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Abstract

We present a coupled simulation–optimization procedure for the improvement
of the laser welding process. This is achieved by introducing a functional to
measure the quality of a weld and later performing a mathematical optimization
of it. The welding process to be included in the functional issimulated using an
adaptive finite element method for the thermal and mechanical subproblems. The
functional is optimized using a constrained mathematical optimization method
and the optimized parameters giving some desired properties of the welds are
found.

In this paper, the results obtained for two different optimization goals are pre-
sented, namely a general test problem in which all good properties of the welds
are assumed to have the same importance, and another in whicha higher impor-
tance is given to the residual stress and the full penetration of the weld.

Key words: welding, laser welding
PACS:44.05.+e, 46.35.+z, 81.20.Vj

1. Introduction

The precise calibration of a process represents one of the most common prac-
tical problems in industrial applications, and thus the search for adequate param-
eters is an important task before a process can be implemented in the production
lines. The complexity of such calibration depends stronglyon the process com-
plexity and is some times done by large and expensive experimental tests.
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For the welding community, the main interest is to analyze the properties of
the welded pieces, mainly observing the seam construction and the possible me-
chanical distortions that the pieces could contain, i.e. evaluating the weld seam
geometry and the residual stresses and deformation.

The laser welding process contains a complex relation that traduces some ba-
sic process parameters like laser intensity and process velocity, into the resulting
welded products. A calibration of a process using a slightlydifferent material
or laser array requires in many cases an expensive (and some times unavailable)
working cycle in which sample welds are produced, measured for resulting dis-
tortions and/or stresses, and then cut for measuring the weld seam dimensions
and the quality of the weld.

Although this calibration cycle is usually guided by already existent know-
how for similar processes, the calibration remains expensive and is only able to
find, among the performed process trials, the one that results in the better outputs.

The driving idea in this work is to embed the laser welding process inside a
functional that can measure the quality of a welded product.This will allow the
use of the existent mathematical optimization theories andalgorithms to find the
optimal parameters producing the best welds.

Some previous works in which an optimization in the mathematical sense has
been applied to the welding problem already exist. For example, the works in
[1, 2] are based in quasi-stationary analytical solutions for the temperature field
and a simple model is used to predict hot-cracks. This is later included in an
optimization procedure to eliminate the appearance of hot-cracks in the welded
pieces.

The computational welds we consider have a higher level of complexity and
the intended optimization has different goals, as will be shown in the model de-
scription in the forthcoming Section 2. The optimization setting and method are
explained in Section 3, and Sections 4 and 5 present two different optimization
results, showing the flexibility of the implemented ideas for the quality of the
welds. Finally, section 6 presents the final remarks and outlook of this work.

2. Mathematical Model and Simulation

We consider here the laser welding process as in [3, 4], wherethe complete
mathematical model and their calibration with experimental results were pre-
sented. All the simulated processes make are Adaptive FEM implementations
that make use of the open source toolbox ALBERTA ([5]).
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2.1. Thermal model
The material pieces are described by the domainΩ (assuming that there is no

gap between them) and a modified heat equation is solved for the temperatureθ,
it is

∂θ

∂t
− ∂
∂x

(

κ(θ)
∂θ

∂x

)

= 0 in Ω̃ × (0,T), (1)

κ(θ)
∂θ

∂n
= δair(θ − θ0) on∂Ω × (0,T), (2)

θ = θ0 in Ω̃ × {0}, (3)

θ = θv in Ω\Ω̃, (4)

whereκ(θ) is the temperature dependent heat diffusivity, δair is the heat trans-
fer coefficient from the material pieces to the surrounding air, and the room and
evaporation temperature are denoted byθ0 andθv, respectively. Further, the sub-
domainΩ\Ω̄ is determined by the vapor channel or keyhole shape obtainedwith
the models in [6, 7].

In [3, 8], the use of this modified equation has been shown to give good results
in accordance with experiments.

Figure 1 shows the specific geometry used for the simulations, with a total
dimensions of 100mm× 65mm× 3mm. The beam is assumed to be moved
along the middle line of the plates, producing a keyhole moving in the interval
x ∈ [15mm,85mm].

xy

z
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m(15,0,0)

(85,0,0)

Figure 1: Material piece geometry with start and end points for the butt-weld.
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Figure 2 shows a simulated temperature field for the specifiedgeometry, where
the temperatures above the melting temperature of 650◦C are colored in red and
it is possible to observe the characteristic shape of the temperature distribution
for a welding process.

Cuts in thex-direction
  

25 181 338 493 650 ◦C

Figure 2: Temperature field att = 0.88 s. Temperatures above the melting point are omitted.

This simulation result corresponds to a value of laser powerof 3000W, a
welding velocity of 75mm/s, and was performed using the set of temperature-
dependent material properties for the aluminum alloy AA6082-T6 as in the ap-
pendix A of [3].

More extended simulation thermal results can be found in [3,4, 8], where also
several comparisons with experimental measurements in thewelds are presented.

2.2. Mechanical model

Based in the temperature fields, the corresponding elasto–plastic problem is
solved using the radial return mapping as in [3]. The algorithm used performs an
update of the deformation fieldu(x), the strain tensorsε(x) and the stress tensors
σ(x), making use of a predictor–corrector procedure to give stress tensors that
are inside the set of allowable stresses.

The use of a model which includes plastic deformations allows the calcula-
tion of the residual state of the piece, making possible the measurement of the
distortion in the pieces after the material has cooled down.This residual state
is a very important ingredient for the optimization aims, asthe final stresses and
distortions are an important part on the quality of a welded product.

Within this work, the mechanical calculations assume a flow rule with
isotropic linear hardening (see e.g. [9, 10]) and von Mises yield criterion (as in
[3, 4]).
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The core of the plastic solver is the predictor-corrector step performed in each
quadrature point of the FEM simulation at each time-step andconsists on the
evaluation of the stress using the linear elasticity model as predictor and, if nec-
essary, a correction to avoid the current stress to be outside the level which can
be loaded into the material. For more details, see the general algorithms in [9] or
the specific algorithm used in [4].

Figure 3: Final deformation of the butt welded piece. Exaggerated 30 times and measured after
300 seconds of cooling have passed since the welding procedure has finished.

Figure 3 shows the result for the final distortion or deformation of the welded
plates. The deformation shown here corresponds to the cold material piece and
makes possible to observe the typical deformation obtainedin practice for such
a welded piece ([11, 12]).

This shape of the welded piece is created due to the different thermal distribu-
tions obtained for different vertical layers on the pieces, causing that the thermal
effects differ and finally the internal stresses cause this bending/folding effect in
the plates.

3. Optimization method and settings

3.1. Functional for the weld quality

For a real (or simulated) process to be optimized, a crucial point is the selec-
tion of the objective function, as it must be the ‘measure’ ofany element or the
possible process results. In particular, for the laser welding application, the func-
tion F(x) should be understood as a measure ofqualityor goodnessof the welds,
while the argumentx must be a vector holding the possible inputs to create one
of them, either by real welding or, as in our case, by simulating it numerically.

First of all, we set our problem as the mathematical optimization problem

min
x∈Rn

F(x), l ≤ x ≤ u, (5)
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where the inequalities are assumed to work componentwise and fulfill l i < ui ∀i.
In this work we assume that the functional has the form

F(x) =
m

∑

j=1

α j

2

∥

∥

∥ f j(x)
∥

∥

∥

2
, (6)

wherex = (x1, x2, . . . , xn)
T is the vector including then input parameters for

the objective function.
Considering functions of this type, we can write an equivalent form for F as

F(x) =
1
2

f (x)T f (x), (7)

with

f (x) =



































√
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∈ R
m. (8)

Using the representation (7), the functional’s gradient is

∇F(x) = JT(x) f (x) ∈ R
n, (9)

whereJf (x) ∈ R
m×n denotes the Jacobian matrix of the vectorf (x). This simple

form of ∇F makes the quadratic function (7) a very convenient setting for prac-
tical optimization tasks. Furthermore, in problems of parameter identification
type with well established desired values, this kind of functions arise in a natural
way.

What is not trivial to show in an applied problem, is the sufficient regularity of
the functionalF, as it normally involves many interrelations among the physical
parameters.

In the case of laser welding, the regularity of the functional can not be easily
established, as it depends on a complete chain of interrelations, going from the
energy impigned into the material through the keyhole formation and its use as
moving heat source, to the retrieval of the temperature fields. This, together
with the fact that all physical parameters present regularity problems around the
melting temperature, makes very difficult to obtain theoretical results about the
regularity ofF. A further discussion on this topic can be found in [3].

The idea now is to construct a function as the one in (7) to represent the welds
in a way that the good and bad states of certain properties canbe quantitatively
represented, making use of the most important features of the process.
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Due to the complexity of the laser welding process, it is impossible in practice
to include a large amount of parameters for an optimization procedure. For this
reason, we only consider the main inputs of the process as arguments of the
objective function, namely the laser power impinged to the material (P) and the
process velocity (v). Furthermore, we also assume that the thermal/mechanical
initial and boundary conditions are known and equal for all welds.

Apart from the selection of the inputs, the objective function must measure
the goodness of different welds, considering the simulated versions of a real
weld evaluation.

The features that we consider to evaluate a real or simulatedweld are the
economy and efficiency of the process, the residual deformations in the pieces,
and the shape of the weld seam. By economy of the process, we understand the
use of laser power in a low range. Inside the process efficiency, we include the
process velocity and the use of only the necessary amount of laser beam power.

The weld features to be observed contain complex interrelations, and the im-
provement on some of them could lead either to improvements or degradations
in the others. For example, the use of lower laser power and welding velocity
produce lower deformations, but this also produces very wide weld seams, which
is traduced in lack of strength of the final piece over a largervolume. Some other
examples of this kind of interrelations can be found in [3].

Our selection of input parameters for the welds can be extended in a straight-
forward manner. The only big disadvantage is the direct increase in the com-
putational effort to evaluate every iteration of the search, due to the dimension
growth of the Jacobian, as this is approximated using a finitedifferences scheme.

We shall consider a functional of the form (7), with the vector of laser power
and velocity as inputs

x =

(

P
v

)

(10)

and the components off (x) as

f1(P, v) =
√
α1 (P− PD) , (11)

f2(P, v) =
√
α2 (v− vD) , (12)

f3(P, v) =
√
α3 (w− wD) , (13)

f4(P, v) =
√
α4 (h− hD) , (14)

f5(P, v) =
√
α5 (s) , (15)

wherew, h, s denote the width of the weld seam, its height, and the measureof
residual stress in the material, respectively, and the subscript D denotesdesired
valuesof the same variables.
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Figure 4: Stable domain for the weld evaluation. The evaluation region is defined as the points
with x ∈ [a, b].

The values ofw, h and s are determined only in a subdomain of the welded
piece in order to avoid the unstable initial and ending points of the process (see
[3] for more details). The subdomain depicted in Figure 4 wasused in our algo-
rithms witha = 30mm andb = 70mm.

Averaging all the melting pools dimensions inside the stable subdomain gives
the values ofw and h. The values describes the residual deformation in the
welded piece and in our algorithms can be selected as the equivalent stress or as
the out-of-plane angle.

From this setting, it is clear that the practical problem is bounded by the prac-
tical values of the inputs, as

0 < Pmin ≤ P ≤ Pmax< ∞,
0 < vmin ≤ v ≤ vmax< ∞.

(16)

and the practical process indicates directly our desired values for this parameters,
it is PD = Pmin andvD = vmax.

The desired values for the weld seam geometry are positive numbers and the
desired height can be naturally considered as the material thickness.

The stress measurement is presented without desired value in equation (15)
because the best possible solution would be a weld presenting no residual stresses
or deformations.1

1Although this not possible in practice, the use of zero as desired value does not represent
any trouble for the mathematical optimization.
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The measurement of stress in (15) can be considered as a norm of the stress
over the whole piece. Normally, equivalent stresses are considered for this mea-
sure. However, there can be other ways to include this feature in the functional,
as the ones presented in [3].

3.2. Constrained optimization method
Within this work, we solve the constrained optimization problem in (5) by the

interior trust region method in [13, 14] which is based in theprevious works
[15, 16, 17, 18] and corresponds the base of the constrained optimization used in
[19].

The method presented in [15, 16, 17, 18] is mainly based on an affine scaling
of the problem that forces the iterations to belong to the interior of the bounds.
This scaling is performed by defining the vector functionv : R

n → R
n defined

componentwise as

vi(x) =































xi − ui if gi < 0 and ui < ∞,
xi − l i if gi ≥ 0 and l i > ∞,
−1 if gi < 0 and ui = ∞,

1 if gi ≥ 0 and l i = ∞.

(17)

and the scaling matrixD for an iteration pointx(k) as

D(x(k)) = diag(
∣

∣

∣v(x(k)
∣

∣

∣

− 1
2 ). (18)

With this definitions, the first order optimality conditionscan be written as the
nonlinear system of equations

D(x)−2g(x) = 0. (19)

The further development of this method produced the STIR method in [13,
14], which maintains all the good convergence properties and features shown in
[17, 18], but is also able to deal with large scale problems. The base to handle
with the large scale problems is a subspace idea using a preconditioned conjugate
gradient procedure. For a short overview of the methods development and their
main ideas, the reader is referred to [3]. The main features of the STIR method
are:

• use of the affine scaling to only allow iterations inside the bounds;

• adaptive trust region size, considering the distance to thebounds, the de-
crease on the function, and the good approximation of a quadratic submodel
to the original functional; and
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• each iteration is taken as the best solution between the subspace-based solu-
tion from [14], the reflected-path solution from [16] and thesolution along
the negative gradient direction.
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Figure 5: Iterative solution search using different starting points for a box constrained example
with a reflective Newton method.

As an example, Figure 5 shows the performance of the method for the mini-
mization of the function

F

(

x1

x2

)

=
1
6

(

‖2 sin(x1x2)‖2 + ‖(x1 − 0.6)‖2 + ‖(x2 − 0.4)‖2
)

(20)

with the bounds 0.5 ≤ x1 ≤ 2 and−1 ≤ x2 ≤ 1 and with the starting point
x(0) = (1.8,−0.9)T .

For this test example, it is worth to notice from the isolineshow the function
forces the first iteration,x(1), to point outside the restricted domain, but the lower
bound forx2 is never crossed. Later, the step to obtainx(2) is much larger than the
previous one, indicating that the trust region size was increased in this iteration.
Finally, the convergence towards a minimum can be observed,taking smaller
steps until the minimum step-tolerance is reached.

The STIR method was implemented as a C-library, using the algorithms and
tolerances as described in [3]. Further, the simulation presented in Section 2 was
used three times for each iteration, due to the necessity to evaluate the current
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point x(i) =
(

P(i), v(i)
)

and two more neighboring points for the evaluation of the

gradient, i.e.
(

P(i) + ∆P, v(i)
)

and
(

P(i), v(i) + ∆v
)

.
In the next sections, we assume that the simulated welding process from Sec-

tion 2 has been already calibrated (as in [4]) and do not distinguish between a
weld and its correspondent simulation. For simplicity, thenext sections omit the
use of units, unless they are needed for the analysis.

4. Optimization without special weighting

This section presents a first optimization procedure in which we assume that
all the factors in the subfunctionsf1, . . . , f4 have the same importance, while the
mechanical result inf5 is totally neglected.

The driving idea of every factor in the objective function having the same im-
portance may not be of high practical interest and should notbe understood as
a proposal for real applications. It only tries to give an insight of the general
optimization runs over a rather simple setting that might not be easy to under-
stand on a more realistic optimization. The mechanical result is neglected in this
first optimization to avoid the computations of this submodel, and to allow the
optimization to be done using pure thermal simulations.

Recalling the minimization setting for the functionalF as in equation (7),
with the sufunctionals given as in equations (11)–(15), theoptimization problem
is fully determined by the desired values, the weights for each component ofF
and the bounds to which the inputs of the objective function must be restricted.

P v w h
Desired value 2000 140 2.5 −3.0
Weightα j 1000 1000 100 100

Table 1: Desired values and corresponding weights.

The desired values and weights for the simulations in this section are shown
in Table 1, and the bounded domain is defined trough the practical limits in the
laser power and the usual process velocities as

1000≤ P ≤ 6000, (21)

40≤ v ≤ 150. (22)

The weightsα j were selected considering the typical values obtained fromthe
simulations, in a way that the multiplication of the terms ofthe formα j‖ f j‖2/2
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OPT-Ia OPT-Ib OPT-Ic OPT-Id OPT-Ie
P(0) 1050 2000 5400 5500 5900
v(0) 50 60 42 80 135

Table 2: Different starting points for the optimization procedure.

would lead to values of the same order. This weighting idea mimics a process in
which all the four sub-functionals have the same importanceand the correspond-
ing optimization search will try to improve every factor in the same manner.

Although the weights for the laser power and velocity components seem to
be very high when compared to the other weights, it must be said that these
variables correspond to the inputs of the objective function, and their values are
scaled to belong to the unit square (see [3] for details). Thesame scaling is done
for the corresponding desired values.

The optimization runs are performed using the implementation of Algorithm
9 in [3]. For all the optimization runs, the main constants and stoping criteria for
the implementations were taken as:

Iterations
Maximum number of iterations: 20
Maximum function evaluations: 60

Stoping criteria
Minimum step size: 10−3

Minimum function decrease: 10−4

Allowed distance to bounds: 10−4

In order to analyze the performance of the optimization search, we started the
optimization from the five initial points in Table 2, each of them with the label
“OPT-I” and an extra lower case letter. These points belong to different regions
of the admissible domain and will give an idea of the functional shape and the
existence of a minimum. Figure 6 shows the different search paths obtained
with these points, leading to final results in the same region. The values of the
objective function at the starting and final points are presented in Table 3, where
also the values of the resulting weld seam are presented.

The search stops in all cases due to non sufficient decrease of the objective
function along the search directions and, at the same time, the objective function
values at the different final values (Fend) are rather similar.

As all the search directions point at some time to the interior of the non reached
zone, the only explanation for this mismatching could be that the objective func-
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Figure 6: Optimization search paths for different starting points.

tion has a flat valley in the region inside the final iterations. Figure 7 presents an
interpolation of all computed values of the objective functions through the five
optimization procedures. It is important to mention that, among the considered
points for the interpolation, there are many of them belonging to the interior of
the apparent flat valley. These points are the result of the simulations done dur-
ing the finite difference approximation to the Jacobian of the function at each
iteration point.

From the results in Table 3, the iteration number does not necessarily fit with
the iterations which can be observed in the search path of Figure 6. There can
be missing iteration points in the paths because some of the iterations could
have been rejected during the search process, due to bad approximation of te
functional through the trust region submodel (see e.g. [20,13]).

The rejection of an iteration as part of the function-decreasing path is then
followed by a reduction of the trust region size at the last decreasing point, and
a restart of the search from this last decreasing point. The change in the trust
region size corresponds to the reduction or enlargement indicated in Algorithm
10 in [3].

As an example for the accepted and rejected points, Table 4 contains the com-
plete iteration points for the OPT-Id, together with their objective function values

13



OPT-Ia OPT-Ib OPT-Ic OPT-Id OPT-Ie
F0 1035.69 695.40 1673.12 787.65 733.24
Fend 492.13 453.97 417.80 438.93 384.39
Pend 1999.99 2629.02 3471.84 3931.81 3871.10
vend 109.36 83.17 90.41 104.18 124.29
wend 1.706 2.113 2.113 1.977 1.909
hend −1.125 −1.750 −1.938 −1.750 −1.625
Iterations 14 8 14 9 10
Simulations 42 24 42 27 30

Table 3: Initial an final values of the objective functions, and values of the final parameters and
their corresponding results of weld seam geometries.

Iteration P v F(P, v) Accepted Trust region size
x0 5500.000 80.000 787.646 X initial
x1 4909.516 87.344 582.977 X maintained
x2 3931.222 104.162 440.725 X maintained
x3 4318.391 121.617 466.872 × reduced
x4 4062.835 108.056 445.677 × reduced
x5 3967.422 105.077 446.761 × reduced
x6 3940.494 104.386 440.836 × reduced
x7 3933.554 104.218 440.755 × reduced
x8 3931.806 104.176 438.934 X maintained

Table 4: Iterations for the optimization OPT-Id, with valueof the objective function.

and the change they produce in the trust region size. Additionally, the points in
Figure 8 show the accepted points (circled) and the rejectedpoints (crossed) for
the same optimization run.

Although the observable circled points are only three, it isimportant to notice
that they correspond to the iterationsx0, x1, x2 andx8, but the last two of them
lie in very close locations and are undistinguishable in theplot. In this plot, it can
be observed how the iterative search overestimates the goodness of the approxi-
mation after findingx2, and starts a search over a large trust region, deriving in
x3.

At x3 the method finds the minimum on the approximated quadratic model,
but it results in an increase of the value of the original objective function and the
point has to be rejected. After this, the pointsx4, x5, x6 andx7 present the same
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Figure 7: Interpolated objective function.

problematic and are rejected as well, deriving in a reduction by a factor of 0.25,
which is predefined in the implementation of Algorithm 9 from[3].

Finally, when the last reduction is done, the pointx8 slightly reduces the ob-
jective function, but the size of the step is of 0.584 W and 0.014 mm/s. After
being scaled to the unit square, the size of this step falls below 10−3, which is the
minimum step size tolerance given to the program. In a practical sense, it can
also be said that this step does not represent any significantsize and the iterations
x2 andx8 can be seen as equivalent.

Considering again the five optimizations OPT-Ia through OPT-Ie, it can be
mentioned that each of them produces an approximation to theflat region from
a different side, and they are all optimal in a different sense. It is observable, for
example, how OPT-Ia improves very well the laser power value(P), but does not
care about the bad values for the weld seam geometry. In the other hand, OPT-Ic
results in the best obtained weld seam geometry, but the laser power and velocity
of the process are far from their desired values.

In the following section, we present an optimization with more similarity to
the real welding processes, and where the different parts in the functional have
specific importance and the large flat valleys in the objective function does not
appear.
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Figure 8: Accepted (◦) and rejected (×) points for the OPT-Id.

5. Optimization of residual stress and welding penetration

In this section we also consider the mechanical effects occurring in the mate-
rial and we focus our optimization goals in the small residual stress and the full
penetration of the weld.

For the measurement of the stress we use only the stable subdomain with x ∈
[30, 70], as in Figure 4. This selection is based on the known stable behavior of
the stress in the middle of the weld, being not influenced by either the extremes of
the weld seam, or the longitudinal boundaries. Inside this domain, the equivalent
stress is smooth and maintain its shape along the welding direction. The other
dimensions are completely included in the evaluation, it isy ∈ [−65, 65] and
z ∈ [−3, 0] and we use theL2 norm of the equivalent stress divided by the volume
of the resulting subdomain.

In order to maintain the search focused, we search for our optimal weld with a
very realistic idea in practice. For this, we require that the welded piece is fully
penetrated, and the residual mechanical effects on it must be as small as possible.
Furthermore, from these two main goals, the full penetration of the weld should
be put in the first place.

We also consider the energy consumption and the process velocity in the op-
timization, but with a much smaller importance level. The values of the weld
seam width are not considered at all in this optimization. With this, the desired
values and corresponding weights are selected as in Table 5
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P v h ‖σeq‖
Desired value 1000 150 −3.0 0
Weightα j 100 100 5000 3000

Table 5: Desired values and corresponding weights.

Using this weighting for the weld evaluations, the optimization search corre-
sponds to an optimization process very close to what is needed in the practical
welding community, as the search tries to find the parametersfor a fully welded
product with small distorted areas, and without totally forgetting the low energy
consumption and the time used to create the welds.

With the weights selected as in Table 5 and the similar valuesfor the optimiza-
tion in the previous section, it can be observed that the value of the penetration
subfunctional is now considered to be 500 times more important than the laser
power and the velocity, and the residual stress norm is also considered 300 times
as important as these values. Additionally, neglecting anyimportance of the
weld seam width does not represent a big problem, as we assumed the perfect
attachment of the two plates, leaving no gap between the two pieces.

The points of the search are presented in Table 6, where also the values of the
objective function and the obtained measure of stress are presented.

Iteration P v h ‖σeq‖ F(x) Accepted
0 5590.00 80.00 -3.04 0.677 593.31 X

1 5614.60 93.15 -3.00 0.618 493.50 X

2 4451.11 107.15 -2.19 0.576 3707.36 ×
3 5315.99 96.47 -3.00 0.617 479.12 X

4 4967.59 96.52 -2.67 0.621 1008.60 ×
5 5228.92 96.51 -3.00 0.619 477.80 X

6 5142.74 96.56 -3.00 0.616 471.52 X

7 4972.08 96.59 -2.67 0.624 1014.55 ×
8 5100.13 96.59 -2.67 0.624 1018.20 ×
9 5132.21 96.58 -3.00 0.612 466.41 X

10 5111.02 96.62 -2.67 0.626 1015.01 ×
11 5127.11 96.61 -2.67 0.623 1015.64 ×
12 5131.06 96.60 -3.00 0.609 463.22 X

Table 6: Iterations for the full penetration and low residuals stress optimization.
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It is necessary to mention that for cases in which the vertical keyhole dimen-
sion is higher than the material thickness, this number is used as value forh. With
this, the optimization would also find points (P, v) for which only the necessary
energy expense is done.

In Table 6 can be observed how a common feature of the rejectedpoints is that
the penetration of the weld is not complete. It is interesting that the pointx2 has
the smallest equivalent stress but it is rejected due to its small penetration value.

The accepted points of the search are shown in Figure 9, wherea zoom of the
admissible domain was chosen in order to have a closer impression of the search
performed.
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Figure 9: Search for the optimal values giving full penetration and the minimal stress affected
zone. Only a subdomain of the admissible set is shown.

Making a short summary of this optimization run, it can be mentioned that the
laser power was improved by 459 W (8%), the velocity is improved by 16.6 mm/s
(21%), the final weld is full penetrated, and the norm of the equivalent stress in
the selected subregion is decreased by 10%.

In words, the welds using the process parameters found by theoptimization
search will contain less residual stress (and thus less distortion) while staying
fully welded, and at the same time the process will be more economical and will
be produced considerably faster.
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6. Discussion and future research

Using our previous works described in [3, 4], we have presented here a suc-
cessful optimization procedure for the laser welding process. The optimizations
presented here, together with other ones in [3, 8] show the flexibility of the
method used here and its simple use for diverse optimizationgoals.

Particularly, the optimization procedure in Section 5 has shown that the imple-
mented procedures are suitable to work in realistic optimization tasks, not only
achieving the desired features in the welded products, but also improving the
efficiency and economy of their production.

It is clear that the simulation and optimization loops including the mechanical
computations are not as fast as the thermal ones. However, the virtual process
can be done without the necessity of having a real workshop tocreate the welds,
by simply using a PC to compute the simulations and the optimal values. With a
correctly calibrated simulation system, the simulation-optimization loop is much
more convenient than any systematic search using real welds, as its costs are
negligible when compared to the possible analysis costs over real welded pieces.

Although the STIR method from Section 3 gives good results and other authors
have proved its comparable performance to other methods based on active set
type, the optimization of welding has only been done with this method, and the
performance of other optimization procedures is unknown until now. This is an
open possibility that can be followed in our future research.

Finally, it is important to remember that the optimization method here pre-
sented is general and the use of only two input variables is a special case. Ob-
jective functions including more input variables or other factors to evaluate the
welds are also supported by the implemented optimization procedures.

The results of this work are very promising and indicate thatthe procedure
could also work in a real industrial application, or in the optimization of other
complex physical models. Additionally, the implemented optimization can be
slightly modified to work with similar problems, in which a simulation tool al-
ready exists.

The use of extended optimization functionals can also be considered for fu-
ture research. Some first extension and modification ideas have been already
proposed in [3], but many others can be also considered.
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