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LENGTH SCALES IN THE CONCRETE CARBONATION
PROCESS AND WATER BARRIER EFFECT: A MATCHED

ASYMPTOTICS APPROACH

ADRIAN MUNTEAN AND MICHAEL BÖHM

Abstract. The reaction CO2 + Ca(OH)2 → H2O + CaCO3 takes place in
unsaturated porous concrete-based materials with separated reactants, where
CO2 and H2O are diffusing and Ca(OH)2 can be assumed as immobile. The
process (called carbonation) plays an important role in the service life of
concrete-based structures. Our aims are threefold:

(1) We study via a matched-asymptotics approach the occurrence of two
distinct length scales in the carbonation process. These scales are arising due
to the strong competition between reaction and diffusion effects. We show that
for sufficiently large times τ the width of the carbonated region is proportional

to
√

τ , while the width of the reaction front is proportional to τ
p−1

2(p+1) for
carbonation-reaction rates with a power law structure like k[CO2]p[Ca(OH)]q2,
where k > 0 and p, q > 1.

(2) We emphasize the occurrence of a water barrier in the reaction zone
which may hinder the penetration of CO2 by locally filling with water air
parts of the pores. This non-linear effect may be one of the causes why a
purely linear extrapolation of accelerated carbonation test results to natural
carbonation settings is (even theoretically) not reasonable.

(3) We compare the asymptotic penetration law, which we obtain for the
position of the reaction front, against measured penetration depths from [5].

The novelty consists in the fact that the factor multiplying
√

t is now iden-
tified asymptotically by solving a non-linear system of ordinary differential
equations, and hence, no fitting arguments are necessary to estimate its size.
Our law is an alternative to the asymptotic

√
t expression of the carbonation-

front position obtained by Papadakis, Vayenas and Fardis in [26].
Key words: reaction-diffusion process, concrete carbonation, separation of

length scales, water barrier, asymptotic penetration law, matched asymptotics

1. Introduction

The reaction-diffusion process studied in this note concerns the following sce-
nario: The mechanism

(1.1) CO2(g → aq) + Ca(OH)2(s → aq) → H2O + CaCO3(aq → s)

takes place in unsaturated porous concrete-based materials, where the reactants
are assumed to be initially separated. The physicochemical process associated with
(1.1) can be described as follows: CO2 from the atmosphere penetrates the concrete
material via the air parts of the pores and get absorbed in pore water. Once
arrived in pore water, aqueous CO2 moves to the places where aqueous Ca(OH)2
is available. The latter species comes from the pore matrix via dissolution. The
reactants meet and react cf. (1.1) to produce moisture (H2O) and carbonates
(CaCO3). The process is called carbonation and plays an important role in the
service life of concrete-based structures. For more details on concrete carbonation
and its relevance with respect to corrosion and durability issues of concrete-based
structures, we refer the reader to the surveys by Kropp [14] and Chaussadent [7] as
well as to the references cited therein.

1



2 ADRIAN MUNTEAN AND MICHAEL BÖHM

In this paper, we rely on a conceptually simple isoline model to investigate a
couple of asymptotic features of the carbonation process. The particularities of
this model, which has been presented in [6] and is reformulated with minor mod-
ifications in section 2, are the following: The reactant CO2 and the product H2O
are allowed to diffuse, while the the other reactant Ca(OH)2 is static. Further-
more, we assume that the total porosity of the concrete stays constant. Despite its
apparent simplicity, the model encompasses the main features of the carbonation
process. More elaborate models were proposed by several authors, see for instance
[13, 27, 32, 21]. In the sequel, we focus on the following issues:

(1) We study the asymptotic separation of length scales during carbonation
arisen due to the strong competition between reaction and diffusion effects.
We show that for sufficiently large times τ the width of the carbonated
region is proportional to

√
τ , while the width of the reaction front is pro-

portional to τ
p−1

2(p+1) for carbonation-reaction rates with a power law struc-
ture like k[CO2]p[Ca(OH)]q2, where k > 0 and p, q > 1. The same issue
was touched, for instance, in [28, 8, 4, 15, 36] from both theoretical and
experimental viewpoints.

(2) We emphasize the occurrence of a water barrier in the reaction zone which,
under certain circumstances, can hinder the penetration of CO2 by locally
filling with water the air parts of the pores. This non-linear effect may
be one of the causes why a purely linear extrapolation of accelerated car-
bonation test results to natural carbonation settings is not possible. Our
motivation for this subject was explained in detail in [25]. At that point,
we have listed a set of non-linear issues which can hinder any reasonable a
priori quantitative extrapolation in correct ranges.

(3) We compare the asymptotic penetration law, which we obtain for the de-
scription of the position of the reaction front, against measured penetra-
tion depths extracted from Bunte’s PhD thesis [5]. The novelty consists in
the fact that the factor multiplying

√
t is now identified asymptotically by

solving a non-linear system of ordinary differential equations, and hence,
no fitting arguments are necessary to estimate its size. Our law may be
viewed as another asymptotic alternative to the asymptotic

√
t expression

of the reaction-front position in [26]. In contrast to [26], we do not shrink
the reaction layer to the corresponding free boundary. We rather prefer to
keep the geometry of the layer as it is and estimate its width asymptotically
taking into account the structure of the reaction kinetics.

Our motivation to apply formal asymptotic methods in order to to tackle subjects
like those stated in (1)-(3) basically stems from the pioneering approach to car-
bonation by Papadakis, Vayenas and Fardis in [26]. At the modeling level, we are
influenced by the asymptotic investigation of Ca(OH)2 leaching in concrete done
by Mainguy in his PhD thesis [18] and then applied in [19] by Mainguy and Coussy
to the same problem. Similar ideas as in [18] were employed in the context of car-
bonation by Thiéry in his PhD thesis [35]. At the technical level, since we employ
matched asymptotics (see [2, 29, 16, 34], e.g., for details), our approach is different.
The mathematical core of this contribution follows partly the lines of the paper by
Bazant and Stone [4]. We apply some of their ideas to the carbonation problem.
Nevertheless, the introduction of an additional partial differential equation to de-
scribe the diffusive behavior of the moisture produced by reaction (1.1), and also,
our particular choice of scaling parameters used to non-dimensionalize the model
equations lead us away from the basic framework treated in [4]. Since in the inte-
rior of the reaction layer the equation of moisture formally decouples from those of
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the reactants, many of the working ideas employed in [4] become applicable to our
setting.

The paper is organized as follows:
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2. Carbonation model

We consider the carbonation model as proposed by Cahyadi and Uomoto in [6].
One of the particularities of their formulation is that the molecules of Ca(OH)2
and CaCO3 are supposed to be immobile (non-diffusing), while those of CO2 and
of moisture may diffuse. Moreover, we consider that production and precipitation
of CaCO3 are equal and do not significantly affect the remaining mechanisms of
the reaction-diffusion problem in question.

Denote by u, v and w the dimensionless concentration of CO2(aq), Ca(OH)2(aq)
and moisture produced by the reaction

(2.1) CO2 + Ca(OH)2 → H2O + CaCO3.

Note that there are a few conceptual differences between (1.1) and (2.1). Particu-
larly, in the sequel we do not distinguish between the water and air phases. The
main reason which is behind such a treatment is that both the transfer of CO2

from the air to water phase (and vice versa) and the dissolution of Ca(OH)2 from
the solid matrix to water phase (and vice versa) may be assumed to be in local
equilibrium. Let Ω :=]−∞,+∞[ and S :=]0,∞[ be the space and time domain of

Figure 1. Typical behavior of active concentrations u, v and w.

interest. Our choice of Ω underlines the fact that we do not account for boundary
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effects. Following [26, 23], the carbonation problem may be stated in dimensionless
form as

(2.2) u,τ − δuu,zz = −Φ2f(u, v) equation for CO2

(2.3) βvv,τ = −Φ2f(u, v) equation for CaOH2

(2.4) βww,τ − δww,zz = +Φ2f(u, v) equation for H2O

(2.5) u(z, 0) = H(z), v(z, 0) = H(−z) and w(z, 0) = 0 for all z ∈ Ω,

(2.6) u(∞, τ) = 1 and w(∞, τ) = ŵ, u(−∞, τ) = 0, w(−∞, τ) = ŵ for all τ ∈ S.

We are looking for left-traveling wave fronts of CO2 and Ca(OH)2 concentrations
and for a pulse of humidity, see Fig. 1. These are solutions defined on the entire
real line (see chapter 3 in [17], e.g.) and represent a mathematical ansatz of wave
concentration profiles in the laboratory or in situ experiment. By (2.6), the wave of
CO2 is a compression (contamination) wave, while that of Ca(OH)2 is a rarefaction
(remediation) one.

The parameters δu, δw, βv, βw and Φ2 are positive quantities which correspond-
ingly represent the effective CO2 and humidity diffusivities, impact capacity factors,
and the Thiele modulus, see section 8 for typical values. The term

(2.7) f(u, v) := upvq

denotes the production by carbonation reaction. Note that the mass-balance equa-
tions are coupled by means of f . In (2.5), H(·) is the Heaviside function which is
defined by

(2.8) H(ζ) =
{

0, if ζ < 0,
1, if ζ ≥ 0.

For simplicity, we assume in (2.6) that ŵ = 0. Therefore, w comprises only the
concentration of water produced by (1.1). Furthermore, since the species whose
concentration is denoted by v is not allowed to diffuse, it cannot leave its initial
support, and hence, v(x, t) = 0 for all x > 0 and t ≥ 0. The reactant u diffuses
into −x direction toward the place hosting the static reactant v. Arguing as in
[2, 4], if an asymptotic similarity solution exist, then it must involve a moving front
which diffuses into the material. See section 3 and [3, 26, 4, 15], e.g., for discussions
concerning why such a front is expected to exist. We denote by σ(τ) its position at
the moment τ > 0. For fixing the ideas, let σ(τ) be the center of the reaction zone.
We assume that dσ(τ)

dτ < 0, where σ(τ) is given by

(2.9) σ(τ) := −2mτα, α ∈ R, τ ≥ 0.

The coefficient m is a priori unknown. We expect m to depend on the Thiele
modulus Φ2, but the precise way in which this dependence holds still needs to be
identified. We address the determination of m in section 7. The dependence of m
on Φ2 is explained for a particular case in section 9. In the sequel, we omit to write
down explicitly the dependence of m on Φ2.

We use the definition (2.9) of σ(τ) in order to distinguish between the three
space domains of interest. Namely, we denote the carbonated zone (also called
diffusion layer), the inter-phase carbonation layer (called also reaction layer) and
the uncarbonated part, respectively, by

Ω1(τ) := ]σ(τ) + ε/2,∞[,(2.10)
Ωε(τ) := [σ(τ)− ε/2, σ(τ) + ε/2],(2.11)
Ω2(τ) := ]−∞, σ(τ)− ε/2[, .(2.12)
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By (2.12), ε is the width of Ωε(τ). In this framework, Ωε(τ) some sort of a mushy
region where u, v and w coexist. Since dσ

dτ < 0, the reaction front Ωε(τ) (and
implicitely the production by reaction f(u, v)) moves towards the location of the
source of v. The separation of reactants can be expressed as

(2.13) u(z, τ) = 0 for all z ∈ Ω2(τ),

(2.14) v(z, τ) = 0 for all z ∈ Ω1(τ).

Furthermore, we have

(2.15) w(z, τ) = 0 for all z ∈ Ω1(τ) ∪ Ω2(τ).

3. Inner problem

We consider as inner problem the scaling of the reaction layer Ωε(τ). We make
use of the stretching variable

(3.1) η :=
z + σ(τ)

τβ
=

z + 2mτα

τβ
,

where we assume that the width ε of Ωε(τ) is proportional to τβ fo some β ≥ 0.
By (3.1), we deduce

(3.2) η,z = τ−β and η,τ = −βτ−1η + 2mατα−β−1.

In the vicinity of σ(τ), we allow the concentrations u and w to vary like

(3.3) U(η, τ) := τγu(z, τ), V (η, τ) = v(x, t) and W (η, τ) = τνw(z, τ)

with γ > 0 and ν > 0. We refer the reader to [4], for a discussion of the non-
relevance of the cases γ = 0 and ν = 0.

Owing to (3.3), it is necessary to replace f(u, v) in (2.7) by f(U, V ) = τ−δUpV q,
with δ := γp.

By (3.1), (3.2), 3.3) and the chain rule, the mass-balance equations (2.2), (2.3)
and (2.4) become

τγ(p−1)U,τ − τγ(p−1)−1 (βηU,η + γU) + 2mατα−β+γ(p−1)−1U,η =(3.4)

τγ(p−1)−2βδuU,ηη − Φ2UpV q,

τγpV,τ − τγp−1βηV,η + 2mατα−β+γp−1V,η = −Φ2

βv
UpV q,(3.5)

τγp−νW,τ − τγp−ν−1 (βηW,η + νW ) + 2mατα−β+γp−ν−1W,η =(3.6)

τpγ−ν−2β δw

βw
W,ηη +

Φ2

βw
UpV q.

We aim at finding asymptotically invariant (similarity) solutions which correspond
to the following limiting behavior with suitable Û , V̂ and Ŵ :

U(η, τ) → Û(η), V (η, τ) → V̂ (η), W (η, τ) → Ŵ (η),

U,η(η, τ) → Û,η(η), V,η(η, τ) → V̂,η(η), W,η(η, τ) → Ŵ,η(η),

U,ηη(η, τ) → Û,ηη(η), W,ηη(η, τ) → Ŵ,ηη(η)(3.7)

as τ → ∞ and −∞ < η < ∞. We make use of the same arguments as in [4]
to require the presence of a dominant balance (cf. also chapter 5 in [12]), which
compensates the effect of the nonlinear reaction UpV q. The first step needed in
order to obtain the time-invariance of U , V and W is to require the smallness of the
terms U,τ , V,τ and W,τ relatively to the production by reaction. In other words,
we assume the pseudo-steady state approximation for U , V and W , i.e.

(3.8) lim
τ→∞

τγ(p−1)U,τ = lim
τ→∞

τγpV,τ = lim
τ→∞

τγp−νW,τ = 0.
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The dominant balance situations for U , V , and W suggest the study of the following
cases:

(U1) γ(p− 1)− 2β = 0, α− β + γ(p− 1)− 1 ≤ 0, γ(p− 1)− 1 ≤ 0,

(U2) γ(p− 1)− 2β ≤ 0, α− β + γ(p− 1)− 1 = 0, γ(p− 1)− 1 ≤ 0,

(U3) γ(p− 1)− 2β ≤ 0, α− β + γ(p− 1)− 1 ≤ 0, γ(p− 1)− 1 = 0,

(V 1) γp− 1 = 0, α− β + γp− 1 ≤ 0,

(V 2) γp− 1 ≤ 0, α− β + γp− 1 = 0,

and

(W1) pγ − ν − 2β = 0, α− β + γp− ν − 1 ≤ 0, γp− ν − 1 ≤ 0,

(W2) pγ − ν − 2β ≤ 0, α− β + γp− ν − 1 = 0, γp− ν − 1 ≤ 0,

(W3) pγ − ν − 2β ≤ 0, α− β + γp− ν − 1 ≤ 0, γp− ν − 1 = 0.

We proceed as in [4] and find out the traveling wave cases (U2, V2, W1) and (U2,
V2, W2) and the diffusing front case (U1, V2, W1). We drop those configurations
which are not logically consistent1, see appendix A for details. We are not interested
in any traveling wave, but only on those that are bounded and approach constant,
equilibrium states at z = ±∞. These special types of traveling wave solutions are
called wave front (or diffusing front) solutions. On this way, we are only left with
the diffusing front case (U1,V2,W1). Therefore, we are forced to take into account
two regions with different scale invariance: one for the diffusion layer, and another
one for the reaction layer. In this case the front advances sub-linearly in time, i.e.
like tα with 0 < α < 1. Note that such a sub-linear behavior of the front has
been mathematically shown for two moving-boundary formulations of the concrete
carbonation problem in [23].

4. Outer problem

In this section, we deal with the case of the infinitely thin carbonation front
(layer). Namely, we only consider the case when Thiele modulus Φ2 � 1 is and
finite, see appendix A in [23] or [26], e.g. We are motivated to study this case by the
fact that during the carbonation process the reaction is faster than the transport.
Therefore, we expect that the width ε > 0 of the reaction layer Ωε(τ) is relatively
small compared to the width of the diffusion layer Ω1(τ). Such setting occurs when
in the reaction-diffusion process the characteristic time scale of reaction is much
smaller than that of diffusion.

We consider as outer problem the scaling of the diffusion layer Ω1(τ). To scale
this region, we introduce another similarity variable which reads

(4.1) ζ :=
2mτα + z

2τρ
for all ζ > 0, zeta ≥ σ.

In (4.1), we have ρ > 0. The similarity variables η cf. (3.1) and ζ cf. (4.1) are
linked through

η = 2τρ−βζ.

If η → ∞ and ζ → 0 with ζ > 0, then the carbonated zone needs to connect with
the reaction layer. Let us introduce some new functions

(4.2) U(ζ, τ) := u(z, τ), V(ζ, τ) := v(z, τ) and W(ζ, τ) := w(z, τ).

1For the case (U1, V2, W1), we have ν = γ, 0 < γ ≤ 1
p
, β = γ

2
(p− 1), α ≤ 1− γ

2
(p− 1). The

same arguments as in [4] can be used to show that the traveling wave ansatz is not satisfactory
for the reaction-diffusion model in question. We do not repeat them here and refer the reader to
(22a)-(23) in [4].
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As in section 3, we omit to write the dependence of m on Φ2. (4.1) yields

(4.3) ζ,z =
1

2τρ
and ζ,τ = mατα−ρ−1 − ζρτ−1.

The mass-balance equations (2.2)-(2.4) become

(4.4) τ2ρU,τ + mατα+ρ−1U,ζ − ζρτ2ρ−1U,ζ =
1
4
δuUζζ − Φ2τ2ρUpVq,

(4.5) τ2ρV,τ + mατα+ρ−1V,ζ − ζρτ2ρ−1V,ζ = −Φ2

βv
τ2ρUpVq,

and

(4.6) τ2ρW,τ + mατα+ρ−1W,ζ − ζρτ2ρ−1W,ζ =
1
4

δu

βw
Wζζ −

Φ2

βw
τ2ρUpVq.

We look for capturing the following asymptotic similarity behavior

U(ζ, τ) → Û(ζ), V(ζ, τ) → V̂(ζ), W(ζ, τ) → Ŵ(ζ),

U,ζ(ζ, τ) → Û,ζ(ζ), V,ζ(ζ, τ) → V̂,ζ(ζ), W,ζ(ζ, τ) → Ŵ,ζ(ζ),

U,ζζ(ζ, τ) → Û,ζζ(ζ), W,ζζ(ζ, τ) → Ŵ,ζζ(ζ),

as τ → ∞ and ζ > 0. In order to realize this, we firstly assume that the time
derivative of U , V and W can be neglected when compared to diffusion terms

(4.7) lim
τ→∞

τ2ρU,τ (ζ, τ) = lim
τ→∞

τ2ρW, τ(ζ, τ) = 0 for all ζ > 0.

A scaling, which is different from that one used for the carbonation layer, can be
acquired if the production by reaction does not enter the dominant balance. Thus,
we assume that

(4.8) lim
τ→∞

τ2ρΦ2Up(ζ, τ)Vq(ζ, τ) = 0 for all ζ > 0.

The investigation of the dominant balance suggests the following possible cases:

α + ρ− 1 = 0, 2ρ− 1 ≤ 0
α + ρ− 1 ≤ 0, 2ρ− 1 = 0.

The situation corresponding to α + ρ − 1 ≤ 0 and 2ρ − 1 = 0 represents the case
of the diffusing front-like solution, the width of the carbonated region being then
proportional to

√
τ . The other situation is eliminated as in [4].

5. Matching of the inner and outer approximations

The limit η →∞ of the inner approximation has to match the limit ζ → 0, ζ > 0
of the outer approximation. Since we want to obtain an asymptotic matching, it
is essential to pass to the limit τ →∞ before the matching is realized. The major
care is to propose those matching conditions which conserve the mass when passing
from the diffusion layer to the reaction layer.

The matching of v is

(5.1) lim
η→∞

V̂ (η) = 0 = lim
ζ→0+

V̂(ζ).

To match the outer and inner limits of u and w, some care is needed to formulate
the connecting conditions in the intermediate zone. This intermediate region lies
between the reaction and diffusion layer. Note firstly that since γ > 0 the concen-
tration profiles of u and w decay to zero as t →∞ and |η| < ∞. The decay happens
like u(z, τ) = O(τ−γ) and w(z, τ) = O(τ−ν). We proceed as in [4] and match the
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linear terms in the Taylor expansion of u and w in the intermediate region. Notice
that

(5.2) u,z(z, τ) =
Û ′(ζ)
2τρ

, w,z(z, τ) =
Ŵ ′(ζ)
2τρ

,

as τ →∞ and 0 < ζ < ∞ is fixed, and

(5.3) u,z(z, τ) =
1

τβ+γ
Û ′(η), w,z(z, τ) =

1
τβ+ν

Ŵ ′(η),

as τ → ∞ and |η| < ∞ is fixed. (5.2) and (5.3) suggest the matching of the
exponents

(5.4) β + γ = ρ, β + ν = ρ

and also

(5.5) Û ′(∞) =
1
2
Û ′(0), Ŵ ′(∞) =

1
2
Ŵ ′(0).

The values of Û ′(∞) and W ′(∞) will be calculated in section 6. Finally, we conclude
this section by giving the asymptotic scaling we were looking for:

(5.6) β =
p− 1

2(p + 1)
, γ =

1
p + 1

, ρ = α =
1
2
, δ =

p

p + 1
= pγ,

and recall the relation ν = γ. It is worth mentioning that the value of γ in (5.6) is
obtained combining

β + γ = ρ and β =
γ

2
(p− 1).

6. Calculation of Û ′(∞) and Ŵ ′(∞)

The concentration profiles of Û and Ŵ can be calculated in the diffusion layer.
Herein, we have

2(m− ζ)Û ′ = δuÛ ′′

Û(0) = 0, Û(∞) = 1

and hence,

−2
(

ζ

δu
− m

δu

)
Û ′ = Û ′′(6.1)

Û(0) = 0, Û(∞) = 1.(6.2)

The exact solution of (6.1)-(6.2) is

(6.3) Û(ζ) =
erf
(

ζ
δu
− m

δu

)
+ erf

(
m
δu

)
1 + erf

(
m
δu

) ,

where the error function erf is defined by

erf(λ) =
2√
π

∫ λ

0

exp(−r2)dr

for all λ ≥ 0. Similarly, we obtain

(6.4) Ŵ (ζ) = 0 for all ζ ≥ 0.

Denoting

(6.5) Mu :=
m

δu
and α :=

ζ

δu
,
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we can write

U ′(0)
2

= lim
ζ→0

Û ′(ζ)
2

= lim
ζ→0

1√
π (1 + erf(Mu))

exp
(
−(α−Mu)2

)
,(6.6)

W ′(0)
2

= lim
ζ→0

Ŵ ′(ζ)
2

= 0.(6.7)

The matching conditions allow us to define U∗ and W ∗ via

U∗ = Û ′(∞) =
U ′(0)

2
,(6.8)

W ∗ = Ŵ ′(∞) =
W ′(0)

2
.(6.9)

7. Identification of m in (2.9)

Let us consider the following system of ordinary differential equations which hold
in the reaction front:

δuÛ ′′ − Φ2ÛpV̂q = 0,(7.1)

mV̂ ′ − Φ2

βv
ÛpV̂q = 0,(7.2)

δwŴ ′′ +
Φ2

βw
ÛpV̂q = 0.(7.3)

The associated boundary conditions are

Û(−∞) = 0 Û ′(∞) = U∗,(7.4)

V̂(−∞) = 1 V̂(∞) = 0,(7.5)

Ŵ(−∞) = 0 Ŵ ′(∞) = W ∗,(7.6)

where the boundary values U∗ and W ∗ are given by (6.8) and (6.9). It is important
to observe that we need all 6 boundary conditions listed in (7.4)-(7.6) in order
to find the solution Û , V̂ and Ŵ of the system (7.1)-(7.3), and simultaneously, to
identify the parameter m. Note that Û , V̂, Ŵ and m depend on the choice of δw, βv,
βw and Φ2. Combining2 equations (7.4) and (7.5) and then integrating the result
firstly from t up to ∞, and afterwards, integrating the result mentioned above from
−∞ up to t yields

(7.7) δuU∗ − δuÛ ′(t)− βvmV̂(t) = 0 and − βvm + βvmV̂(t) + δuÛ ′(t) = 0,

for all t ≥ 0, and hence,

(7.8) m =
δuU∗(m)

βv
.

(7.8) has a uniquely determined solution m > 0, see Fig. 2. This type of reasoning
is standard if we think of calculating wave speeds. With the notation

(7.9) Θ : [0,∞[→ R defined by Θ(χ) :=
1
βv

[
e−χ2

√
π(1 + erf(χ))

]
,

we get U∗(χ) = βvΘ(χ) for all χ ≥ 0. It is straightforward to eliminate V̂ to obtain
a single equation in terms of Û . By (7.1), (7.2) and (7.7), we obtain

(7.10) Û ′(t) = U∗ − βvm

δu
V̂(t) = U∗(1− V̂(t)) for t ≥ 0,

2See also [17] pp. 78-79, e.g.
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Figure 2. Calculation of m for the standard set of parameters
used in section 8. The dotted line is the l.h.s. of (7.8), while the
solid line is the corresponding r.h.s.

and hence,

(7.11) V̂(t) = 1− Û(t)
U∗

, t ≥ 0.

Thus (7.1) becomes

(7.12) δuÛ ′′ − Φ2Ûp

(
1− Û ′

U∗

)q

= 0.

The boundary conditions (7.4) are associated to the non-linear equation (7.12).
Questions concerning the existence and uniqueness of the reaction front scaling
function Û , which satisfies (7.12) and (7.4), were addressed in [4], section 3.6. Once
Û is known, the system (7.1)-(7.6) decouples and the remaining equations are then
easy to integrate.

8. Simulation results

We turn our attention to the carbonation setting described in [5]. We perform the
calculations with respect to the space domain ΩL :=]− L,L[ and the time interval
ST :=]0, T [. In this section, we set L = 1 cm, ε = 1

7 cm and T = 18 years. Note
that T represents the final time of the carbonation process in Bunte’s experiment
(cf. [5]) and L > ε. The couple (ΩL, ST ) is used for the numerical approximation
of the infinitely large intervals Ω and S. Further, let us denote by DA the effective
diffusivity of species A, by λA the Dirichlet boundary datum which we assume to
be compatible with the corresponding initial datum. Our candidates for A are the
reactants and products involved in (1.1). By ηmax we denote the maximum value
of the reaction rate.

Herein, the following material parameters are used: DCO2 = 3.5 cm2/day,
DH2O = 1 cm2/day, DCa(OH)2 = 0.864 cm2/day, λCO2 = 58.9286 ∗ 10−6g/cm3,
λCa(OH)2 = 0.077g/cm3, λH2O = 1g/cm3, ηmax = kλp

CO2
λq

Ca(OH)2
, where k = 150

[1/day*(g/cm3)1−p−q]. Moreover, we fix p = 2 and q = 1 but other choices are pos-
sible as well. By (5.6), we have β(p) = p−1

2(p+1) , and hence, we expect results which
are asymptotically insensitive with respect to the selection of the partial-reaction
order q. Since we are in the fast reaction vs. slow diffusion case, we expect that
asymptotically the overall influence of the exponents p and q on the concentration
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profiles and position of the reaction front is negligible 3. These parameters define
the following dimensionless numbers:

(8.1) βu := 1, βv :=
λCa(OH)2

λCO2

, βw :=
λH2O

λCO2

,

and

(8.2) δu := 1, δv :=
DCa(OH)2

DCO2

, δw :=
DH2O

DCO2

.

For simulations, we choose ε = 10−2 to scale the length variable and the charac-
teristic time of CO2 diffusion to scale the time variable. With these notations, the
Thiele modulus reads

(8.3) Φ2 :=
ηmaxε

2

DCO2λCO2

.

Thorough discussions of the role of these dimensionless numbers are given in [26]
and in appendix A of [23].

In the sequel, our focus is on calculating the asymptotic profiles of the involved
active concentrations and of the asymptotic reaction front position. We begin with
the next elementary observation: After a sufficient large time, the behavior of u
within the diffusion layer is described via

uτ − δuuzz = 0 in R, t > 0,(8.4)
u(z, 0) = H(z), u(−∞, τ) = 0, u(∞, τ) = 1.(8.5)

The system (8.4)-(8.5) admits the exact similarity solution

u(z, τ) =
1
2

(
1 + erf

(
z

2
√

βuτ

))
.

In terms of (ζ, τ) variables, the latter equation reads

(8.6) u(ζ, τ) =
1
2

[
1 + erf

(
1√
βu

(ζ −m)
)]

.

Figure 3. Profile of CO2 vs. space within the diffusion layer.

Simultaneously, by the maximum principle the profile of w vanishes in the same
region. The profile of u cf. (8.6) is shown in Fig. 3. It shows the tendency of CO2

to decay near the reaction layer.
In the sequel, we want to obtain the asymptotic profiles of concentrations in the

reaction layer. In order to obtain them, we need to solve the non-linear system

3For p = 2, (5.6) shows that ε is of order of O
“
τ

1
6

”
which is negligible compared to the width

of ΩL. Following the same arguments, if p = 1.5, then ε ∼ O
“
τ

1
10

”
. Interestingly, if p = 1, then

ε and τ appears to be asymptotically independent, while β(p) → 1
2

as p →∞.
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of differential equations (7.1)-(7.6), which is described in section 7. It is worth
mentioning that in [26] the effect of the reaction layer on the whole process was
neglected. The approximation of the solution to the boundary-value problem (7.1),

(a) (b)

Figure 4. (a)+(b) CO2 and Ca(OH)2 profiles vs. space. The
reaction front propagates from right to left.

(7.4) and (7.11) is obtained by means of the code bvp4c, which is available in MAT-
LAB, using default tolerances. To this end, the problem has to be transformed to
first order form. The routine is based on both the collocation method and continu-
ation argument, and is illustrated in [30] (chapter 3.2), e.g. Shooting methods can
be an alternative to our strategy, see [33] or [20], e.g. More mathematical details
on the application of the collocation method for two-points BVP can be found in
[1], e.g. The numerical approximation of the reactant profiles in Fig. 4 is done
within the reaction front. Firstly, we approximate the value of m for a given set
of parameters by solving (7.8) in MATLAB by means of the routine fminsearch.
The profile of u is depicted in Fig. 4 (a), while that of v is shown in Fig. 4 (b).
In Fig. 5, we note a localized production of water which may be interpreted as
a barrier. By barrier we simply mean that the water may locally fill the air part
of some pores. On this way, the water barrier impedes the penetration of gaseous
CO2 and may lead to a slow down of the process or even to its stopping.

Figure 5. Plot of the reaction rate of Φ2ÛpV̂q vs. space within
the reaction layer. It points out a local production of water.

Asymptotically, the reaction front diffuses into the material with the speed

(8.7) σ′(τ) := − m√
2τ

,

see Fig. 7 (a) for a plot of the (asymptotical) interface position with respect to
time compared with the experimental penetration depth measured by Bunte [5].
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In Fig.7 (a) we also compare the position of the reaction front given by (2.9) with
that respecting the law

(8.8) σ(τ) = −
√

2λcDCO2τ

λh
,

which is basically the law proposed by Papadakis et al. [26] applied to this reaction-
diffusion scenario. The results are comparable. For the chosen parameter set, our
approach seems to be better4. The velocity of the front is plotted in Fig. 7 (b).

Figure 6. Behavior of U∗(m)
m vs. m.

(a) (b)

Figure 7. (a) The solid line shows the interface position cf. (2.9)
vs. time. The dashed line show the interface position cf. (8.8)
vs. time. The points ”◦” denote the measured penetration depths
from [5]. (b) Plot of the velocity (8.7) of the front.

9. Discussion

There is no explicit dependence5 of m defined cf. (7.8) on important material pa-
rameters like the curing time, degree of hydration, water-to-cement ratio, chemistry
of the concrete and so on. Therefore, the criticism with respect to the asymptotic
penetration law proposed in [26], which was addressed among others by Chaus-
sadent [7] in his survey on concrete carbonation issues, can be repeated here as
well. There are many arguments pro et contra. We do not dwell with them here,
but mention that, at any rate, the merit of such an asymptotic approach is that
it eliminates any fitting argument when determining the position of the reaction

4This is not yet concluding. More qualitative investigations are needed.
5However, the scaling parameters connect m with the initial and boundary data.
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front. Namely, in our case we obtain the unknown parameter m as solution of a
system of differential equations coupled with an algebraic one. The information
concerning the chemistry of the concrete sample and the boundary conditions is
comprised in the scaling parameters. Therefore, the asymptotic penetration law
only depends on the choice of scaling parameters and that of m. Our asymptotic
penetration depths are somehow close to those obtained by Papadakis et al. [26].
It is not clear whether we overestimate or underestimate their results.

Exploiting (7.8), we note that U∗(m)
m = O

(
1

Φ2

)
. This can be interpreted in

the following way: For increasing m, the fraction U∗(m)
m decreases, see Fig. 6.

This also corresponds to increasing Thiele modulus Φ2 and finally leads cf. (2.9)
to higher penetration depths. Simple dimensional investigation shows that the
proportionality constant c from

(9.1)
U∗(m)

m
= cΦ2

depends on the effective diffusion coefficient of CO2 in air, maximum reaction rate,
choice of length scale and initial concentration of Ca(OH)2 in concrete. If m is
known, then by (7.8) the constant c can be exactly computed. In this case, we have

(9.2) c =
DCO2λCa(OH)2

ηmaxε2
,

where ε represents the characteristic length scale of interest. Furthermore, for
certain values of m, we notice the linear behavior Φ2(m) ≈ ξm, where the approx-
imate proportionality factor ξ can be calculated from Fig. 6 with the routine diff
of MATLAB.

If we change the set of scaling parameters, then the main output (i.e. penetra-
tion depth vs. time plot) alters. More dimensional investigations and numerical
simulations are needed in order to be able to identify the effect of each of the di-
mensionless parameters and dimensional length and time scales on the penetration
depths. we will treat these aspects in a forthcoming publication.

At least two complementary research directions emerge from the preliminary
character of this study. From one hand, the matched asymptotic analysis can
be extended to tackle rather complex scenarios in which several reactive species
can diffuse and admit various structures of reaction kinetics. Typically, tedious
calculations become unavoidable. The paper [4] and this note give a basis for
investigations in this direction. Note also that at this stage, the asymptotic results
may intimately combine with numerics. On the other hand, the matched asymptotic
analysis provides theoretical hints about the large-time behavior of concentration
profiles and penetration front position, at least in the case when the front is thin
but does not shrink to a sharp interface. There are essential differences between the
asymptotic behavior of moving thin fronts and sharp interfaces, see corresponding
remarks in [22, 10, 9, 31, 11], e.g., where the exact asymptotic behavior is shown
to be strongly dependent on the structure of the reaction kinetics and type of the
moving front (sharp interface or not). This first step gives us additional motivation
to reconsider at a later stage the moving-interface approach to carbonation as stated
in [23, 24].

The present asymptotic approach is purely formal. It needs to be cast in a proper
mathematical framework. At this moment, it is not quite clear how this framework
should look like, especially if also we think of recovering the sharp interface scenario.

Appendix A. The choice of scaling exponents

In this appendix, we discuss the elimination procedure of the traveling-wave
solutions and of the other non-relevant situations which may occur as result of
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the scaling of the reaction front, see section 3. To this end, we solve systems of
linear algebraic inequalities. Our investigation follows [4] and essentially uses the
weak coupling between the mass-balance equation of moisture and the rest of mass
balance equations.

We proceed in the following manner:
Because of γ = 1

p−1 , the case (U3) is incompatible with both (V1) and (V2).
Therefore all combinations containing (U3) have to be discarded.

If ν = γ, then the latter assertion holds for (W3), too.
Obviously, in the case (V1) we have γ = 1

p . This fact does not match the cases
(U1), (U2) and (U3).

Gathering together these incompatibilities between the scaling exponents, we see
that a successful configuration can only involve (U1), (U2), (V2), (W1) and (W2).

We note that there is a certain incompatibility between the cases (U2) and (V2)
[and also (W2)]. Namely, from α − β + γ(p − 1) − 1 = 0 and α − β + γp − 1 = 0,
we deduce that γ = 0. This contradicts our choice of γ.

The triple (U1, V2, W1) is the successful combination. Notice that γ ≤ 1
p−1 .

From α − γ
2 (p− 1) ≤ 0 and γ(p− 1) = 2β, we obtain that α ≤ 1

2 and β ≤ 1
2 . The

rest of the discussion follows as in [4].
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