UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Parallel Partial Stabilizing Algorithmus
for Large Linear Control Systems

Peter Benner Maribel Castillo
Enrique S. Quintana-Orti

Report 98-03

Berichte aus der Technomathematik

Report 98-03 Juli 1998

Parallel Partial Stabilizing Algorithms for Large Linear
Control Systems

Peter Benner* Maribel Castillof Enrique S. Quintana-Orti*

July 20, 1998

Abstract

In this paper we present parallel algorithms for stabilizing large linear control systems on
multicomputers. Our algorithms first separate the stable part of the linear control system and
then compute a stabilizing feedback for the unstable part. Both stages are solved by means
of the matrix sign function which presents a high degree of parallelism and scalability.

The experimental results on an IBM SP2 platform show the performance of our approach.

Keywords: Linear systems, stabilization, Lyapunov equations, matrix sign function, mathemat-
ical software.

1 Introduction
Consider a continuous time-invariant linear control system
&(t) = Az(t) + Bu(t), 2(0) = =y, (1)

where A € IR™*" is the state matrix, and B € R™*™ is the input matrix. In case the spectrum
(or set of eigenvalues) of the state matrix is in the open left half plane (denoted as A(4) C C7),
system (1) is said to be stable. The stabilization problem consists in finding a feedback matrix
F € R™*™ such that the input u(t) = Fxz(t), t > 0, yields a stable closed-loop system

#(t) = (A+ BF)z(t), (0) = zo. 2)

This problem has a solution if the matrix pair (A, B) is stabilizable, i.e., for all A in the closed right
half plane, rank ([A — AI,,, B]) = n (hereafter, I,, denotes the identity matrix of order n). The
stabilization problem arises in methods for the solution of parabolic partial differential equations
[23], in control problems such as, e.g., the computation of an initial approximate solution in
Newton’s method for the algebraic Riccati equation, simple synthesis methods to design controllers,
etc. [14, 15, 28].

There are two different approaches for solving the stabilization problem, these are, pole assign-
ment methods or linear quadratic optimization algorithms. Pole assignment methods compute
a feedback matrix such that the state matrix of the closed-loop system (2) has a prespecified
spectrum. In this sense, the stabilization problem can be considered as a special type of pole
assignment problem with a high degree of freedom in the design of the problem (the poles can be
chosen anywhere in the open left half plane). This approach however presents several drawbacks.
First, the pole assignment problem is probably an intrinsically ill-conditioned problem for systems
of order larger than 10 [3, 19, 29, 30]; second, how to choose the poles to improve the conditioning

*Zentrum fiir Technomathematik, Fachbereich 3/Mathematik und Informatik, Universitit Bremen, D-28334 Bre-
men, Germany. E-mail: benner@math.uni-bremen.de

fDepartamento de Informética, Universidad Jaume I, E-12.071 Castellén, Spain. E-mail: castillo@inf.uji.es

iDepartamento de Informética, Universidad Jaume I, E-12.071 Castellén, Spain. E-mail: quintana@inf.uji.es

2 Peter Benner, Maribel Castillo and Enrique S. Quintana-Ort{

of the problem is still an open problem; and third, most of the pole assignment algorithms are
based on QR algorithm-like procedures (see [3, 31, 35, 36] and the references therein) which are
not well-suited for parallel computation and therefore too expensive for large control systems.

In the linear quadratic optimization approach an input u(t), t > 0, is computed that minimizes

= min Oo.r TQx u(t)T Ru
T = min [@) Qalt) + u(t)" Ru(t)ds

subject to (1); here, @ = CTC and R = R can be any positive semidefinite and positive definite
matrices, respectively. Under certain conditions (see, e.g., [27, 28]), it can be proved that the
linear quadratic optimization problem has a unique solution of the form

u(t) = Fo(t) = —RT'BT X x(t), (3)

where X € R™*" is the unique symmetric positive semidefinite solution of the algebraic Riccati
equation (ARE)

ATX +XA-XBR'BTX +Q=0. (4)

Moreover, the closed-loop system defined by this feedback matrix is stable. Here, the freedom in
choosing @ and R can be used to obtain a small norm feedback matrix F' and to guarantee that
small perturbations will not make the closed-loop system unstable. Typically, @ = 0,, (the null
matrix of order n) is chosen and the ARE (4) then becomes an inverse Lyapunov equation

AY +YAT —Q =0, (5)

where Q = BR™'BT and Y = X! (if X is singular then Y = X, the pseudo-inverse of X).

A recent study in [19] shows that in case A(A) C C*, B is a square nonsingular matrix, and
R = (BTB)'/? is chosen, Q = 0, is optimal in the sense that it minimizes the norm of F'. This is
however a too restrictive case and in practice we just set @) = 0,,, R = I,,, and obtain the feedback
matrix from equations (3) and (5) [2, 26, 34]. This method is simple and does not introduce
additional rounding errors.

The Bartels-Stewart method is one of the most well-known and efficient algorithms for solving
Lyapunov equations of moderate dimension [6]. In this method, the coefficient matrix A is reduced
in a first stage to a condensed form by means of the QR algorithm; then, in a second stage,
the solution is obtained from the reduced equation by a backsubstitution procedure. The QR
algorithm is known to present a lack of scalability [20, 21]; moreover, the degree of parallelism in
this algorithm is not as high as that of the usual matrix algebra kernels (matrix factorizations,
matrix products, etc.).

For large order Lyapunov equations with a stable (or antistable) coefficient matrix, Lyapunov
solvers based on the matrix sign function are more appropriate [7] due to their high degree of
parallelism. While in general the coefficient matrix of the Lyapunov equation in (5) is not stable,
we can use a spectral division technique, also based on the matrix sign function, to reduce our
stabilization problem to a subproblem which satisfies such a condition (see Section 3). This two-
stage approach does not increase significantly the computational cost.

The paper is structured as follows. In Section 2 we define the matrix sign function and present
three iterative schemes for its computation. In Section 3 we review how to use the matrix sign
function to divide the spectrum of a matrix. In Section 4 we describe Lyapunov equation solvers
based on the matrix sign function. In Sections 5 and 6 we combine these algorithms to provide
two-stage stabilization methods and study the parallelization of the matrix sign function—based
iterations from the theoretical and experimental points of view. Finally, in Section 7 we summarize
our concluding remarks.

Parallel Stabilization of Large Linear Control Systems 3

2 The Matrix Sign Function

There exist several definitions of the matrix sign function (see, e.g., [25] for an overview). For

instance, let
_ J- 0 1
2=s[% 4]s

be the Jordan decomposition of Z € R™*™ [17], where the Jordan blocks in J~ € C*** and
Jt e ¢n=k)x(n=k) contain, respectively, the eigenvalues of Z in the open left and right complex
planes. In case Z has no pure imaginary eigenvalues, the matriz sign function is given by

sign (Z) = s[_g’“ Ino_k]5—1. (6)

Note that sign (Z) is unique and independent of the order of the eigenvalues in the Jordan decom-
position of Z [27].

Choosing a starting point at Z and applying Newton’s root-finding iteration to Z2 = I,,, we
obtain the Newton matrix sign function iteration

1 _ .
Zo(—Z, ZJ+1(—§(Z]+ZJ 1), j:0,1,2,..., (7)

which converges to sign (Z) = lim;_,o Z; [33]. The iterative scheme (7) requires 2n® flops (floating-
point arithmetic operations) per iteration.

The convergence of the Newton matrix sign function iteration is globally quadratic. Accelera-
tion of the initial convergence is possible, e.g., via determinantal scaling [11],

Zj«cjZ;, ¢ =|det (Z;)| 7,

where det (Z;) denotes the determinant of Z;. The determinant of Z; is obtained, with an O(n)
flop cost, as a by-product when its inverse is computed. Other acceleration schemes are compared
in [4].

There exist also other iterative schemes for the matrix sign function [24]; among these, Halley’s
iteration,

Zo « 7, Zjp1 Z;(3I, + Z3)(In + 3Z;) 1, j=0,1,2,..., (8)

and the Newton-Schulz iteration,
1 .
Zy + 7, Zjp1 EZJ'(?,IH - 7Z3), j=0,1,2,..., (9)

are specially appropriate for parallel distributed architectures as their computational cost is mainly
due to matrix products. The higher computational cost of the Halley matrix sign function iteration
(about 20n?/3 flops per iteration) might be balanced by its cubic convergence, but this is not the
case in practice. The cost of the Newton-Schulz matrix sign iteration is approximately 4n® flops
per iteration. Moreover, this iteration is only guaranteed to converge if || Z3 — I,|| < 1, for some
suitable norm. Therefore, the Newton-Schulz matrix sign function iteration has to be combined
with some initial iteration to obtain a globally convergent “hybrid” algorithm.
Tterations (7), (8), and (9) can be stopped when

1Zj+1 = Zjl| < v = c- Ve [1Z]],

for || - || a suitable norm, ¢ a small order constant, and € the machine precision. Once the stop-
ping criterion is satisfied, two more iterations are carried out. Due to the quadratic (or cubic)
convergence of the iterations we therefore ensure the maximum attainable accuracy.

4 Peter Benner, Maribel Castillo and Enrique S. Quintana-Ort{

3 Spectral Division with the Matrix Sign Function

The matrix sign function has proved useful in many spectral division problems, as (I, —sign (Z))/2
defines the skew projector onto the stable Z—invariant subspace parallel to the unstable subspace.
In other words, if Z has k stable eigenvalues, n — k unstable eigenvalues, and no eigenvalues on
the imaginary axis, and
lﬂ«wum—men=[%lﬁ$]

is a rank-revealing QR decomposition [13], then U divides the spectrum of Z as follows

(10)

T | Zu Zie
U ZU—[0 Zw |’

with A(Z1;) € €7, of order k, and A(Zs2) C CF, of order n — k. Here, the first k¥ columns of
U, associated with the stable part of the spectrum of Z, form an orthonormal basis for the stable
invariant subspace of this matrix.

Recent results show that the matrix sign function is in practice an accurate approach for the
computation of invariant subspaces [12, 7].

Consider we have to stabilize a system defined by the matrix pair (4, B), and assume U divides
the spectrum of A as in (10). Applying this transformation to the matrix B, we obtain

o _ | Bt
o 2],

where B; € R¥*™ and B, €]R(”_k)xn; the stabilization problem is then reduced to finding a
feedback matrix F» € R™*™* that stabilizes the matrix pair (A2, B2). Note that matrix Ags is
antistable (A(Asz) C CT); the complete feedback matrix is obtained as F = (0, xx, F2)U”.

4 Solving Lyapunov Equations with the Matrix Sign Func-
tion

In [33] Roberts introduced the use of the matrix sign function for solving stable (or antistable)
Lyapunov equations. The solution of

ATX + XA-Q =0,

is computed by applying the Newton iteration (7) to the associated Hamiltonian matrix

-5 3

Q —ar

corresponding to (5). The solution matrix X can then be determined from the stable H—invariant
subspace given by the range of the projector (I, — sign (H))/2. Roberts also shows in [33] that,
when applied to H, the Newton matrix sign function iteration (7) can be simplified to

1 _
AO <~ A, Aj+1 <~ §(A]+Ajl), .

1 .) i=0,1,2,... (11)
Qo <« Q, Qjn1 « §(Qj+Aj_ QA7)

and that X = 1lim; o ;. The sequences for A; and Q; require about 6n® flops per iteration
so that 5-6 iterations are as expensive as the Bartels—Stewart method [6].

Parallel Stabilization of Large Linear Control Systems 5

The structure of H can also be exploited to obtain efficient variants for the Halley matrix sign
function iteration (8),

Ao «— A, Aj+1 «— AJ(3In+A§)(In+3A§)_1,

Qo + Q@ Qi1 + (4 —34;,)7ATQ; —Q;4;) 1=012... (12
+Q; (3L, + A3)) (I, + 34%)~1,

and Newton-Schulz matrix sign function iteration (9),
1
Ag + A, Aj+1 — §AJ(3In - A?),

> (@1, — A7)
—AJ (AT Q; — Q;45)) -

See [8] for details. The approximate computational costs per iteration for (12) and (13) are about
8n® and 12n® flops, respectively.
A stopping criterion for these iterations can be designed based on lim;_,, A; = I, [7], e.g., we

can employ

) =0,1,2,.... 13
QOFQ; Qj-i—l(— J) Ly 4y ()

4j41 = Inll < - Ve - (|14,

and perform two additional iterations once it is satisfied.

5 Implementation Issues and Parallel Algorithms

The proposed stabilizing method can be algorithmically described as follows (see also [19, 22]).
Input: A€ R™" and B € R™*™ such that (4, B) is stabilizable.

Output: F € R™*"™ such that A + BF is stable.
1. Compute sign (A).
2. Compute a rank-revealing QR decomposition

U (e (4) — /2= | 5.

3. Let U = (U, U,) be an analogous partition of U. Compute Ays = US AU, and By = U4 B.

W

. Solve the Lyapunov equation

AgpY +YAL — BB =0

5. Compute F» = —B>Y ~1; then, F = (0, 2)U"”.

We may use iterative schemes (7), (8), or (9) to compute sign (4) in Stage 1, and the special
variants in (11), (12), or (13) to solve the Lyapunov equation in Stage 4. In Stage 2, we can use
a QR factorization with column pivoting to obtain an approximate rank-revealing decomposition
[17]. Theoretically this orthogonal factorization may fail to reveal the rank, though in practice
this is a reliable numerical tool [9, 32].

In case A has eigenvalues on the imaginary axis we can nevertheless apply the algorithm to
(A + al,,B) for a small @ > 0. Thus, we divide the spectrum of A along the line —ai and
stabilize those eigenvalues with real part larger than —a. Choosing « carefully so that A + oI,
has no eigenvalues close to the imaginary axis we can avoid numerical difficulties associated with
eigenvalues close to or on the imaginary axis. The same technique can also be used to obtain a
certain degree of stability, i.e., A(A + BF) C {z € C;Re(z) < —a} (here, Re(z) stands for the
real part of z).

6 Peter Benner, Maribel Castillo and Enrique S. Quintana-Orti

In control problems usually the state matrix only has a few unstable eigenvalues. The subsys-
tem to stabilize in Stages 3, 4, and 5 is small and the cost of these stages is therefore negligible
when compared to the cost of Stages 1 and 2. In our theoretical study we will neglect the cost for
these last three stages and assume that the computation of sign (A) requires “iter” iterations.

Our algorithms are implemented using ScaLAPACK (scalable linear algebra package) and PB-
BLAS (parallel block basic linear algebra suprograms) [10]. These are public-domain parallel
libraries for MIMD computers which can be run on any machine that supports either PVM [16]
or MPI [18]. ScaLAPACK provides scalable parallel distributed kernels for many of the matrix
algebra kernels available in LAPACK [1]. This library employs BLAS and LAPACK for serial
computations and the BLACS (basic linear algebra communication subprograms) for communica-
tion.

The implementation of ScaLAPACK assumes a block-cyclic distribution scheme [10], which is
mapped to a logical p, X p. grid of processes. Each process owns a collection of (MB x NB) blocks,
which are locally and contiguously stored in a two-dimensional array in “column-major” order.

For scalability purposes, we only employ in our algorithms square topologies (p, = p.) with
each process mapped onto a different processor. The following problem and machine parameters
are used:

— n: Size of the problem.

- p= /P X \/p: Dimension of the square grid of processors.

— 7: Time of a double-precision floating-point arithmetic operation.

— a: Time required to communicate a zero-length message between two processors.

— (B: Time required to communicate a double-precision floating-point number between two
processors.

Following the performance model in [5], we present in Table 1 approximate computation and
communication costs for the building blocks from ScaLAPACK [10] employed in our parallel
stabilizing algorithms. We have neglected the lower order expressions in the table.

Computation Communication cost

Block operation cost Xan T Latency x « Bandwidth—! x% 8
PxGETRF: LU factorization 2 (6 + logp)n (3+ 1 logp)
PxTRSM: Triangular system solver 1 n 1+ % log p)
PxGETRI: Inverse from LU factors 2 2n (2+ 3 logp)
PxGEMM: Matrix product 2 (1+ 1logp)y/p (1+ 1 logp)
PxGEQPF: QR fact. with column pivot. % 3n logp % logp
PxORMQR: Apply Householder transf. 2 - 2 logp

Table 1: Theoretical costs of the parallel building blocks.

In Table 2 we present a theoretical performance model for our parallel stabilizing algorithms.

We have observed moderate differences between the theoretical results obtained from our the-
oretical model and the experimental results; these differences are mainly due to several simplifica-
tions and approximations in the theoretical model; e.g., for simplicity, imbalance cost and lower
order terms in computations and communications are neglected in the theoretical model.

Parallel Stabilization of Large Linear Control Systems 7

Matrix sign Computation Communication cost
: : n® 1 n?

function it. cost X - T Latency X « Bandwith™ x 7

Newton 2 X iter (8 + logp)n x iter (54 T logp) x iter
+% + 3nlogp +%logp

Halley 2 x iter ((2+ logp)y/P + (84 logp)n) (7+ Ll logp) x iter
+ 12 x iter + 3nlogp + Llogp

Newton-Schulz 4 x iter (24 logp)/p x iter (24 logp) x iter
+% + 3nlogp +14—110gp

Table 2: Theoretical costs of the parallel stabilizing algorithms.

6 Experimental Results

All our numerical experiments were performed using Fortran 77 and IEEE double-precision arith-
metic on an 1BM SP2 platform (¢ ~ 2.2 x 1076). We made use of the vendor supplied BLAS
(essl) and LAPACK libraries. The 1BM SP2 architecture consists of 80 sp2 RsS6000 nodes at 120
MHz, and 256 MBytes RAM per processor. Internally, the nodes are connected by a TB3 high
performance switch. The latency is 31 microseconds and the bandwith is about 90 MBytes/sec.

We have developed three parallel stabilizing algorithms which differ in the matrix sign function
iteration employed both for separating the spectrum of A and solving the Lyapunov equation in
the second stage. The following names are used for our algorithms:

— PDGESTNE. Newton iteration for the matrix sign function.

— PDGESTNS. Newton iteration for the matrix sign function followed by Newton-Schulz iteration
once its convergence is guaranteed.

— PDGESTHA. Halley iteration for the matrix sign function.

In the serial case, we compare the performance of these algorithms with the traditional approach,
based on the QR algorithm [17], for dividing the spectrum and solving Lyapunov equations (algo-
rithm DGESTQR). Unfortunately a parallel implementation of this algorithm requires several basic
matrix kernels which are not available in ScaLAPACK.

In our first experiment we generate a random matrix pair (A4, B), with n=m=20 and entries
normally distributed as N(0,1). In Figure 1 we report the distribution of the spectrum of A and
A+ BF with F computed by means of algorithm PDGESTNE. The figure shows that, after applying
the algorithm, the closed-loop system is stable. Actually, the stable eigenvalues of the original
system are not modified while for each unstable eigenvalue, A = a + i € A(4), a > 0, we now
have A = —a + Bi € A(A + BF). No significant differences were found when algorithms DGESTQR,
PDGESTHA, or PDGESTNS were employed.

We now analyze the influence of the number of stable eigenvalues, r, of the state matrix
A in the execution time of the stabilizing algorithms. For this purpose, we generate random
matrix pairs (A4, B) with n=m=>500, r=>50, 150, ..., 450, and entries uniformly distributed in
U[-1,1]. We then employ the serial versions of the stabilizing algorithms to compute the feedback
matrix F'. The execution time of the algorithms is reported in Figure 2. The experiment shows
that the execution time is inversely proportional to the number of stable eigenvalues (the size
of the Lyapunov equation that has to be solved in the second stage depends on the number of
stable/unstable eigenvalues). An important decrease is observed when r varies from 50 to 250,
while as r gets close to n, this reduction becomes negligible.

Next, we evaluate the performance of the parallel stabilizing algorithms based on the matrix
sign function. Following the usual case in control problems, we generate random matrix pairs

8 Peter Benner, Maribel Castillo and Enrique S. Quintana-Orti

T
4 M 4 x
o x
3 o) ° 3 M x
2 * 5 x
1 o 1 *
x o x x
x x
0 o o 0 x x
x x
x o x x
-1 o -1 x
-2t ,(-2 x
-3 o ° -3 * x
o x
at x b x

! ! ! ! ! ! ! ! ! ! ! ! !
-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3

Figure 1: Distribution of A(A) (left) and A(A + BF) (right), with A and B random matrices
(n=m=20), and F computed by means of algorithm PDGESTNE.

(A, B) with a large number of stable eigenvalues (about 99%). The stable and unstable eigenvalues
are uniformly distributed in [-10,0) and (0, 10], respectively. The cost of the parallel stabilizing
algorithms is basically due to the cost of separating the spectrum of the stable and antistable part
of the system as stabilizing the antistable part only requires the resolution of a small Lyapunov
equation (O(n/100)).

In Figure 3 we analyze the execution time of the parallel stabilizing algorithms on 1, 4, 9,
and 16 processors. This figure shows that the best algorithms are those based on the Newton
(PDGESTNE) and Newton-Schulz (PDGESTNS) matrix sign function iterations. Moreover, algorithm
PDGESTNS presents better results when the number of processors is large.

We also analyze the scalability of the parallel stabilizing algorithms. For this purpose, we fix
the dimension of the problem per node to n/p = 1000 and compute the Mflop ratio per node
(millions of flops per second and node) of the algorithms. Figure 4 reports a high scalability of our
parallel algorithms as there is only a slight decrease in the Mflop ratio as the number of processors
is increased.

Finally, we define the approximate speed-up

Syln,p) = L VBB

where M (n, p) is the Mflop ratio per node of an algorithm for solving a problem of size n using p
processors. This speed-up can be computed for large n, and avoids perturbing effects of the cache
size as the local size of the problem remains constant as p is increased. In case we keep n/p fixed
at 1000 we obtain the ”speed-ups” in Table 3. The results show that algorithm PDGESTHA presents
the highest speed-ups. This is due to the greater number of matrix products in this iterative
scheme, which are specially efficient on parallel distributed architectures. However, it should be
noted that for the examples presented above the higher Mflop ratio and speed-up of the Halley
iteration still does not balance its higher computational cost per iteration.

7 Concluding Remarks
We have presented parallel algorithms for the stabilization of large linear control systems. Our

new solvers are based on the matrix sign function and can be employed to stabilize large systems
with dense coefficient matrices.

Parallel Stabilization of Large Linear Control Systems 9

100f T

50 150 250 350 450
Number of stable eigenvalues (r)

ec.)

¢
o

Execution time (s

Figure 2: Execution time of the serial stabilizing algorithms, with A and B random matrices
g

(n=m=500), on the 1BM sP2. Legend: symbols “—x~—” for DGESTQR, “—— x ——" for PDGESTNE,
“...0--” for PDGESTNS, and “—+—" for PDGESTHA.

Algorithm p=4 p=9 p=16
PDGESTNE 3.00 6.43 10.01
PDGESTNS 3.04 6.23 9.76
PDGESTHA 3.46 7.14 11.71

Table 3: Approximate ”speed-ups” (S, (n,p)) of the parallel stabilizing algorithms with n/p=1000.

The matrix sign function approach only requires scalable matrix algebra kernels which are
highly efficient on parallel distributed architectures. The experimental results on an IBM SP2
platform show the performance of our new parallel solvers.

Acknowledgments

We thank the Mathematics and Computer Science Division at Argonne National Laboratory for
the use of the 1BM SP2.

This research was supported by the Acciones-Integradas Hispano-Alemanas program. Maribel
Castillo and Enrique S. Quintana-Orti were partially supported by the CICYT project No. TIC96-
1062-C03-C03.

10 Peter Benner, Maribel Castillo and Enrique S. Quintana-Orti

3
10

10%
S S
(9] (9]
2 L
o o
= £
< <
2 9
5 2 5
810 3
X X
ww w

107

1 000 1000 1 500 2000
Problem size (| Problem size (|
10° 10’}
S S
(9] (9]
2 L
o o
£ E
< <
R Re}
5 5
8 3
i &, 2
10° 10}
1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 3500 4000
Problem size (n) Problem size (n)

Figure 3: Execution time of the parallel stabilizing algorithms, with A and B random matrices
(n=m, r=0.99 n) , on 1 processor (top left), 2 x 2 processors (top right), 3 x 3 processors (bottom
left), and 4 x 4 processors (bottom right) of the 1BM sp2. Legend: symbols “—— x ——" for
PDGESTNE, “ --0---” for PDGESTNS, and “—+—" for PDGESTHA.

Megaflops per node
o
2

0 2 4 6 8 10 12 14 16

Number of nodes

Figure 4: Mflop ratio per node of the parallel stabilizing algorithms on the 1BM SP2 with n/p=1000.
Legend: symbols “—— % ——" for PDGESTNE, “ --0---” for PDGESTNS, and “—+—" for PDGESTHA.

Parallel Stabilization of Large Linear Control Systems 11

References

[1]
[2]

[3]

[4]

[5]

[6]

[9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

E. Anderson et al. LAPACK Users’ Guide. STAM, Philadelphia, PA, second edition, 1994.

E. S. Armstrong. An extension of Bass’ algorithm for stabilizing linear continuous constant
systems. IEEE Trans. Automat. Control, AC-20:153-154, 1975.

M. Arnold. Algorithms and conditioning for eigenvalue assignment. Master’s thesis, Northern
Illinois University, Dept. of Mathematical Sciences, DeKalb, 11, 1993.

Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In
R.F. Sincovec et al, editor, Proceedings of the Sizth SIAM Conference on parallel Processing
for Scientific Computing, 1993.

Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. The spectral
decomposition of nonsymmetric matrices on distributed memory parallel computers. STAM
J. Sci. Comput., 18:1446-1461, 1997.

R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C: Algorithm
432. Comm. ACM, 15:820-826, 1972.

P. Benner and E.S. Quintana-Orti. Solving stable generalized Lyapunov equations with the
matrix sign function. Technical Report SPC 97_23, Fak. f. Mathematik, TU Chemnitz, 09107
Chemnitz, FRG, 1997.

P. Benner, E.S. Quintana-Orti, and G. Quintana-Orti. Rational iterative schemes for the
numerical solution of linear matrix equations. In preparation.

C.H. Bischof and G. Quintana. Computing rank-revealing QR factorizations of dense matrices.
ACM Trans. Math. Software, 1998. To appear.

L.S. Blackford et al. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra
Appl., 85:267-279, 1987.

R. Byers, C. He, and V. Mehrmann. The matrix sign function method and the computation
of invariant subspaces. SIAM J. Matriz Anal. Appl., 18(3):615-632, 1997.

T. Chan. Rank revealing QR factorizations. Linear Algebra Appl., 88/89:67-82, 1987.

L. Dai. Singular Control Systems, volume 118 of Lecture Notes in Control and Inform. Sci.
Springer, New York, NY, 1989.

V. Dragan and A. Halanay. Stabilization of Linear Systems. Birkhduser, Basel, Switzerland,
1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine — A User’s Guide and Tutorial for Network Parallel Computing. MIT Press,
1994.

G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, second edition, 1989.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1994.

C. He and V. Mehrmann. Stabilization of large linear systems. In L. Kulhav4, M. Kérny, and
K. Warwick, editors, Preprints of the European IEEE Workshop CMP’94, Prague, September
1994, pages 91-100, 1994.

12 Peter Benner, Maribel Castillo and Enrique S. Quintana-Orti

[20] G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic
eigenvalue problem: myths and reality. SIAM J. Sci. Comput., to appear.

[21] G. Henry, D. Watkins, and J.J. Dongarra. A parallel implementation of the nonsymmetric
QR algorithm for distributed memory architectures. Technical Report LAPACK Working
Note 121, University of Tennessee at Knoxville, 1997.

[22] V. Hernandez and E.S. Quintana. Stabilizing large control linear systems on multicomputers,
volume 1215 of Lecture Notes in Control and Information Sci. Springer—Verlag, Berlin, 1997.

[23] H. Jarausch. Zur numerischen Untersuchung von parabolischen Differentialgleichungen mit
Hilfe einer adaptiven spektralen Zerlegung. Habilitationsschrift, RWTH Aachen, Aachen
(FRG), 1990.

[24] C. Kenney and A.J. Laub. Rational iterative methods for the matrix sign function. SIAM J.
Matrix Anal. Appl., 12:273-291, 1991.

[25] C. Kenney and A.J. Laub. The matrix sign function. IEEE Trans. Automat. Control,
40(8):1330-1348, 1995.

[26] D. L. Kleinman. An easy way to stabilize a linear constant system. IEEE Trans. Automat.
Control, AC-15:692, 1970.

[27] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press,
Oxford, 1995.

[28] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical
Solution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag,
Heidelberg, July 1991.

[29] V. Mehrmann and H. Xu. An analysis of the pole placement problem. I. The single-input
case. Electr. Trans. Num. Anal., 4:89-105, 1996.

[30] V. Mehrmann and H. Xu. Analysis of the pole placement problem II. The multi-input case.
Electr. Trans. Num. Anal., 5:77-97, 1997.

[31] G. Miminis and C.C. Paige. An algorithm for pole assignment of time invariant linear systems.
Internat. J. Control, 35:341-354, 1982.

[32] G. Quintana, X. Sun, and C.H. Bischof. A Blas-3 version of the QR factorization with column
pivoting. SIAM J. Sci. Comput., 1998. To appear.

[33] J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use
of the sign function. Internat. J. Control, 32:677-687, 1980.

[34] V. Sima. An efficient Schur method to solve the stabilization problem. IEEE Trans. Automat.
Control, AC-26:724-725, 1981.

[35] A. Varga. A Schur method for pole assignment. IEEE Trans. Automat. Control, AC-27:517—
519, 1981.

[36] A. Varga. A multishift Hessenberg method for pole assignment of single-input systems. IEEE
Trans. Automat. Control, AC-41(12), 1996.

Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte
— Vertrieb durch den Autor —

Reports Stand: 2. September 1998

98-01. Peter Benner, Heike Faflbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

