are given at the right boundary. This causes problems for most
existing methods as they rely on a full set of boundary conditions on both sides.

Therefore, computational methods used in control engineering applications are
usually based on the Riccati approach. In order to solve the RDE, in principle any
solver for initial value problems can be used. There also exist methods using the
special structure of the problem; see, e.g., [28, 44, 47]. These methods are reliable,
well tested, and usually very efficient.

In the following we will focus on the case t; = oco. In this case, the Riccati
equation approach to the linear-quadratic optimization problems requires the nu-
merical solution of an ARE as given in (22). We will see in the next section that
this can be achieved by computing the ezact solution (at least in exact arithmetic)
without discretization errors, using purely linear algebraic methods, with a cost
of order n3. Hence, this approach outperforms the first two approaches as far as
accuracy as well as computational cost is concerned, not even taking into account
the problems caused by discretizing an infinite horizon problem.

The general outline of an algorithm for linear-quadratic optimal control with
ty = 0o, based on the Riccati approach, can be summarized as follows:

1. Form F =CTQC,G = BR'BT.
2. Compute the stabilizing solution X, of the ARE

0= F+ATX + XA - XGX.

3. Compute the gain matrix K, = R~'BTX,.

4. Define the optimal control u(t) = —K,z(t).

5. Compute the trajectory z,(t) = e(A=BE)tg0,

Remark 2.9 Several generalizations of the linear-quadratic optimal control prob-
lem (1)-(3) have been considered in the literature. The most straightforward ex-
tensions are a cross-weighting term of the form yT (t)Su(t) in the cost functional
or an additional feed-through term in (3), i.e., the observed states are given by
y(t) = Cxz(t) + Du(t). These generalized linear-quadratic optimization problems
and some others, like the ones resulting from adding error integrators into the
system, reference tracking, rejection of measurable disturbances, etc., can all be
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solved by the Riccati equation approach outlined above; for a nice overview of such
generalizations see [69, Chapter 1].

A more complicated generalization is given by considering descriptor systems
of the form Ex(t) = Ax(t) + Bu(t) instead of (2). In case E is nonsingular it is
obuvious that we get back to the standard case by premultiplying the above equation
with E=' — though reliable numerical methods will work with the generalized equa-
tion; see, e.g., [4, 58, 13]. The case of singular E matrices is more involved and
treated in depth in [58]. But again, in the end the corresponding linear-quadratic
optimization problem can be solved via an ARE of the form (6).

In the next section we will derive some properties of algebraic Riccati equations

that are essential with respect to the numerical methods used to solve them.

3 The Algebraic Riccati Equation
In this section we consider the general ARE
0 = R(X) = F+ATX + XA- XGX (23)

where A,G,F,X € R™", G, F, X are symmetric, and X is the sought-after solu-
tion matrix, in particular we are looking for the stabilizing solution as defined in
the last section.

First, we define the following 2n x 2n matrix:

H:[?, —iT]' (24)

Let the columns of [UT,VT]T, U,V € R™", span an H-invariant, n—dimensional
subspace, i.e.,

[? _iTHg] - [g]z ZeR™", A(Z)CA(H). (25)

Assuming U nonsingular, we obtain from the first row of (25)

AU+GV = UZ <« U 'AU+U'GV = Z (26)

Inserting this into the equation resulting from evaluating the second row in (25)
yields
FU-ATV =VZ = VU'AU +VU'GV.

The above equation is equivalent to
0 =F-ATvul-vutA-vu-tgvuL (27)

Setti
e X:=-vU! (28)
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we see that X solves (23). Hence, from an H-invariant subspace of dimension n,

v

What remains is the problem of how to choose U, V such that U is nonsingular,
VU! is symmetric, and X is stabilizing. Before we can solve this problem, we
need some properties of the matrix H in (24).

given as the range of [ ] with U nonsingular, we obtain a solution of the ARE.

Definition 3.1 A matriz H € R*"**" is o Hamiltonian matrix if it satisfies
(JH)T = JH, where
J;:[ 0 I"]. (29)

-I, 0

It is easy to see that any Hamiltonian matrix must have the block representation
as shown in (24). On the other hand, it is easy to verify that the matrix H defined
in (24) is Hamiltonian according to Definition 3.1.

Remark 3.2 We may interpret the defining property of Hamiltonian matrices as
being skew self-adjoint with respect to the indefinite inner product defined by J,
ie., < x,y >p= xLJy for all x,y € R*™ and J as defined in (29). For more
insight into the consequences of this property see [34, 48].

We have the following important properties of the spectrum A (H) of Hamilto-
nian matrices.

Lemma 3.3 Let H € R**?" be o Hamiltonian matriz as in (24).

a) If \ € \(H), then —\ € A(H).

b) IfG>0, F >0, (A,G) is stabilizable, and (F, A) is detectable, then H has
no eigenvalues on the imaginary azis, i.e., A (H) N1R = {.

As a consequence of Lemma, 3.3, we can write the spectrum of H as
AH) = {A,- A FU{=A,..., =} =2 AU(=A), (30)

where Re(A;) < 0 for all j = 1,...,n. Under the conditions of Lemma 3.3b),
we have that A C C~ and moreover, that there exists a nonsingular matrix T €
R?™*2" such that

Hll H12

-1 _
T "HT = [ 0 Hy

] , A(Hyp) = A (31)
For instance, (31) can be computed via a Schur decomposition of H; see, e.g., [35].

The following theorem relates (31) to the required stabilizing solution of the
ARE (23).

Theorem 3.4 [46, 48, 63] If G > 0, F > 0, (A,QG) is stabilizable, (F,A) is
detectable, and

T = |: Tll T12

. nxn c o
Ty, T ] , Ti; € R fori,j € {1,2},

is a nonsingular matriz such that (31) holds, then
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a) T is nonsingular,
b) T21Tﬁ1 is symmetric,
¢) X = —ToT;;" is the unique stabilizing solution of the ARE (23).

This theorem provides the basis for most of the numerical methods proposed
to solve AREs of the form (6) — besides the methods treating (23) as the prob-
lem of finding a particular root of a nonlinear (here quadratic) function. Theo-
rem 3.4 reduces the problem of solving an ARE and hence, the problem of solving
linear-quadratic optimization problems arising in control theory, to a Hamiltonian
eigenproblem, i.e., to the problem of finding an invariant subspace of the associated
Hamiltonian matrix H corresponding to a particular subset of eigenvalues of H.
This subset of A (H) is given by the stable eigenvalues, i.e., those with negative
real parts.

The numerical methods for AREs of the form (23) can be distinguished into
methods based on considering the ARE as a nonlinear equation and those solv-
ing the ARE via the corresponding Hamiltonian eigenproblem. For instance, the
following methods have been considered.

e Methods based on the nonlinear equation approach:

— Newton’s method; see [45, 48],
Fletcher-Powell /Davidon’s method; see [56],

secant method; see [29],

quasi-Newton methods; see [60],
— conjugate gradient method; see [33],

— exact line search method; see [11, 13].
e Methods based on the invariant subspace approach:

— QR type algorithms; see, e.g., [49, 22, 1],

— eigenvector methods based on [63],

Jacobi-type methods; see [26, 21],

a method based on a two-sided decomposition [17],

spectral projection methods; see, e.g., [67, 8, 25, 55, 11, 12].

Overviews over the available numerical methods, partially from more general
points of view, can be found in [50, 41, 58, 61, 69].

In the next section, we will review some of the numerical methods from both
categories, focusing on those that have turned out to be the most reliable ones.
(Unfortunately, those are not necessarily the most frequently used ones.)
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4 Numerical Methods

In order to solve AREs of the form (23) employing numerical methods, we have seen
in the last section that this is possible using linear algebraic methods. In numerical
linear algebra, the following requirements are often imposed on an algorithm to
be considered as an appropriate method.

1. The algorithm should be numerically backward stable. For computing an
invariant subspace of a matrix M € R™*", this means that the computed
approximation to a basis of this subspace, given by the columns of § € R™*",
has to satisfy

(M+E)S=5Z, ||E|| < const. - € - || M]|,

where ¢ is the relative machine precision. That is, the columns of S span an
invariant subspace of a matrix near to M. For more details, see, e.g., [35]
and the references therein.

In general, for algorithms based on similarity transformations, backward
stability is only achieved if only orthogonal transformations are used.

2. The algorithm should be numerically strong stable. That is, the computed
solution should be the solution of a slightly perturbed problem of the same
structure. For the example given above, this means that M, E, and M + E
must have the same structure.

For the Hamiltonian eigenproblem as discussed in the last section this implies
that similarity transformations have to preserve the Hamiltonian structure.

3. The algorithm should have polynomial complexity, in particular, for eigen-
problems, a complexity of O(n?) flops! is required.

As methods based on the nonlinear equation approach have to be competitive
with methods based on solving the Hamiltonian eigenproblem, the above require-
ments should also be satisfied (in some sense) for such algorithms. The above
requirements will drive the discussion of numerical methods throughout this sec-
tion.

4.1 Methods for the Hamiltonian Eigenproblem

First, we will consider methods based on solving the Hamiltonian eigenproblem.
Recall that in order to solve the ARE it is sufficient to find a nonsingular matrix
T € R*"*?" such that (31) is satisfied. We will assume throughout this section
that this is possible. One set of assumptions ensuring this is given in Theorem 3.4.
But note that these are only sufficient assumptions, 7" and the stabilizing solution
may exist under much more general circumstances.

! floating point operations: each of the scalar operations ”+7, ” —", ”«” ”/? /" is counted
as a flop, following [35].
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Most algorithms for solving matrix eigenproblems, i.e., for computing eigen-
values and -vectors or invariant subspaces of some matrix M € R™*", are based
on the following approach:

1. Compute an initial transformation matriz Sy € R*™*>" in order to reduce
M to some condensed form, i.e., compute

M() = S(;]'MSO (32)

2. Then construct a sequence of similarity transformations such that in each

step
Mjy = S5 M;Sip,  §=0,1,2,.., (33)
the reduced form is preserved and moreover, if we define T; := Hi:o Sk, then

limj oo Tj =T and lim;_,oo M; = M, exist and eigenvalues and eigenvectors
and/or M -invariant subspaces can be read off from M, and T.

The purpose of the initial reduction to a condensed form and the preservation
of this form throughout the iteration is twofold: first, such a reduction is usually
necessary in order to satisfy the complexity requirements — an iteration step
(33) on a reduced form can usually be implemented much cheaper than for a
full matrix; second, using such a reduced form it is usually easier to track the
progress of the iteration and detect if the problem can be decoupled (deflation)
into smaller subproblems that can then be treated separately. For details see [35,
Chapters 7-8].

Example 4.1 The most widely used algorithm in numerical linear algebra follow-
ing the above approach is the QR algorithm; see, e.g., [35] and the references given
therein. In this algorithm, the initial reduction step consists of a reduction to upper
Hessenberg form, i.e.,

My == S;'MS, = [K]] (34)

where Sy is orthogonal such that S;' = S§. In each iteration, some rational
function p; is chosen and a QR decomposition p;(M;) = S;11Rjt1 is computed.
The next iterate is then given by M; 1 := Sf+1Mij+1. (Note that all S; are
orthogonal!) Often, p; is chosen as a shift polynomial p;(t) = Hi:l (t — px) where
the py are some approximations to eigenvalues of M. In real implementations,
the QR decomposition of p;(M;) is only performed implicitly, thereby allowing an
implementation of the QR iteration step in only O(n?) flops.

In most practical circumstances (convergence can be proved under some as-
sumptions), this iteration converges to real Schur form, i.e., the limit M, of the
iterates is a quasi-upper triangular matriz having 1 X 1 and 2 x 2 blocks on the
diagonal. The 1 x 1 blocks correspond to real eigenvalues while 2 x 2 blocks rep-
resent pairs of compler conjugate eigenvalues of M. Usually, convergence takes



4.1 Methods for the Hamiltonian Eigenproblem 17

place in O(n) iterations, making the overall computational cost of this algorithm
O(n3). All transformation matrices S; and therefore all T;’s and their limit T are
orthogonal. This implies that the QR algorithm is numerically backward stable.
Moreover, the first k columns of T form an M -invariant subspace corresponding
to the eigenvalues of M, (1: k,1: k) (assuming that either (m. )k, defines a 1 x1
block or M.(k—1:k,k—1:k) represents a 2 x 2 block in the real Schur form).

We will now see how this ideas can be used to design numerical methods for
the Hamiltonian eigenproblem and hence for AREs.

4.1.1 THE EIGENVECTOR APPROACH

The first approach goes back to [63] and can be found in many control engineer-
ing textbooks. Suppose the Hamiltonian matrix H in (24) is diagonalizable and
the conditions of Theorem 3.4 are satisfied. Then the first n columns of T in
Theorem 3.4 can be chosen as the eigenvectors of H corresponding to A, i.e.,
the stable eigenvalues of H. For complex conjugate pairs of eigenvalues A\, A\ with

corresponding eigenvectors x,T consider the real ”quasi-diagonalization” implied
by
_ Re(A) Im(A)
M [Re(z) Im(z)] = [Re(z) Im(z)] [ m(\) Re())
in order to keep computations real. Denoting the columns of T by ¢;,j =1,...,2n,

where ¢; is the eigenvector corresponding to the eigenvalue A; if A; is real and
tj = Re(x;), tj;1 = Im(z;) in case A\jy1 = Aj, and partitioning t; = [u] , v] |7,
uj,v; € R", then by Theorem 3.4 the stabilizing solution of the ARE (23) is given
by

X = = [ty 0] U1y ey un) " (35)

The eigenvectors of any matrix can be computed using the QR algorithm in dif-
ferent ways: accumulating the transformation matrices such that the matrix T
is accessible after convergence, selected eigenvectors can be computed using 7' by
solving for each eigenvalue a set of linear equations. But it is more common that if
eigenvectors are desired, the QR algorithm is used to compute only the real Schur
form without accumulating the transformations, thereby reducing the computa-
tional cost to almost one third. The so-obtained eigenvalue information can then
be used to compute the desired eigenvectors by inverse iterations. (Note that for
inverse iteration, the original matrix M need to be available or at least all the
information (Sp and Mj) needed to perform the initial reduction to Hessenberg
form.) More details for both strategies can be found in [35, Section 7.6].
Hence, solving the ARE (23) can be done performing the following steps:

1. Form the Hamiltonian matrix H corresponding to the ARE.

2. Apply the QR iteration to H in order to obtain the eigenvalues of H without
accumulating the transformations.
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3. Compute the n eigenvectors of H corresponding to stable eigenvalues via
inverse iteration.

4. Compute X, via (35).

This algorithm requires approximately 160n?® flops.

At this point it should be emphasized that this algorithm can only be used
safely if all eigenvalues of H are non-defective and well-separated from each other.
In case H is close to a defective matrix, the eigenvector matrix of H will become ill-
conditioned, usually causing a severe loss of accuracy in the computed eigenvectors
and hence in the ARE solution X,. Moreover, it becomes very difficult to decide
on the geometric multiplicity of the eigenvalues in case they are close to defective
eigenvalues. In case that there are defective eigenvalues, the above approach can
also be used by employing the principal vectors of H corresponding to the stable
defective eigenvalues. Due to roundoff errors during the () R iteration, it is usually
hard to decide whether multiple eigenvalues have geometric multiplicity one or
greater. This shows that in general, the above approach cannot be considered as
being numerically stable and should be used only with very much care.

Moreover, the QR algorithm (already in the initial reduction part) destroys the
Hamiltonian structure of H immediately and therefore does not satisfy the aim of
a strong backward stable algorithm.

4.1.2 THE SCHUR VECTOR APPROACH

The above considerations led Laub to suggest the following method [49]. Under the
assumptions of Theorem 3.4 the stable eigenvalues are separated from the unstable
ones. Hence, in the real Schur form M, of the Hamiltonian matrix H computed by
the QR algorithm, it is possible to reorder the eigenvalues in such a way that the
stable eigenvalues appear in the leading n xn block of M,. This can be achieved by
a finite sequence of orthogonal similarity transformations; for details see [35] and
the references therein. If these transformations are accumulated in an orthogonal
matrix 7' € R?"*2", we obtain an ordered real Schur form of M as

M = T"M,T = TTTTMTT =: [

0 Ms

where A (J\an) = A. Hence, the first n columns of TT span the stable H-invariant
subspace and the ARE solution can be computed via Theorem 3.4c).

As the columns of the orthogonal matrices T or TT transforming H to a
real Schur form are called Schur vectors, this approach is called the Schur vector
method. It can be summarized as follows.

1. Form the Hamiltonian matrix H corresponding to the ARE.

2. Apply the QR iteration to H in order to obtain the real Schur form of H
and accumulate all similarity transformations into 7.
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3. Re-order the real Schur form of H as in (36).

4. Let the first n columns of TT be given by [UT, VT|T, U,V € R™". Compute
the stabilizing ARE solution as X, = —VU L.

This algorithm requires about 205n® flops (using flop counts from [35]) and is
numerically backward stable in case the ARE is scaled such that || X.||2 = 1 [42].
Though || X.||2 is usually not known in advance, such a scaling can usually be
achieved by heuristic methods; for a comparison of different strategies see [11].

But as the general QR algorithm is used, the Hamiltonian structure is de-
stroyed during this algorithm and hence the method is not strongly stable. In case
eigenvalues are close to the imaginary axis, this may cause failure of the method
as eigenvalues may cross the imaginary axis due to roundoff errors and hence, the
re-ordering in (36) becomes impossible.

Nevertheless, this method can be applied safely in most circumstances in linear-
quadratic optimal control and has been a major progress in the course of introduc-
ing numerical reliable methods into control theory. But note that in the modern
robust controller design methods, often AREs have to be solved where the corre-
sponding Hamiltonian matrix has eigenvalues on or close to the imaginary axis.
In these situations, the use of the Schur vector method is not advisable.

4.1.3 SYMPLECTIC METHODS

We have noted that in order to have a strong backward stable method, the Hamil-
tonian structure of H from (24) has to be preserved throughout the algorithm. It
can be shown that in general, similarity transformations that preserve the Hamil-
tonian structure essentially have to be symplectic [20].

Definition 4.2 A matriz S € R*"*" is symplectic iff SJST = J (or, equiva-
lently, STJS = J), where J is defined in (29).

Proposition 4.3 If H € R*™**" js Hamiltonian and S € R***" is symplectic,
then S~YHS is Hamiltonian.

Some remarks are in order.

Remark 4.4 a) Symplectic matrices form a Lie group which operates on the cor-
responding Lie algebra of Hamiltonian matrices.
b) If the Hamiltonian matrix H has additional structure, then other similarity

transformations may preserve this structure as well. For instance, if H = [ (}, g ],
then any similarity transformation with U = [(011 [92], where U, Us € R™™ are
both orthogonal, preserves the Hamiltonian structure.

¢) From Definition 4.2 it is straightforward to verify S~ = —JSTJ and
detS = 1 if S is symplectic. Unfortunately, the norm of a symplectic matriz
is not bounded so that for symplectic similarity transformations, usually only the
following backward error bound can be given: if H is the computed result of a sim-
ilarity transformation of a Hamiltonian matrix H by a symplectic matriz S, then
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there exists o Hamiltonian matriz E € R*™*?" such that S~ (H + E)S = H and
|E|| < const.-e-||H||-||S]|-||ST||. From this it is clear that backward stability can
not be guaranteed only by using symplectic similarity transformations.

If an algorithm preserves the Hamiltonian structure, the spectral information
and in particular the symmetry of the eigenvalues with respect to the imaginary
axis is preserved. Hence, the problems arising in the re-ordering step of the Schur
vector method are avoided. Moreover, structure-preserving algorithms can usually
be implemented using fewer arithmetic operations and work space than standard
algorithms for general non-symmetric matrices. Hamiltonian matrices are deter-
mined by 2n2 +n parameters rather than the 4n? parameters of a general 2n x 2n
matrix. Only these parameters have to be stored and re-computed during each
transformation of the Hamiltonian matrix. (Note that this does not necessarily
lead to shorter execution times as it requires some overhead with respect to in-
dex calculations/access of matrix elements. Moreover, block algorithms as used in
most modern numerical linear algebra applications can not be used as efficiently
as for general matrices.)

In order to have a strong backward stable method, we have observed in Re-
mark 4.4¢) that requiring similarity transformations to be symplectic is not suffi-
cient. They also ought to be orthogonal. It is easy to see that such matrices also
have a special structure.

Lemma 4.5 [59] If U € R*"**" is orthogonal and symplectic, then

u. U
U = [ _[}2 Uj ] Ui, Uy € R™™. (37)
Moreover, as the intersection of two groups, orthogonal symplectic matrices form
a group USs, with respect to matrix multiplication.

As matrices in USy, are determined by the 2n? parameters given by the entries
of Uy, Uz, only these parameters need to be stored and updated throughout a
sequence of similarity transformations.

Now, the following theorem raises the hope that it is possible to find an algo-
rithm based on symplectic and orthogonal similarity transformations for solving
AREs. Together with an appropriate scaling (due to the || X,|| &~ 1 request), such
an algorithm would be strong backward stable.

Theorem 4.6 [59] If H is Hamiltonian and X (H) N4R = ( then there exists
U € US>, such that
Hy His

UTHU = : Hyy, Hyy € R™" 38
[ 0 _HlTl]a 11,12 € ) (38)

where Hyy is in real Schur form and X (Hy1) = A (the stable part of A (H)).

Partitioning U from (38) as in (37), we have from Theorem 3.4 that the stabilizing
solution of the ARE (23) is given by X, = UxU; L.
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Remark 4.7 The decomposition given in (38) is called the Hamiltonian Schur
form. It can be shown that such a form may also exist if eigenvalues on the imag-
inary azis are present. They have to satisfy certain properties, the most obvious
one is that their algebraic multiplicity needs to be even; see [52, 53].

The problem of computing the Hamiltonian Schur form (38) using only O(n?)
flops is known in numerical linear algebra as Van Loan’s curse — indicating that
it is a nontrivial task. Though much progress has been made throughout the
last years towards such an algorithm, a completely satisfactory method has not
yet been found. In the remainder of this section we will highlight some of these
developments.

THE HAMILTONIAN QR ALGORITHM

As the QR algorithm is considered to be the best method for solving the dense
non-symmetric eigenproblem, it is straightforward to strive for a symplectic variant
of the QR algorithm converging to the Hamiltonian Schur form given in (38). A
framework for such an algorithm can easily be derived analogous to Example 4.1.
Denote the iterates of such an algorithm by H;. If we choose the Q R decomposition
performed in each step, i.e., pj(H;) = Sj+1R;41, such that all S;4, are symplectic
and orthogonal, then from Proposition 4.3 it follows that all iterates H;4 i =
S]T_HH Sj+1 are Hamiltonian. Unfortunately, such a symplectic QR decomposition
does not always exist. Sets of matrices in R*"**" for which it exists are described
in [20]. In particular, it is also shown there (see [24] for a constructive proof) that
if M is symplectic, then there exists S € US2, such that

M (39)

Il
()
=y
Il
n

where Ri1, Ri2 € R™"™. Uniqueness of this decomposition can be achieved by
requiring all diagonal entries of R;; to be positive.

As the matrix R in (39) is permutationally similar to an upper triangular matrix
and the Hamiltonian Schur form is similar to the real Schur form using the same
permutations, it can be shown under mild assumptions that such a Hamiltonian
QR algorithm converges to Hamiltonian Schur form if it exists. Moreover, as only
similarity transformations in US,,, are used, the algorithm can be shown to be
strong backward stable.

Byers [24] shows that if the rational function p; is chosen to be the Cayley
shift ci(t) == (t — ug)(t + px)~1, where py is an approximate real eigenvalue of
H, or di(t) := (t — pr)(t — o) (t + pe) "1 (t + 125) ™1, where py, is an approximate
complex eigenvalue of H, then p;(Hj;) is symplectic, and hence, the symplectic QR
decomposition of p;(H;) exists. In case uy are exact eigenvalues of H and hence
of H;, then deflation is possible, and we can proceed with the deflated problem of
smaller dimension without ever being forced to invert a singular matrix.
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Unfortunately, the so derived algorithm is of complexity O(n*) as each symplec-
tic QR decomposition requires O(n?) flops and usually O(n) iterations are required
(based on the experience that for each eigenvalue, 1-2 iterations are needed). The
missing part that would bring the computational cost down to O(n?) is an initial
reduction analogous to the Hessenberg reduction in the Q)R algorithm that

e is invariant under the similarity transformation performed in each step of
the Hamiltonian QR algorithm (the Hamiltonian QR step);

e admits an implementation of the Hamiltonian QR step using only O(n?)
flops.

In [24] Byers shows that such a form exists.

Definition 4.8 A Hamiltonian matriz H € R*™*>" is in Hamiltonian Hessenberg
form if

H = [Hll Hys ] _ K‘ D
- H. _HT - )
AR IAN
where H;j € R™*", i,5 = 1,2, Hyy is upper Hessenberg, and Ha = penel with

¢ € R and e, being the nth unit vector. The Hamiltonian Hessenberg matric H
is unreduced if hiy1; #0,i=1,...,n—1, and p #0.

(40)

Byers [24] shows that if H; is in Hamiltonian Hessenberg form and the rational
function p; is chosen as a Cayley shift, then H;;, is in Hamiltonian Hessenberg
form again and the Hamiltonian QR step can be implemented in O(n?) flops.

The crux of this algorithm is the initial reduction of a Hamiltonian matrix to
Hamiltonian Hessenberg form. Byers shows how this can be achieved if one of the
off-diagonal blocks of the Hamiltonian matrix H in (24) has rank 1. (This is related
to control systems of the form (2)—(3) having only one input, i.e., single input
systems and/or only one output, i.e., single output systems.) But unfortunately
no algorithm is known for reducing a general Hamiltonian matrix to Hamiltonian
Hessenberg form. But the situation is even worse. Analogous to the standard
@R algorithm where the QR step is performed on unreduced Hessenberg matrices
(possibly zeros on the subdiagonal are used for deflation, i.e., splitting the problem
in two or more subproblems consisting of unreduced Hessenberg matrices), the
Hamiltonian QR algorithm works for unreduced Hamiltonian Hessenberg matrices.
The following theorem due to Ammar and Mehrmann [2] shows that the situation
is in general hopeless with respect to the existence of the unreduced Hamiltonian
Hessenberg form.

Theorem 4.9 If H € R*™**" is Hamiltonian, then there exists an orthogonal
and symplectic matriz transforming H to unreduced Hamiltonian Hessenberg form
if and only if the nonlinear set of equations

Te=1 and T JH* 12 =0 for k=1,...,n—1,
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has a solution that is not contained in an H-invariant subspace of dimension n or
less.

Obviously, if JH is positive definite, such a vector cannot exist, showing that
there really exist situations in which the unreduced Hamiltonian Hessenberg form
does not exist. Therefore, other approaches have been investigated during the last
decade.

THE HAMILTONIAN SR ALGORITHM

As observed in the last sections, a Q) R-type algorithm satisfying all three requests
given at the beginning of Section 4 could so far only be given for special cases of
Hamiltonian matrices. In the Schur vector approach, strong stability was given up
due to the use of non-symplectic similarity transformations. The general Hamil-
tonian QR algorithm can in general not be implemented in O(n3) flops. A third
approach is to force symplecticity and efficient implementation by giving up or-
thogonality of the similarity transformations. This was pursued in [22]. The
algorithm presented there follows the framework outlined in (32)—(33). All sim-
ilarity transformations are chosen to be symplectic. Non-orthogonal symplectic
Gaussian transformations (see, e.g., [22, 58]) are allowed. Using these transfor-
mations, an initial reduction to a very condensed form, consisting of only 4n — 1
nonzero parameters can be computed.

Definition 4.10 A Hamiltonian matriz H € R*"**" is J-tridiagonal iff it has
the form

aii g11 g21
a22 g21 g22
\ ... '-. gn,n—l
H — \ \ — an,n gn,n—l gn,n
\ \ fu1 —an
foo —a22
| fn,n —Qn,n |

A Hamiltonian matrix of the above form is also said to be in Hamiltonian J-
Hessenberg form.

It is shown in [20] that for any Hamiltonian matrix and almost any vector
s1 € R?™?" 3 symplectic matrix with first column s; exists such that S~1HS
is J-tridiagonal. In case it does not exist, one may perform a random similarity
transformation on H and try again to compute the transformation to this reduced
form. As this transformation exists almost always, this will not lead to an infinite
process and the reduction to J-tridiagonal form can serve as the initial reduction
step in the general framework given by (32)—(33).
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For the iteration step, we need the decomposition of p;(H;), where p; is again
some rational function, into a symplectic matrix S;;; and a matrix R;; such

that Hj+1 = S;_i_ll Hj Sj+1 is again J-tridiagonal.

Definition 4.11 Let M € R*"*?™. A decomposition M = SR is called an SR
decomposition of M iff S € R*™ ™ s symplectic and R is J-triangular, i.e.,

_ [Ru Rw] _ (NN
iz NN

where R;; € R"*", i,j = 1,2, are upper triangular and the main diagonal of Ry
1S 2€ro.

It can be shown that the set of matrices having an SR decomposition is dense in
R*™*2™ (but not in €*"*?™!) and hence, this decomposition can be used to derive
an SR step analogous to the QR step given in Example 4.1. In order to circumvent
breakdowns due to the non-existence of an SR decomposition or ill-conditioned
transformation matrices when being close to such a situation, an exceptional shift
strategy has been proposed in [22].

The non-orthogonal Gaussian transformations used in both the initial reduction
to J-tridiagonal form and during the SR decomposition in each SR step are chosen
to be optimally conditioned in the class of transformations that satisfy the same
purpose. Nevertheless, ill-conditioned transformations can not always be avoided.
Hence, the condition should be monitored during the iteration (this can easily be
achieved; see [22]). But still the method is not backward stable due to the use of
non-orthogonal transformations.

The choice of rational functions driving the SR step is guided by the symmetry
of the spectrum of Hamiltonian matrices. So usually, a double shift p;(¢) = (¢ —
pi)(t + pj;) for real approximate eigenvalues pu; or a quadruple shift p;(t) =
(t — p;)(t —15)(t + pj)(t + In;) for complex approximate eigenvalues +u;, £7i; is
chosen. Keeping p; real is not only an issue of implementation but is also due to
the fact that the class of complex matrices having no SR decomposition is not
dense in C*"*?", Exceptional steps can be derived using the SR decomposition
of p;(H;) = H; — aj I, where a; is some randomly chosen real scalar.

It can be shown that if p;(H;) = Sj31Rj41 is an SR decomposition, then
Hj, = Sj_le jSj41 is again J-tridiagonal.

In summary, the Hamiltonian SR algorithm consists of an initial reduction to
J-tridiagonal form and SR steps derived from the SR decomposition of double and
quadruple shift polynomials p;(H;). The SR steps can be implemented implicitly
analogous to the implicit QR step at a computational cost of O(n) flops. This SR
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iteration converges to a Hamiltonian matrix

All Gll 1

ATT‘ GT”'
Fyy —An

FTT' _Arr

wheren/2 <r <nandall 4;;,Gj;,Fj;,j=1,...,r, areeither 1x1 or 2x2. More-
over, A (H) = Uj_; A (Hj;), where H;; = 1‘;‘;]] ffﬁ ,j =1,...,r, are Hamiltonian
J3

submatrices of H,,. These submatrices are then transformed to real Hamiltonian
Schur form (if it exists). Also note that convergence of the SR algorithm is usually
cubic [71]. Assuming all Hj; are transformed to Hamiltonian Schur form, these
transformations can be combined to yield a symplectic similarity transformation
such that Hy is transformed to Hamiltonian Schur form and the leading n x n
principal submatrix corresponds to the stable part of A (H).

Due to its potential numerical instability, this algorithm is only used in certain
circumstances (e.g., in the context of Ritz approximations to A (H) obtained from
a symplectic Lanczos process; see [14]) or to compute an initial estimate of an
ARE solution that is refined, e.g., by Newton’s method; see Section 4.3.

For the details of the method and its implementation see [22, 58, 69].

THE MULTISHIFT ALGORITHM

From Theorem 4.9 we know that the reduction to Hamiltonian Hessenberg form
which is necessary to efficiently implement the Hamiltonian QR algorithm is in
general not possible. What can be achieved by orthogonal symplectic similarity
transformations is the following reduction due to Paige and Van Loan [59].

Theorem 4.12 Let H € R?™*?™. Then there exists U € USs,, such that

Hi, le] N O
Hor fes N[O

where Hyy € R™™ is upper Hessenberg and Hy; € R™ " is upper triangular. The
transformation matriz U can be chosen such that

vtau = [ (41)

‘00

o
S

o|So

O OO =
—
o

o
S
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If in addition, H is Hamiltonian, then

Hyy  Hip ] _ QD
S SR NN

UTHU = [

i.e., Hoy is diagonal and His is symmetric.

The reduced form (43) of a Hamiltonian matrix will be called PVL form in the
following. An algorithm for computing the transformation given in (43) is derived
in [59]. It can be implemented using a finite number of similarity transformations
and requires O(n?) flops. Unfortunately, the PVL form is not preserved under the
Hamiltonian QR iteration and can therefore not serve for the initial reduction step
of the Hamiltonian @) R algorithm. In the following, we will see that the PVL form
can be used in what can be considered as a Hamiltonian multishift QR algorithm.
First, we need some more theory.

Definition 4.13 A real subspace Q C R*" is isotropic iff 7 Jy = 0 for all z,y €
Q and J as in (29). If Q is maximal, i.e., not contained in an isotropic subspace
of larger dimension, then Q is a Lagrangian subspace.

Lemma 4.14 Let S € R**?*" be symplectic. Then the first r columns of S,
1 < r < n, span an isotropic subspace of R®™. For r = n, this subspace is
Lagrangian.

Proof: This property immediately follows from the definition of symplectic ma-
trices, i.e., STJS = J. The case r = n is a consequence of the maximality of
Lagrangian subspaces. 0O

The basis for the multishift algorithm is contained in the following result.

Proposition 4.15 [2] Let H € R*™**" be Hamiltonian with A (H) = A,U(=Ay,),
AN (=Ay) =0, and A, = A, ={A1,...,\}. Then the multishift vector

z=a(H — M) - (H—A\Dper, a€lR, (44)

where e, € R®™ is the first unit vector, is contained in the n-dimensional H-
invariant subspace corresponding to —A,,. Moreover, this subspace is Lagrangian.
In particular, if A, C Ct := {2 € C|Re(z) > 0}, then this Lagrangian subspace
is the stable H -invariant subspace.

So once we know the spectrum of H we can compute one vector that is contained
in the subspace required for solving the corresponding ARE. This observation
can be combined with the computation of the PVL form in order to derive a
multishift step as follows — assuming for simplicity that H has no eigenvalues on
the imaginary axis.
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Algorithm 4.16 [Multishift step]

1. Compute the multishift vector as in (44) with A\; € C*, j =1,...,n. Choose
« in (44) such that ||z||» = 1. (If this is not possible, i.e., z = 0, then exit.)

2. Compute U; € US3, such that Uz = +e;.
3. Set H1 = UlTHUl

4. Compute the PVL form of Hy, i.e., compute Uy € US>, such that Hy =
UQTHle = (U1U2)TH(U1U2) is in PVL form.

Using this approach, it is possible to get the whole stable H-invariant subspace.
The following theorem will indicate how Algorithm 4.16 can be used to achieve
this.

Theorem 4.17 Let H € R*"*>" be Hamiltonian and let V,, be an n-dimensional
H-invariant Lagrangian subspace corresponding to A, C A(H) with A, as in
Proposition 4.15. Further, let the multishift vector x from (44) be computed using
—Ap ={A1,..-, A0 } as the shifts. If 1 < p < n is the dimension of the minimal
isotropic H-invariant subspace V, containing x, then after Step 4 of the multishift
step, Hy has the form

A11 A12 G11 G21 }p
_ 0 Axn| GL G2 n—p
He= =00 (=4, 0 |} (45)
0 Fn|-Af, -AL n—p

where A11 € RP*P, X\ (A11) C Ap, and the Hamiltonian submatriz

Asy  Ga

Hoo 1= I RZ(n—p)xZ(n—p)
2 [ Fyy —AZ ]
is in PVL form.

Furthermore, for Uy,Us € US4, from the multishift step we have
U:=UUs = [tU1,- -, Up, Upii,-- - Usn ] € USsn, uj €R™ forj=1,...,2n,
and span {u1,...,up} =V, C V.
We will provide the proof of the above theorem for the sake of completeness as it
is not given in the open literature.

Proof: If x = 0, then p = 0 and nothing needs to be shown. Therefore, w.l.0.g.
we assume z # 0.

Let U; = [ugj),...,ugl)] and H; = [h%) Py for j =1,2.

First of all, note that V, C V,, as x € V,, by Proposition 4.15.

From (37) it is clear that urflk = JTuECj) forj=1,2and k=1,...,n. AsV, is
Lagrangian and hence isotropic, we have that 7 Jy = 0 for all y € V,,. Moreover,
Hzx €V, as V, is H-invariant. Hence, 27 JHz = 0.
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The proof will be given by induction on the columns of Hy. From (42) and
Step 2 of the multishift step we have

hg—i)-ll = eg+1U2TH1U2€1 = 6£+1U1THU1e1 = +(u S_)H)THQ;
+(W")TJHy = +elUTJHE = «"JHz = 0.

Partition U1Us = [u1,...,u2, ] and define U, := span {ui,...,uq}, 1 < ¢ < n.
After Step 4 of the multishift step we have

Uy = hﬁ)ul + hg‘;)fuz.

If hgﬁ) = 0, then U; = span{u;} is a 1-dimensional H-invariant subspace. This
subspace contains z as from (42) it follows that u; = ugl) = +z. Furthermore,
U, is isotropic because of Lemma 4.14. Hence the assertion holds with p = 1 and
Vi =Us.
1 Now assume hg) # 0. Then uy € span{ui, Hus } = span{z, Hz} C Vp. As u;
and us are linear independent and Us C Vp, it follows that p > 1.

Suppose hnﬂ 1,j—1 =0, hg?_l #0,and U; C V), for 2 < j < n.

First, assume j < n and consider HUe; = U Hse;. This identity can be written
as

h‘g'izl,ju]“i‘l + h(nz-?-j,jun-i-j = (H - h(2 L)u Zh(z) (46)

The right-hand side of (46) is contained in V, as U; C V, and V, is H-invariant.
As U is orthogonal and symplectic and V, is isotropic, we can multiply (46) from

the left by uTJ in order to obtain h{?) . . = 0.

n+j,j
If h(i)l i = 0, then U; is an j-dimensional, isotropic H-invariant subspace. As

x € U; C Vp and V, is the minimal isotropic H-invariant subspace containing z,
it follows that V, = U; and p = j.

On the other hand, if hgi)l 4 70, then ujy; € V. Hence we obtain Uj11 CV,
and p > 7 + 1. We then continue until j is the maximal index j < n such that
hgi)r] 1,j-1 = hf}_l # 0, and U; C V,. By the above considerations it then
follows that p=j and V, = U.

In case j = n, the identity HUe; = U Hqe; yields

h(2)

2n,n

Uap = (H - h(z) I2n Un Z h(Z)

Multiplying from the left by ulJ and noting that the right-hand side is contained
in Vp, we get h2n » = 0. Hence, U,, C V, is an n-dimensional, isotropic H-invariant
subspace containing x. Therefore, the assertion follows as above with p = n.

The fact that Hss in in PVL form directly follows from the PVL reduction in
Step 4 of the multishift step. 0O
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The theorem shows that if the multishift vector z from (44) has components
in all directions of a Lagrangian H-invariant subspace, then after one multishift
step, a basis for this invariant subspace is given by the first n columns of UyUs.
Otherwise, the first p columns of U;Us span a p-dimensional H-invariant subspace
contained in this subspace and the problem decouples into two subproblems. Algo-
rithm 4.16 can then repeatedly be applied to the resulting Hamiltonian submatrix
Hyy € R2(=P)x2(n=P) yntil p = n. The implementation of this algorithm is de-
scribed in detail in [1].

Remark 4.18 The proof of Theorem 4.17 has not exploited the orthogonality of
U but only its symplecticity. Hence, the proof as given above also applies to any
multishift step using (non-orthogonal) symplectic similarity transformations that
yield the same reductions needed in the multishift step as described in [65].

As only orthogonal symplectic similarity transformations are used, a multishift
step is strongly backward stable. The computational cost of one multishift step
for p = 0 is around 15% of the Schur vector method. The complete computational
cost depends on the number of iteration steps necessary. In a worst case scenario,
i.e., in each step only one basis vector of U, is found, the complexity of this
algorithm becomes basically O(n*). This is rarely observed in praxis, though.
On the other hand, rounding errors during the computation, in particular while
forming the multishift vector, and the fact that the eigenvalues are usually only
known approximately, make it practically impossible that deflation occurs exactly.
Often, some iteration steps are necessary to detect deflation when using finite
precision arithmetic. Generally speaking, as long as the size of the problem is
modest (n < 100), the method is feasible and the number of required iterations is
acceptable.

When solving AREs, usually the stable H-invariant subspace is required. In
that case, A, in Proposition 4.15 has to be chosen such that Re();) < 0 for
all j = 1,...,n. Note that the stable H-invariant subspace is Lagrangian; see,
e.g., [2, 58]. But observe that in principle, the multishift algorithm can be used to
compute the ARE solution corresponding to any Lagrangian H-invariant subspace.
This is of particular importance in some applications, e.g., in some #,-control
problems, ARE solutions exist and have to be computed if H has eigenvalues on
the imaginary axis. As long as these eigenvalues permit a Lagrangian invariant
subspace, the corresponding ARE solutions can be computed by the multishift
algorithm.

Remark 4.19 Under certain circumstances, the multishift vector in ({4) becomes
zero and hence, a multishift step provides no information about the desired H -
iwariant subspace. One situation in which this may occur is the case of isolated
eigenvalues, e.g., if
A 0 ) 10 0 A G
R T FR RIS SN P

Hence, isolated eigenvalues should be deflated before computing a multishift step,
using, e.g., the balancing procedure described in [11]. But for A (H) N+R # O, this
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may also happen without isolated eigenvalues present. So far, it is not clear how
to proceed in such o situation. This is under current investigation.

The computation of the multishift vector in (44) requires the knowledge of
A (H). Hence, what remains to show is how to obtain the eigenvalues of a Hamil-
tonian matrix H. One possibility is to run the QR algorithm without accumulating
the transformations. But then the same problems with eigenvalues close to the
imaginary axis as mentioned when discussing the Schur vector method have to be
expected. A different approach, which costs only one third of the QR algorithm
and takes the symmetry of A (H) into account was suggested by Van Loan [70].
Consider K := H2. Obviously, if A € A (H), then Ag := A% € A (K). If Re()\) # 0,
then Ak is a double eigenvalue of K due to the symmetry of A (H). Squared
Hamiltonian matrices are skew-Hamiltonian, that is, they satisfy KJ = —(KJ)T
and therefore have the explicit block structure

K, K>

K = [Ks K

], K, =-K], K3;=-KJ. (47)
The skew-Hamiltonian structure is preserved under symplectic similarity transfor-
mations [70]. Hence, computing the PVL form (41) for skew-Hamiltonian matrices

yields
ki K] N
0 KT | ~ N

Hence, A (K) can be obtained by computing the eigenvalues of the upper Hes-
senberg matrix Kj, e.g., by applying the QR iteration to K;. Let \(Ky) =
{p1,---spn}, then X\(H) = {£/pt1,-..,%/ptn }. Note that no information of
eigenvectors or invariant subspaces of H is obtained.

The resulting method is strong backward stable for K and preserves the sym-
metry structures of A (K) and A (H). An implicit version of this algorithm is also
suggested in [70]; U from (48) is applied directly to the Hamiltonian matrix such
that H := UTHU is square-reduced, i.e., H? has the form given in (48). The dis-
advantage of Van Loan’s method is that a loss of accuracy up to half the number
of significant digits of the computed eigenvalues of H is possible. An error analysis
in [70] shows that for a computed simple eigenvalue \ corresponding to A € X (H)
we have

UTH?U = UTKU = [ . (48)

~ H2 H H H 1
|)\_)\|%min{al| 5 Vel ”2}=5” ||2Xmin{” Il2

FENRYRRFTE VI BRAFTeV v
where s()\), the reciprocal condition number of A, is the cosine of the acute angle
between the left and right eigenvectors of H corresponding to A. Basically, this
error estimate indicates that eigenvalues computed by Van Loan’s method are as
accurate as those computed by a numerically backward stable method provided
that A = ||H||2 while for A < ||H]|2, the error grows with the ratio ||H]||2/|Al.
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Usually, eigenvalues computed by Van Loan’s method are satisfactory as shifts
for the multishift algorithm and in most other practical circumstances. On the
other hand, removing the possible 1/4/¢ loss of accuracy provides the motivation
of the algorithms presented in the next section.

A METHOD BASED ON TWO-SIDED DECOMPOSITIONS

The central problem of Van Loan’s method is that squaring the Hamiltonian matrix
leads to a possible loss of half of the accuracy. For products of general matrices,
this possible loss of accuracy caused by forming the product can be circumvented
by employing the periodic or cyclic QR algorithm [37,38,19]. If A = A;-Ay--- Ap,
where A; € R"*", j =1,...,p, then this algorithm computes the real Schur form
of A without forming A explicitly. This is achieved by cyclically reducing the
factors A; to (quasi-)upper triangular form:

UTAU = (UT AUs)(UT A5Us) - - (UT A,Uy) = [ﬂ] : [ﬂ] [T]] . (50)

That is, Ul A1 Us is in real Schur form while U] A;U(j41) mod p» § = 2,-- -, P, are
upper triangular such that the product is in real Schur form. The eigenvalues are
then obtained from computing the eigenvalues of the 1 x 1 and 2 x 2 blocks on the
diagonal of the product in (50). This method is numerically backward stable and
avoids the loss of accuracy in the eigenvalues as the product A is never formed
explicitly.

The idea is now to employ this approach to H? by replacing the reduction of
H? to PVL form by UTH?U = (UTHV)(VTHU), where U,V € USs,. This can
be achieved by the symplectic URV -like decomposition given in [18].

Proposition 4.20 For H € R**" there exist U,V € USs,, such that

H H3]: N [
0 -HY 0&’

i.e., Hy is upper triangular and Hs is upper Hessenberg. If, in addition, H is
Hamiltonian, then

VITHU = [ (51)

HyH; HyHj — (HoHs)T ] _ N L (52)

0 (HoHy)T 0 &

and the eigenvalues of H are the positive and negative square roots of the eigen-
values of the upper Hessenberg matrix HoH, .

UTH?U = [

That is, using the decomposition given in (51) we obtain the PVL form of H?
without explicitly squaring H. In order to obtain the eigenvalues of H we then
apply the periodic QR algorithm to HyH;.
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In [18] an algorithm for computing the decomposition given in (51) is presented.
It requires a finite number of transformations. The combined cost of computing
the decomposition (51) and applying the periodic QR algorithm to HyH; is about
48n? flops — this is 1.5 x the computational cost of Van Loan’s method and about
60% of the cost of the QR algorithm applied to a non-symmetric 2n X 2n matrix.
The method is numerically backward stable as only orthogonal transformations are
used. The symmetry property of A (H) is preserved and in this sense the method
is strongly backward stable. But note that for the computed eigenvalues A we only
get A € A\ (H + E) for a nearby matrix E. So far there is no proof available that
FE is Hamiltonian and hence that the method is strongly backward stable in the
usual sense.

A detailed error analysis of the above method yields the following result [18].
Essentially (under mild assumptions), for a nonzero and simple eigenvalue A of a
Hamiltonian matrix H € R>™*?", the algorithm based on the symplectic URV-like
decomposition followed by applying the periodic QR algorithm to HoHy from (51)
yields a computed eigenvalue A satisfying

2[|Hlle
s(A)

A=Al < +0().

This is the accuracy to be expected from any backward stable method like, e.g.,
the QR algorithm and shows that by avoiding to square H we get the full possible
accuracy.

Nevertheless, as Van Loan’s method, the approach presented above does not
provide the H-invariant subspaces. But based on (51) it is possible to derive
an algorithm that can be used to compute the stable H-invariant subspace and
the solution of the ARE (23) [17]. The basis for this algorithm is the following
theorem.

Theorem 4.21 [17] Let A € R™" and define B = [gg]. Then \ (B) = A (A)U

—X(A)). Further, let A (A)NaR = (. If the columns of [UL, UL T e R2Y™™ gpan
( ( ’ 1-°Y2 /4
an orthogonal basis for a B-invariant subspace such that

sl ]=[n]n rweenm,

then range (U; + Us,) is the A-invariant subspace corresponding to A (A)N C* and
range (U; — Us) is the stable A-invariant subspace.

An orthogonal basis for the subspace defined by range (U; — Uz) can be obtained,
e.g., from a rank-revealing QR decomposition of U; — Us; see, e.g., [35].

In general it is of course not advisable to use the above result in order to
obtain the stable invariant subspace of a matrix A as one would have to double
the dimension and thereby increase the computational cost and required workspace
significantly as compared to applying the QR algorithm to A. But we will see that
for Hamiltonian Matrices, the given structure makes this approach very attractive.
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Let H € R*"*?" be Hamiltonian with A (H) N R = (). Define a permutation
matrix P € R*™**" by

coof
ofioco
cofo
Socoo

Then PT [OH%] P is a Hamiltonian matrix in R****". The basic idea is now to

employ the decomposition (51) in order to make PTHAP block-upper triangular.
Let U,V € US,, be as in Proposition 4.20 such that VT HU has the form given
in (51). Then we apply the periodic QR algorithm to Hs H;. From this we obtain
orthogonal matrices V1, Vs € R™™ such that both, the product

(V" Ha Vo) (VoL HiVA) =: Hao Hy

and ﬁz, are in upper real Schur form while Hy is upper triangular. Define

gl 0 | V2 0 U 0
Ul.—U|: 0 V.I:|, U2—V[0 Vv2:|, and U—|: 0 U2]
Then R
0 H, 0 H
0 H H 0 H 0
B:=PTUT p=| " 3 .
v [H O]U o o o -HT

is Hamiltonian and block upper triangular with H, upper triangular, H, in real
Schur form, and Hs = V3! (HoHz — HTHI)V;.
Now let Uz be orthogonal such that

dli (35w
is in upper real Schur form with 7; € R"*", j =

1
Note that this is possible as the eigenvalues of [
and A (H) N2R = (). Hence,

T T3 R Ry
=l o ur 0 Us 0o 0 -TT 0
0 0o -T7 T

is in Hamiltonian Schur form. In order to apply Theorem 4.21, we need to reorder
the eigenvalues in the Hamiltonian Schur form such that all eigenvalues in the
upper left 2n x 2n block are in the open right half plane. This can be achieved,
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e.g., by the symplectic re-ordering algorithm due to Byers [23, 24]. With this
algorithm it is possible to determine U € US,,, such that

T 7:13 Ry Ry
0 T, RI R

e -
U"BU = 0 0 —T7T 0 , A1) = N(T2).
0 0 -17 -TF
Now define
|l Ui 0 Us 0 |~
s [0 010 0 )0 -
Then S € US4, and
_aorpr| 0 H I AT AT
T:=S'P [H O]PS_.[ 0 —Tﬂ] (55)

is in Hamiltonian Schur form with A (T1;) € €*. Now we can apply Theorem 4.21
with A replaced by H and R := T1;.

Corollary 4.22 Let H € R*"*?" be Hamiltonian with A (H) N«R = § and let S
be as in (54) such that (55) holds. If PS := [g; g;z ], with S;; € R*™*™, then
the n-dimensional, stable H-invariant subspace is given by range (S11 — Sa1).

The above transformations yielding S are described in more detail in [17]. The
solution of the ARE can be obtained from an orthogonal basis of range (S11 — S21)
computed by a rank-revealing QR decomposition or directly from S11 — Sa1; for
details see [17]. The latter approach saves a significant amount of work such that
the cost of the algorithm described above for computing the stabilizing solution of
the ARE (23) is approximately 60% of the cost of the Schur vector method.

Remark 4.23 The transformation of [2]1 Iff] to real Schur form and the com-

putation of the matriz Us in (58) can be efficiently implemented employing the
available structure. An algorithm for this is given in [17].

Remark 4.24 The algorithm described here can in principle also be applied to
Hamiltonian matrices with eigenvalues on the imaginary axis. In some cases (de-
pending on multiplicities of the pure imaginary eigenvalues) it is not yet clear how
to pick the “right” Lagrangian subspace yielding the desired solution of the ARE.
This topic is under current investigation.

It is shown in [17] that the algorithm presented above is strongly backward
stable in IR*™*4"_ That is, if S is the analogue to S from (54) computed in finite
precision arithmetic, then

ST pT [

SR~

0 ~
= ]PS—T+E,
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with T as in (55), ||E|la < ce||H||2 for a small constant ¢ and E € R*"*4" is
Hamiltonian. Moreover it is shown in [17] that the computed invariant subspace is
as accurate as the maximum of its condition number and the condition number of
its complimentary (antistable) H-invariant subspace permit. This is to be expected
from the fact that at the same time we compute the stable H-invariant subspace,
by Theorem 4.21 we also compute the antistable H-invariant subspace. In that
sense the algorithm is not optimal as we would like the accuracy of the computed
subspace to be limited only by its own condition number.

Concluding the section about symplectic methods, the multishift algorithm as
well as the method based on the symplectic U RV -like decomposition (51) are big
steps towards a strong backward stable method of cubic complexity. The ideal
method has not yet been found, though.

4.1.4 COMPARISON OF METHODS BASED ON THE HAMILTONIAN EIGENPROBLEM

In this subsection we will give a comparison of some of the methods presented in
Section 4.1. The computations were done in MATLAB? Version 5.1 with machine
precision € ~ 2.2204 x 10716, The following methods are tested:

e EV: the eigenvector approach outlined in Section 4.1.1 and implemented in
the MATLAB Control Toolbox Version 3.0b function 1qr [57];

e SCHUR: the Schur vector method as implemented in the MATLAB Control
Toolbox Version 3.0b function are [57];

e MSH: an implementation of the multishift algorithm as described in [10];

e SURYV: an implementation of the method based on the two-sided, symplectic
URV-like decomposition.

The methods are tested for the Examples 1-19 of the benchmark collection for
continuous-time algebraic Riccati equations [15, 16]. (Note that Example 20 is
missing as this example could not be solved on the author’s machine due to in-
sufficient memory.) Table 1 shows the 2-norms of the normalized residuals, i.e.,
[|R(X)|2/]|X |2, where X are the solutions computed by the above methods. In
Table 2 we list the relative errors for those examples where the exact stabilizing
solution is known.

From both tables it is obvious that none of the methods is superior to all
other methods. But note that for almost all examples, either one of the structure
preserving methods (MSH and SURV) produces the smallest residuals and relative
errors. In particular for almost all small size examples, the multishift method yields
the best solutions. Note that this is also true for Examples 11 and 14 though the
reported residuals for (some of) the other methods are smaller. For Example 11,
this can be clearly seen from the relative error. Here, the Hamiltonian matrix
has eigenvalues on the imaginary axis causing the other methods to loose half the

2MATLAB is a trademark of The MathWorks, Inc.
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Ex. no. \ n \ EV SCHUR MSH SURV
1 21 14%x107% | 21x10715 | 2.4 x 10716 0.0
2 2| 1.4x107 | 5.8 x 1071 | 42x 10~ | 1.2x 10714
3 4128x107% | 39x107Y | 1L.7x107* | 23x1071°
4 81 1.3x1071 | 85x 10716 | 6.2x 10716 | 1.9 x 10715
5 920x10718 | 7.6 x 107" | 84x107® | 2.7 x 1074
6 30| 20x107'2 | 32x 107" | 42x10"'° | 3.6x 1078
7 2 1.5x1072% | 44x107° | 1.2x10~* | 1.7x107*4
8 2|1.8x10°% | 46x107° | 25x10°8 1.6 x 1078
9 21 35x10712 | 39x10719 | 3.3x 10713 | 5.8 x 10~ 11
10 2112x107" | 33x107"% | 44x107'6 | 45 x 1076
11 21 12x107%5 | 55x107%6 | 1.1 x10715 | 9.5 x 10710
12 3| 3.6 x10° 2.5 x 103 5.7 x 103 3.3 x 103
13 4| 44x107" | 6.8x 10710 | 41x107'2 | 2.2x 1075
14 41 60x1071 | 25x 10715 | 3.8x107!3 | 3.8 x 10715
15 39 || 9.3x107%5 | 8.6x 10715 | 6.6 x 10713 | 3.4x10~1°
16 64 || 1.0x 1071 | 1.2x 107 | 1.6 x 107 | 7.3 x 10715
17 21 | 81x1077 [ 9.7x1077 |[28x107% |87x1077
18 100 || 3.4x107° | 3.0x107° | 1.6x107% | 1.0x10~'2
19 60 || 2.3 x 107 | 26 x 107 | 2.0 x 10~ | 4.0 x 10715
Table 1: ||R(X)||2/||X]|2 for tested methods.
Ex.no. | EV | SCHUR | MSH SURV
1 6.9%x107? | 7.0x 10716 | 7.4 x 10717 | 7.0 x 1016
2 6.9x107"5 | 1.4x1071 | 1.3x 10718 | 4.7 x 10715
7 83x1072% | 22x107° | 59x107° | 83 x107°
9 1.8x 1071 | 1.2x 1074 | 1.6 x 1076 | 4.1 x 10~4
10 52x10710 | 75x 10716 | 1.2x 107" | 1.6 x 10716
11 1.0x107% | 1.6x107% | 6.3x10716 | 2.1 x 108
12 6.4x107% | 7.0x107* | 95x107* | 5.7x10~*
16 3.0x 10715 | 34x 1071 | 29x 10~'* | 1.9 x 10~15
173 1.0x107% | 1.1x107% | 6.6x107° | 83x10~"7

Table 2: || X* — X||2/||X*||2 for tested methods.
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number of significant digits while the multishift method computes the solution
to full accuracy. (From this example it can be seen that sometimes the residual
gives misleading information about the quality of the computed solution; see also
[43].) In Example 14, MSH yields the largest residual, but the other methods do
compute a non-symmetric solution matrix which can by theory not be the desired
(and existing) stabilizing solution. For Example 10, the larger relative error of
the solution computed by MSH can be explained from the loss of accuracy of the
eigenvalues computed by the square-reduced method. Here, two eigenvalues £\
are close to zero and a loss of almost half the digits must be expected from (49)
and the fact that ||H||2/|\| = O(107).

For the problems of larger dimension (Examples 15, 16, 18, 19), the method
based on the symplectic URV-like decomposition produces the best results while
the multishift method suffers from convergence problems and looses 1 to 3 orders
of magnitude compared to SURV.

Note that in Examples 6 and 7 which are the only ones for which the eigenvector
approach performs best, there are isolated eigenvalues present. Hence, EV benefits
from balancing the matrix while this is not employed by SCHUR as implemented
in are and the structure preserving methods MSH and SURV. The use of the
symplectic balancing procedure described in [11] will resolve this disadvantage of
the structured methods as preliminary numerical tests indicate.

The large residuals in Examples 7, 12, and 17 are due to badly scaled algebraic
Riccati equations. The relative errors obtained in these examples are in accordance
with the condition of the matrix Uy, which has to be factored in order to solve for
X.

From the examples with eigenvalues close to the imaginary axis it seems that
the multishift algorithm can handle this problem a little better than SURV (which
can be explained by the fact that it is not affected by the conditioning of the anti-
stable H-invariant subspace). On the other hand, SURV overcomes the problems
of the multishift method for growing dimensions while still being substantially
faster than the Schur vector method.

Remark 4.25 The numerical solution of AREs by any of the methods described
in this section should always be followed by at least one step of iterative refinement
using Newton’s method (see Section 4.3).

4.2 Spectral Projection Methods

Given a projector P onto the stable H-invariant subspace S, i.e., range (P) = S
and P? = P, the solution of the ARE can be obtained as in (28) by computing an
orthogonal basis for range (P), e.g., by a rank-revealing Q R decomposition.

One of the most popular spectral projection methods is the matriz sign function
method. This method was first introduced 1971 by Roberts [67] in order to solve
the ARE as given in (23). The matriz sign function of a matrix Z € R™*" can

3In this example, the only known component of the solution is T1,n = Tpn,1 = 1. The relative
errors reported are the relative errors for this single matrix entry.
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be defined as follows. Let A (Z) N«R = () and let the Jordan decomposition of Z
be given as
_ J 0 1
Z_S[ 0 J+]S , (56)
where Jordan blocks corresponding to the, say, k eigenvalues in the open left half
plane are collected in J~ and Jordan blocks corresponding to the remaining n — k
eigenvalues in the open right half plane are collected in J*. Then

sign (Z) = 5[ o In(ik ]51. (57)

From this definition we immediately obtain an important property of the sign
function: P~ = 1(I, — sign(Z)) defines a skew projector onto the stable Z-
invariant subspace parallel to the antistable Z-invariant subspace whereas P+ =
+(I, +sign (Z)) defines a skew projector onto the antistable Z-invariant subspace
parallel to the stable one.

The sign function can be computed via the Newton iteration for the equation

S? = I where the starting point is chosen as Z, i.e.,

Zo (—Z7 for j=1,2,..., Zj+1 «— % (Z]—}—ZJ_I) (58)
It is shown in [67] that lim;_,., Z; = sign (Z).

Although convergence of the Newton iteration (58) is globally quadratic, the
initial convergence may be slow. There have been several proposals to accelerate
the convergence of this iteration by scaling each iterate Z; by a factor v;, see, e.g.,
[25, 41, 67]. Several other iterative schemes have been developed for computing
the sign function of a matrix. For a summary see the recent review paper [41].

As the sign function method computes a splitting of the spectrum along the
imaginary axis, it has a natural relationship to the problem of computing stable
invariant subspaces. Recalling the results of Section 3 it is now easy to see that
the linear-quadratic optimization problem (1)—(3) and the ARE (23) can be solved
by applying the sign function method to the corresponding Hamiltonian matrix
H. This approach was introduced in [67] and studied in plenty of subsequent
papers; see [41] and the references given therein. In particular, the application
to Hamiltonian matrices and exploiting their special structure was investigated
in [25]. Moreover, it was observed in [67, 25] that the solution of AREs can
be computed directly from sign (H). We will briefly describe the basis for this
observation here, using a slightly different approach. Let

Z11 Zya

Zo =
[ZZI Z2

] = sign (H)

be the limit of the Newton iteration (58) applied to H. From the considerations
in Section 3 we know that the columns of [I,,, —X.]T span a basis for the stable
H-invariant subspace. Hence, they are contained in the null space of any projector
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onto the antistable H-invariant subspace and thus particularly in the null space
of Z + I>,. Thus,

(Zoo + Inn) [ : ] —0.

Hence, X, satisfies the overdetermined system of linear equations

Z12 le + I2n
Xy =— . 59
[ Zog + Iop ] [ Zn ] (59)

It can be shown (see, e.g., [48, Section 22] and the references given there) that the
coefficient matrix of the left-hand side of (59) has full rank (and hence the linear
system is consistent) if and only if the stabilizing solution X, of the corresponding
ARE exists.

The sign function method has the advantage that it is still feasible for medium
sized linear-quadratic optimization problems and AREs with dense coefficient ma-
trices (up to order n ~ 5000) whereas most of the methods mentioned in the
last section for problems of this size are much slower and/or suffer from conver-
gence problems. It can also easily be adapted for parallel computation and serves
therefore as basis for most parallel algorithms for solving AREs, see, e.g., [32, 64].

The disadvantage of the sign function method is that sign (Z) is not defined if
A(H) NR # () and the iterative schemes for computing sign (Z) perform poorly
or may fail when there are eigenvalues close to the imaginary axis. There are
approaches to resolve this problem; see [31].

Recently, another iterative method was suggested that computes a projector
onto invariant or deflating subspaces of matrices or matrix pencils corresponding to
eigenvalues inside or outside the unit disk [55, 6]. The application of this method,
following [11, 12] called the disk function method, to AREs and linear-quadratic
optimal control problems is investigated in [55, 7, 11, 12]. Though by the computed
spectral splitting it has a natural relationship to discrete-time optimal control
problems, it can be applied to the continuous-time problems considered here by
using an appropriate spectral transformation. The method has similar advantages
and disadvantages as the sign function method: it can easily be parallelized but
gets into trouble if the spectrum of the matrix or matrix pencil is poorly separated
with respect to the computed spectral splitting.

4.3 Newton’s Method

The methods presented so far have addressed the ARE by its relation to the Hamil-
tonian eigenproblem. By nature, the ARE (23) represents a system of nonlinear
equations. It is therefore straightforward to apply methods for solving nonlinear
equations to the ARE. In [45], Kleinman shows that Newton’s method, applied
to the ARE and properly initialized, converges to the desired stabilizing solution
of the ARE (see Theorem 4.27 below). The resulting algorithm can be stated in
different ways. We have chosen here the variant that is most robust with respect
to accumulation of rounding errors.
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Algorithm 4.26 (Newton’s method for the generalized CARE).
Input: A,G,FeR™",G=GT, F=FT, Xo = X! - an initial guess.
Output: Approzimate solution X ;11 € R™™ of (23).
FOR j =0,1,2,... “until convergence”

1. A; = A-GX;.
2. Solve for Nj in the Lyapunov equation 0 = R(X}) —}—AJTNJ- +NA;.
3. X;1 = X;+Nj.
END FOR
We have the following results for Algorithm 4.26 [48].

Theorem 4.27 If G > 0, (A,G) is stabilizable, the unique stabilizing solution
X, of the ARFE exists, and Xq is stabilizing, then for the iterates produced by
Algorithm 4.26 we have:

(1) All iterates X; are stabilizing, i.e., A\(A — GX;) C C™ for all j € INy.
(i) Xo <...< X;41 < X; <... < Xy.
(iii) im0 X; = X..

(iv) There exists a constant v > 0 such that

X — Xull <AIXG = Xl 521,
i.e., the X; converge globally quadratic to X,.

Older versions of this theorem [45, 58] usually need stronger assumptions than
those used here.

Finding a stabilizing Xy usually is a difficult task and requires a computational
cost equivalent to one iteration step of Newton’s method; see, e.g., [69] and the
references therein. Moreover, Xy determined by a stabilization procedure may
lie far from X,. Though ultimately quadratic convergent, Newton’s method may
initially converge slowly. This can be due to a large error || Xo — X.|| or to a
disastrously bad first step, leading to a large error || X; — X.||; see, e.g., [42, 11, 13].
The computational cost for solving the ARE with the Schur vector method is
roughly equivalent to 5-7 iterations of Algorithm 4.26. Due to the initial slow
convergence, Newton’s method often requires more than 7 iterations. Therefore it
is most frequently only used to refine an approximate ARE solution computed by
any other method.

Recently an exact line search procedure was suggested that accelerates the
initial convergence and avoids "bad” first steps [11, 13]. Specifically, Step 3. of
Algorithm 4.26 is modified to X;41 = Xj; +t;N;, where t; is chosen in order to
minimize the Frobenius norm of the residual R(X;+tN;). As computing the exact
minimizer is very cheap compared to a Newton step and usually accelerates the
initial convergence significantly while benefiting from the quadratic convergence
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of Newton’s method close to the solution, this method becomes attractive, even
as a solver for AREs (at least in some cases), see [11, 9, 13] for details. Moreover,
for some ill-conditioned AREs, exact line search improves Newton’s method also
when used only for iterative refinement.

5 Concluding Remarks

The linear-quadratic optimization problem arising in optimal control can be tack-
led by many different solution methods and plenty of numerical algorithms for
its solution have been investigated. The approaches based on the solution of the
corresponding Riccati equations turn out to be the most efficient and reliable
ones. Again there are many different algorithms for solving these symmetric and
quadratic, algebraic or differential matrix equations. For the most frequently con-
sidered case, that is, the infinite time horizon case, an algebraic Riccati equation
has to be solved. This can be done by addressing the ARE as a set of nonlin-
ear equations or via the corresponding Hamiltonian eigenproblem. Though very
efficient methods from numerical linear algebra are available for this structured
eigenproblem, an ideal method has still not been found. We have presented some
of these methods and discussed their advantages and disadvantages. Any of these
methods can be used to compute an approximate solution which should then be
refined using Newton’s method. With this approach, the ARE can be solved in
a very efficient and reliable way. In some circumstances, Newton’s method itself,
endowed with exact line search, can also be used as solution method of the ARE.
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