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We provide a generalized version of the nonlinear small-gain theorem
for the case of more than two coupled input-to-state stable (ISS) systems.
For this result the interconnection gains are described in a nonlinear gain
matrix and the small-gain condition requires bounds on the image of this
gain matrix. The condition may be interpreted as a nonlinear generaliza-
tion of the requirement that the spectral radius of the gain matrix is less
than one. We give some interpretations of the condition in special cases
covering two subsystems, linear gains, linear systems and an associated
artificial dynamical system.
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1 Introduction

Stability is one of the fundamental concepts in the analysis and design of nonlinear
dynamical systems. The notions of input-to-state stability (ISS) and nonlinear gains
have proved to be an efficient tool for the qualitative description of stability of nonlin-
ear input systems. There are different equivalent formulations of ISS: In terms of KL

and K∞ functions (see below), via Lyapunov functions, as an asymptotic stability
property combined with asymptotic gains, and others, see [15]. A more quantitative
but equivalent formulation, which captures the long term dynamic behavior of the
system, is the notion of input-to-state dynamical stability (ISDS), see [3].

One of the interesting properties in the study of ISS systems is that under certain
conditions input-to-state stability is preserved if ISS systems are connected in cas-
cades or feedback loops. In this paper we generalize the existing results in this area.
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In particular, we obtain a general condition that guarantees input-to-state stability
of a general system described as an interconnection of several ISS subsystems.

The earliest interconnection result on ISS systems states that cascades of ISS sys-
tems are again ISS, see e.g., [11, 12, 13]. Furthermore, small-gain theorems for the
case of two ISS systems in a feedback interconnection have been obtained in [3, 4, 5].
These results state in one way or another that if the composition of the gain functions
of ISS subsystems is smaller than the identity, then the whole system is ISS.

The papers [3, 4, 5] use different approaches to the formulation of small-gain condi-
tions that yield sufficient stability criteria: In [4] the proof is based on the properties
of KL and K∞ functions. This approach requires that the composition of the gains
is smaller than the identity in a robust sense, see below for the precise statement. We
show in Example 12 that within the context of this approach the robustness condi-
tion cannot be weakened. The result in that paper also covers practical ISS results,
which we do not treat here. An ISS-Lyapunov function for the feedback system is
constructed in [5] as some combination of the corresponding ISS-Lyapunov functions
of both subsystems. The key assumption of the proof in that paper is that the gains
are already provided in terms of the Lyapunov functions, by which the authors need
not resort to a robust version of the small-gain condition. The proof of the small-gain
theorem in [3] is based on the ISDS property and conditions for asymptotic stability
of the feedback loop without inputs are derived. These results will turn out to be
special cases of our main result.

General stability conditions for large scale interconnected systems have been ob-
tained by various authors in other contexts. In [8] sufficient conditions for the asymp-
totic stability of a composite system are stated in terms of the negative definiteness
of some test matrix. This matrix is defined through the given Lyapunov functions
of the interconnected subsystems. Similarly, in [9] conditions for the stability of in-
terconnected systems in terms of Lyapunov functions of the individual systems are
obtained.

In [10] Šiljak considers structural perturbations and their effects on the stability of
composite systems using Lyapunov theory. The method is to reduce each subsystem
to a one-dimensional one, such that the stability properties of the reduced aggregate
representation imply the same stability properties of the original aggregate system.
In some cases the aggregate representation gives rise to an interconnection matrix W̄ ,
such that quasi dominance or negative definiteness of W̄ yield asymptotic stability
of the composite system.

In [17] small-gain type theorems for general interconnected systems with linear
gains can be found. These results are of the form that the spectral radius of a gain
matrix should be less than one to conclude stability. The result obtained here may
be regarded as a nonlinear generalization in the same spirit.

In this paper we consider a system which consists of two or more ISS subsystems.
We provide conditions by which the stability question of the overall system can be
reduced to consideration of stability of the subsystems. We choose an approach
using estimates involving KL and K∞ functions to prove the ISS stability result for
general interconnected systems. The generalized small-gain condition we obtain is,

2



that for some monotone operator Γ̃ related to the gains of the individual systems the
condition

Γ̃(s) 6≥ s (1.1)

holds for all s ≥ 0, s 6= 0 (in the sense of the component-wise ordering of the positive
orthant). We discuss interpretations of this condition in Section 4.

Although we believe our approach to be amenable to the explicit construction of
a Lyapunov function given the ISS-Lyapunov functions for the subsystems, so far we
have been able to prove this only for linear gains.

While the general problem can be approached by repeated application of the cas-
cade property and the known small-gain theorem, in general this can be cumbersome
and it is by no means obvious in which order subsystems have to be chosen to proceed
in such an iterative manner. Hence an extension of the known small-gain theorem
to larger interconnections is needed. In this paper we obtain this extension for the
general case. Further, we show how to calculate the gain matrix for linear systems
and give some interpretation of our result.

The paper is organized as follows. In Section 2 we introduce notation and necessary
concepts and state the problem. In particular, we will need some basic properties
of the positive orthant Rn

+ interpreted as a lattice. In Section 3 we prove the main
result, which generalizes the known small-gain theorem, and consider the special case
of linear gains, for which we also construct an ISS-Lyapunov function. In Section 4
the small-gain condition of the main result is discussed and we show in which way it
may be interpreted as an extension of the linear condition that the spectral radius
of the gain matrix has to be less than one. There we also point out the connection
to some induced monotone dynamical system. In Section 5 we show how the gain
matrix can be found for linear systems. We conclude with Section 6.

2 Problem description

Notation By xT we denote the transpose of a vector x ∈ Rn. For x, y ∈ Rn, we use
the following notation

x ≥ y ⇔ xi ≥ yi, i = 1, . . . , n , and x > y ⇔ xi > yi, i = 1, . . . , n. (2.2)

In the following R+ := [0,∞) and by Rn
+ we denote {x ∈ Rn : x ≥ 0}. For a function

v : R+ → Rm we define its restriction to the interval [s1, s2] by

v[s1,s2](t) :=

{

v(t) if t ∈ [s1, s2],

0 else.

Definition 1. (i) A function γ : R+ → R+ is said to be of class K if it is continuous,
increasing and γ(0) = 0. It is of class K∞ if, in addition, it is proper, i.e., unbounded.

(ii) A function β : R+ ×R+ → R+ is said to be of class KL if, for each fixed t, the
function β(·, t) is of class K and, for each fixed s, the function β(s, ·) is non-increasing
and tends to zero for t→ ∞.
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Let | · | denote some norm in Rn, and let in particular |x|max = maxi |xi| be the
maximum norm. The essential supremum norm on essentially bounded functions
defined on R+ is denoted by ‖ · ‖∞.

Definition 2. Consider a system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

such that for all initial values x0 and all essentially bounded inputs u unique solutions
exist for all positive times. We denote these solutions by ξ(t;x0, u). The system is
called input to state stable (ISS), if there exist functions β of class KL and γ of class
K, such that the inequality

|ξ(t;x0, u)| ≤ β(|x0|, t) + γ(||u||∞)

holds for all t ≥ 0, x0 ∈ Rn, u : R+ → Rm essentially bounded.

Problem statement Consider n interconnected control systems given by

ẋ1 = f1(x1, . . . , xn, u)
...

ẋn = fn(x1, . . . , xn, u)

(2.3)

where xi ∈ RNi , u ∈ RL and fi : R
Pn

j=1
Nj+L → RNi is continuous and Lipschitz in

the first n arguments uniformly with respect to u for i = 1, . . . , n. Here xi is the
state of the ith subsystem, and u is considered as an external control variable.

We may consider u as partitioned u = (u1, . . . , un), such that each ui is the input for
subsystem i only. Then each fi is of the form fi(. . . , u) = f̃i(. . . , Pi(u)) = f̃i(. . . , ui)
with some projection Pi. So without loss of generality we may assume to have the
same input for all systems.

We call the ith subsystem of (2.3) ISS, if there exist functions βi of class KL and
γij, γ of class K, such that the solution xi(t) starting at xi(0) satisfies

|xi(t)| ≤ βi(|xi(0)|, t) +

n∑

j=1

γij(||xj [0,t]||∞) + γ(||u||∞) (2.4)

for all t ≥ 0.
For notational simplicity we allow the case γij ≡ 0 and require γii ≡ 0 for all i.

The functions γij and γ are called (nonlinear) gains. We define Γ : Rn
+ → Rn

+ by

Γ := (γij), Γ(s1, . . . , sn)T :=





n∑

j=1

γ1j(sj), . . . ,
n∑

j=1

γnj(sj)





T

(2.5)

for s = (s1, . . . , sn)T ∈ Rn
+. We refer to Γ as the gain matrix, noting that it does not

represent a linear map. Note that by the properties of γij for s1, s2 ∈ Rn
+ we have

the implication
s1 ≥ s2 ⇒ Γ(s1) ≥ Γ(s2), (2.6)

4



so that Γ defines a monotone map.
Assuming each of the subsystems of (2.3) to be ISS, we are interested in conditions
guaranteeing that the whole system defined by x = (xT

1 , . . . , x
T
n )T , f = (fT

1 , . . . , f
T
n )T

and
ẋ = f(x, u) (2.7)

is ISS (from u to x).

Additional Preliminaries We also need some notation from lattice theory, cf. [16]
for example. Although (Rn

+, sup, inf) is a lattice, with inf denoting infimum and sup
denoting supremum, it is not complete. But still one can define the upper limit for
bounded functions s : R+ → Rn

+ by

lim sup
t→∞

s(t) := inf
t≥0

sup
τ≥t

s(τ).

For vector functions x = (xT
1 , . . . , x

T
n )T : R+ → RN1+...+Nn such that xi : R+ →

RNi , i = 1, . . . , n and times 0 ≤ t1 ≤ t2 we define



x[t1,t2]



:=






‖x1,[t1,t2]‖∞
...

‖xn,[t1,t2]‖∞




 ∈ Rn

+.

We will need the following property.

Lemma 3. Let s : R+ → Rn
+ be continuous and bounded. Then (setting Ni ≡ 1)

lim sup
t→∞

s(t) = lim sup
t→∞



s[t/2,∞)



.

Proof. Let lim supt→∞ s(t) =: a ∈ Rn
+ and lim supt→∞



s[t/2,∞)



 =: b ∈ Rn
+. For

every ε ∈ Rn
+, ε > 0 (component-wise!) there exist ta, tb ≥ 0 such that

∀ t ≥ ta : sup
t≥ta

s(t) ≤ a+ ε and ∀ t ≥ tb : sup
t≥tb



s[t/2,∞)



≤ b+ ε. (2.8)

Clearly we have
s(t) ≤



s[t/2,∞)





for all t ≥ 0, i.e., a ≤ b. On the other hand s(τ) ≤ a + ε for τ ≥ t implies


s[τ/2,∞)



 ≤ a + ε for τ ≥ 2t, i.e., b ≤ a. This immediately gives a = b, and the
claim is proved.

Before we introduce the ISS criterion for interconnected systems let us briefly
discuss an equivalent formulation of ISS. A system

ẋ = f(x, u), (2.9)

with f : RN+L → RN continuous and Lipschitz in x ∈ RN , uniformly with respect to
u ∈ RL, is said to have the asymptotic gain property (AG), if there exists a function
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γAG ∈ K∞ such that for all initial values x0 ∈ RN and all essentially bounded control
functions u(·) : R+ → RL,

lim sup
t→0

|x(t;x0, u)| ≤ γAG(‖u‖∞). (2.10)

The asymptotic gain property states, that every trajectory must ultimately stay not
far from zero, depending on the magnitude of ‖u‖∞.

The system (2.9) is said to be globally asymptotically stable at zero (0-GAS), if
there exists a βGAS ∈ KL, such that for all initial conditions x0 ∈ RN

|x(t;x0, 0)| ≤ βGAS(|x0|, t). (2.11)

Thus 0-GAS holds, if, when the input u is set to zero, the system (2.9) is globally
asymptotically stable at x∗ = 0.

By a result of Sontag and Wang [15] the asymptotic gain property and global
asymptotic stability at 0 together are equivalent to ISS.

3 Main results

In the following subsection we present a nonlinear version of the small-gain theorem
for networks. In Subsection 3.2 we restate this theorem for the case when the gains
are linear functions. Here we also provide a method on how to construct an ISS-
Lyapunov function for the whole network system from given ISS-Lyapunov functions
of the subsystems.

3.1 Nonlinear gains

We introduce the following notation. For αi ∈ K∞, i = 1, . . . , n define D : Rn
+ → Rn

+

by

D(s1, . . . , sn)T :=






(Id + α1)(s1)
...

(Id + αn)(sn)




 . (3.12)

Theorem 4 (small-gain theorem for networks). Consider the system (2.3) and sup-
pose that each subsystem is ISS, i.e., condition (2.4) holds for all i = 1, . . . , n. Let Γ
be given by (2.5). If there exists a mapping D as in (3.12), such that

(Γ ◦D)(s) 6≥ s, ∀s ∈ Rn
+ \ {0} , (3.13)

then the system (2.7) is ISS from u to x.

Remark 5. Although looking very complicated to handle at first sight, condition
(3.13) is a straightforward extension of the ISS small-gain theorem of [4]. It has
many interesting interpretations, as we will discuss in Section 4.

The following lemma provides an essential argument in the proof of Theorem 4.
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Lemma 6. Let D be as in (3.12) and suppose (3.13) holds. Then there exists a
ϕ ∈ K∞ such that for all w, v ∈ Rn

+,

(Id − Γ)(w) ≤ v (3.14)

implies |w| ≤ ϕ(|v|).

Proof. Fix v ∈ Rn
+. We first show, that for those w ∈ Rn

+ satisfying (3.14) at least
some components have to be bounded. To this end let

r∗ := (D − Id)−1(v) =






α−1
1 (v1)

...
α−1

n (vn)






and s∗ := D(r∗) =






v1 + α−1
1 (v1)
...

vn + α−1
n (vn)




 .

(3.15)

We claim that s ≥ s∗ implies that w = s does not satisfy (3.14). So let s ≥ s∗ be
arbitrary and r = D−1(s) ≥ r∗ (as D−1 ∈ Kn

∞). For such s we have

s−D−1(s) = D(r) − r ≥ D(r∗) − r∗ = v ,

where we have used that (D− Id) ∈ Kn
∞. The assumption that w = s satisfies (3.14)

leads to
s ≤ v + Γ(s) ≤ s−D−1(s) + Γ(s) ,

or equivalently, 0 ≤ Γ(s) −D−1(s). This implies for r = D−1(s) that

r ≤ Γ ◦D(r) ,

in contradiction to (3.13). This shows that the set of w ∈ Rn
+ satisfying (3.14) does

not intersect the set
Z1 := {w ∈ Rn

+ | w ≥ s∗} .

Assume now that w ∈ Rn
+ satisfies (3.14). Let s1 := s∗. If s1 6≥ w, then there

exists an index set I1 ⊂ {1, . . . , n}, such that

wi > s1i , for i ∈ I1 and wi ≤ s1i , for i ∈ Ic
1 := {1, . . . , n} \ I1 .

For index sets I and J denote by yI the restriction

yI := (yi)i∈I

for vectors y ∈ Rn
+ and by AIJ : R#I

+ → R#J
+ the restriction

AIJ := (aij)i∈I,j∈J

for mappings A = (aij)i,j∈{1,...,n} : Rn
+ → Rn

+.
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So from (3.14) we obtain

[
wI1

wIc
1

]

−

[
ΓI1I1 ΓI1Ic

1

ΓIc
1
I1 ΓIc

1
Ic
1

]([
wI1

wIc
1

])

≤

[
vI1

vIc
1

]

.

Hence we have in particular

wI1−ΓI1I1(wI1) ≤ vI1 + ΓI1Ic
1
(s1Ic

1
)

≤ DI1 ◦ (DI1 − IdI1)
−1

︸ ︷︷ ︸

>Id

◦(vI1 + ΓI1Ic
1
(s1Ic

1
)) =: s2I1 . (3.16)

Note that ΓI1I1 satisfies (3.13) with D replaced by DI1 . Thus, arguing just as before,
we obtain, that wI1 ≥ s2I1 is not possible. Hence some more components of w must
be bounded.

We proceed inductively, defining

Ij+1 $ Ij, Ij+1 := {i ∈ Ij : wi > sj+1
i },

with Ic
j+1 := {1, . . . , n} \ Ij+1 and

sj+1
Ij

:= DIj
◦ (DIj

− IdIj
)−1 ◦ (vIj

+ ΓIjIc
j
(sj

Ic
j
)).

Obviously this nesting will end after at most n− 1 steps: There exists a maximal
k ≤ n, such that

{1, . . . , n} % I1 % . . . % Ik 6= ∅

and all components of wIk
are bounded by the corresponding components of sk+1

Ik
.

For i = 1, . . . , n define

ζi := max{j ∈ {1, . . . , n} : i ∈ Ij}

and
sζ := (sζ1

1 , . . . , s
ζn
n ).

Clearly we have
w ≤ sζ ≤ [D ◦ (D − Id)−1 ◦ (Id + Γ)]n(v)

and the term on the very right hand side does not depend on any particular choice
of nesting of the index sets. Hence every w satisfying (3.14) also satisfies

w ≤ [D ◦ (D − Id)−1 ◦ (Id + Γ)]n ◦
(
|v|max, . . . , |v|max

)T

and taking the max-norm on both sides yields

|w|max ≤ ϕ(|v|max)

for some function ϕ of class K∞. This completes the proof of the lemma.
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We proceed with the proof of Theorem 4, which is divided into two main steps.
First we establish the existence of a solution of the system (2.7) for all times t ≥ 0.
In the second step we establish the ISS property for this system.

Proof. (of Theorem 4) Existence of a solution for (2.7) for all times: For finite times
t ≥ 0 and for s ∈ Rn

+ we introduce the abbreviating notation



x(t)


:=






|x1(t)|
...

|xn(t)|




 ∈ Rn

+ , γn(‖u‖∞) :=






γ(‖u‖∞)
...

γ(‖u‖∞)




 ∈ Rn

+ (3.17)

and β(s, t) :=






β1(s1, t)
...

βn(sn, t)




 : Rn

+ × R+ → Rn
+ . (3.18)

Now we can rewrite the ISS conditions (2.4) of the subsystems in a vectorized form
for τ ≥ 0 as



x(τ)


≤ β(


x(0)


, τ) + Γ(


x[0,τ ]



) + γn(‖u‖∞) (3.19)

and taking the supremum on both sides over τ ∈ [0, t] we obtain

(Id − Γ) ◦


x[0,t]



=


x[0,t]



− Γ(


x[0,t]



)

≤ β(


x(0)


, 0) + γn(‖u‖∞)
(3.20)

where we used (2.6). Now by Lemma 6 we find

‖x[0,t]‖∞ ≤ ϕ
(∣
∣β(



x(0)


, 0) + γn(‖u‖∞)
∣
∣
)

=: s∞ (3.21)

for some class K function ϕ and all times t ≥ 0. Hence for every initial condition
and essentially bounded input u the solution of our system (2.7) exists for all times
t ≥ 0, since s∞ in (3.21) does not depend on t.

Establishing ISS: We now utilize an idea from [4]: Instead of estimating |xi(t)|
with respect to |xi(0)| in (2.4), we can also have the point of view that our trajectory
started in xi(τ) at time 0 ≤ τ ≤ t and we followed it for some time t− τ and reach
xi(t) at time t. For τ = t/2 this reads

|xi(t)| ≤ βi(|xi(t/2)|, t/2) +
∑

j 6=i

γij(‖xi,[t/2,t]‖∞) + γ(u)

≤ βi(s∞, t/2) +
∑

j 6=i

γij(‖xi,[t/2,∞)‖∞) + γ(u) (3.22)

= β̃i(s∞, t) +
∑

j 6=i

γij(‖xi,[t/2,∞)‖∞) + γ(u) (3.23)

where we again applied (2.6) to obtain (3.22) and defined

β̃i(si, t) := βi(si, t/2),
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which is of class KL.
To write inequality (3.23) in vector form, we define

β̃(s, t) :=






β̃1(s1, t)
...

β̃n(sn, t)




 (3.24)

for all s ∈ Rn
+. Denoting by sn

∞ := (s∞, . . . , s∞)T we obtain the vector formulation
of (3.23) as



x(t)


≤ β̃(sn
∞, t) + Γ ◦



x[t/2,∞)



+ γn(‖u‖∞). (3.25)

By the boundedness of the solution we can take the upper limit on both sides of
(3.25). By Lemma 3 we have

lim sup
t→∞



x(t)


= lim sup
t→∞



x[t/2,∞)



=: l(x) ,

and it follows that
(Id − Γ) ◦ l(x) ≤ γn(‖u‖∞)

since limt→∞ β̃(sn
∞, t) = 0. Finally, by Lemma 6 we have

|l(x)| ≤ ϕ(|γn(‖u‖∞)|) (3.26)

for some ϕ of class K∞. But (3.26) is the asymptotic gain property (2.10).
Now 0-GAS is established as follows: First note that for u ≡ 0 the quantity s∞ in

(3.21) is a K function of |x(0)|. So (3.21) shows (Lyapunov) stability of the system
in the case u ≡ 0. Furthermore, (3.26) shows attractivity of x = 0 for the system
(2.7) in the case u ≡ 0. This shows global asymptotic stability of x = 0.

Hence system (2.7) is AG and 0-GAS, which together were proved to be equivalent
to ISS in [15, Theorem 1].

3.2 Linear gains and an ISS-Lyapunov version

Suppose the gain functions γij are all linear, hence Γ is a linear mapping and (2.5)
is just matrix-vector multiplication. Then we have the following

Corollary 7. Consider n interconnected ISS systems as in the previous section on
the problem description with a linear gain matrix Γ, such that for the spectral radius
ρ of Γ we have

ρ(Γ) < 1. (3.27)

Then the system defined by (2.7) is ISS from u to x.

Remark 8. For non-negative matrices Γ it is well known that (see, e.g., [1, Theorem
2.1.1, page 26, and Theorem 2.1.11, page 28])

10



(i) ρ(Γ) is an eigenvalue of Γ and Γ possesses a non-negative eigenvector corre-
sponding to ρ(Γ),

(ii) αx ≤ Γx holds for some x ∈ Rn
+ \ {0} if and only if α ≤ ρ(Γ).

Hence ρ(Γ) < 1 if and only if Γs 6≥ s for all s ∈ Rn
+ \ {0}. Also, by continuity

of the spectrum it is clear that for such Γ, ρ(Γ) < 1, there always exists a matrix
D = diag(1 + α1, . . . , 1 + αn) with αi > 0, i = 1, . . . , n, such that ΓDs 6≥ s for all
s ∈ Rn

+ \ {0}.

Remark 9. For the case of large-scale interconnected input-output systems a similar
result exists, which can be found in a monograph by Vidyasagar, cf. [17, p. 110].
It also covers Corollary 7 as a special case. The condition on the spectral radius is
quite the same, although it is applied to a test matrix, whose entries are finite gains
of products of interconnection operators and corresponding subsystem operators.
These gains are non-negative numbers and, roughly speaking, defined as the minimal
possible slope of affine bounds on the interconnection operators.

Proof. (of Corollary 7) The proof is essentially the same as of Theorem 4, but note
that instead of Lemma 6 we now directly have existence of

(Id − Γ)−1 = Id + Γ + Γ2 + . . .

since ρ(Γ) < 1 and from the power sum expansion it is obvious that (Id−Γ)−1 is a non-
decreasing mapping, i.e., for d1, d2 ≥ 0 we have (Id−Γ)−1(d1+d2)−(Id−Γ)−1(d1) ≥ 0.

Thus at the two places where Lemma 6 has been used we can simply apply (Id −
Γ)−1 to get the desired estimates.

Construction of an ISS-Lyapunov function There is another approach to describe
the ISS property via so called ISS-Lyapunov functions, cf. [14].

Definition 10. A smooth function V is said to be an ISS-Lyapunov function of the
system (2.9) ẋ = f(x, u), f : RN+L → RN if

(i) V is proper, positive-definite, that is, there exit functions ψ1, ψ2 of class K∞

such that
ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RnN ; (3.28)

(ii) there exists a positive-definite function α, a class K-function χ, such that

V (x) ≥ χ(|u|) =⇒ ∇V (x)f(x, u) ≤ −α(|x|). (3.29)

In case of linear gains a Lyapunov function for the interconnected system can be
constructed, given ISS-Lyapunov functions of the subsystems.

Let V1(x1), . . . , Vn(xn) be some ISS-Lyapunov functions of the subsystems (2.3),
allowing for linear Lyapunov-gains γij, i.e., there are some K∞ functions ψi1, ψi2 such
that

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|), xi ∈ RNi , (3.30)
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and some positive-definite functions αi such that

Vi(xi) > max{max
j

{γijVj(xj)}, γi(|u|)} ⇒ ∇Vi(xi)fi(x,u) ≤ −αi(Vi(xi)). (3.31)

Consider the positive orthant Rn
+, and let Ωi be the subsets of Rn

+ defined by

Ωi :=
{

(v1, . . . , vn) ∈ Rn
+ : vi >

n∑

j=1

γijvj

}

. (3.32)

Note that the boundaries ∂Ωi are hyperplanes in case of linear gains. Now if (3.27)
or equivalently Γs 6≥ s, ∀s ∈ Rn

+, s 6= 0, holds for Γ = (γij), i, j = 1, . . . , n, then it
follows that

n⋃

i=1

Ωi = Rn
+ \ {0} and

n⋂

i=1

Ωi 6= ∅. (3.33)

The proof is the same as of Proposition 21, see below. Thus we may choose an s > 0
with s ∈

⋂n
i=1 Ωi, which implies that

si >
∑

j

γijsj, i = 1, . . . , n; (3.34)

see Fig. 1. If Γ is irreducible, then using Perron-Frobenius theory we see that we may
choose s to be a (positive) eigenvector of Γ.

Theorem 11. Let Vi be an ISS-Lyapunov function as in (3.31) of the ith subsystem
from (2.3), i = 1, . . . , n, and s be a positive vector with (3.34). Then an ISS Lyapunov
function of the interconnected system (2.3) is given by

V (x1, . . . , xn) := max
i

Vi(xi)

si
. (3.35)

Proof. Let γ(|u|) := maxi γi(|u|) which is a K class function. In the following we
show that there exists a positive definite function α such that:

V (x) ≥ γ(|u|) =⇒ ∇V (x)f(x, u) ≤ −α(V (x)). (3.36)

Let Mi be open domains in Rn
+ defined by

Mi :=
{

(v1, . . . , vn) ∈ Rn
+ :

vi

si
> max

j 6=i

{vj

sj

}}

, (3.37)

and let Pi be the 2-dimensional planes spanned by s and the i-th axis, i.e.,

Pi =
{

v ∈ Rn
+

∣
∣
∣
vk

sk
=
vj

sj
; ∀k, j 6= i

}

. (3.38)

Note that V defined by (3.35) is continuous in Rn
+ and can only fail to be differentiable

on the planes Pi.
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Figure 1: The sets ∂Ωi in R3
+ and the eigenvector s.

Now take any x̂ = (x̂1, . . . , x̂n) ∈ Rn with (V1(x̂1), . . . , Vn(x̂n)) ∈Mi then it follows

that in some neighborhood U of x̂ we have V (x) = Vi(xi)
si

for all x ∈ U and

Vi(xi) > max
j 6=i

{ si

sj
Vj(xj)

}

> max
j 6=i

{γijVj(xj)} (3.39)

(the last inequality follows from(3.34)), hence by (3.31), if V (x) = Vi(xi)/si > γi(|u|),
then

∇V (x)f(x, u) =
1

si
∇Vi(xi)fi(x, u) ≤ −

1

si
αi(Vi(xi)) < −α̃i(V (x)), (3.40)

where α̃i are positive-definite functions, since si = const > 0.
It remains to consider x ∈ Rn such that (V1(x1), . . . , Vn(xn)) ∈ Mi ∩Mj , where

V (x) may be not differentiable.
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For this purpose we use some results from [2]. For smooth functions fi, i = 1, . . . , n
it follows that f(x, u) = max

i
{fi(x, u)} is Lipschitz and Clarke’s subgradient of f is

given by

∂Clf(x) = co
{ ⋃

i∈M(x)

∇xfi(x, u)
}

, M(x) = {i : fi(x, u) = f(x)}, (3.41)

i.e., in our case

∂ClV (x) = co
{ 1

si
∇Vi(x) :

1

si
Vi(x) = V (x)

}

. (3.42)

Now for every extremal point of ∂ClV (x) a decrease condition is satisfied by (3.40).
By convexity, the same is true for every element of ∂ClV (x). Now Theorems 4.3.8 and
4.5.5 of [2] show strong invariance and attractivity of the set {x : V (x) ≤ γ(‖u‖)}.
It follows that V is an ISS-Lyapunov function for the interconnection (2.3).

See also Section 4.4 for some more considerations into this directions.

4 Interpretation of the generalized small-gain condition

In this section we wish to provide insight into the small-gain condition of Theorem 4.
We first show, that the result covers the known interconnection results for cascades
and feedback interconnections. We then compare the condition with the linear case.

Further we state some algebraic and graph theoretical relations and investigate
some associated artificial dynamical system induced by the gain matrix Γ. We com-
plete this section with some geometrical considerations and an overview map of all
these contiguities.

4.1 Connections to known results

As an easy consequence of Theorem 4 we recover, that an arbitrarily long feed for-
ward cascade of ISS subsystems is ISS again. If the subsystems are enumerated
consecutively and the gain function from subsystem j to subsystem i > j is denoted
by γij , then the resulting gain matrix has non-zero entries only below the diagonal.
For arbitrary α ∈ K∞ the gain matrix with entries γij ◦ (IdR+

+ α) for i > j and 0
for i ≤ j clearly satisfies (3.13). Therefore the feed forward cascade itself is ISS.

Consider n = 2 in equation (2.3), i.e., two subsystems with linear gains. Then in
Corollary 7 we have

Γ =

[
0 γ12

γ21 0

]

, γij ∈ R+

and ρ(Γ) < 1 if and only if γ12γ21 < 1. Hence we obtain the known small-gain
theorem, cf. [5] and [3].

For nonlinear gains and n = 2 the condition (3.13) in Theorem 4 reads as follows:
There exist α1, α2 ∈ K∞ such that

(
γ12 ◦ (Id + α2)(s2)
γ21 ◦ (Id + α1)(s1)

)

�
(
s1
s2

)

,
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for all (s1, s2)
T ∈ R2

+. This is easily seen to be equivalent to

γ12 ◦ (Id + α2) ◦ γ21 ◦ (Id + α1)(s) < s , ∀s > 0.

To this end it suffices to check what happens for to the vector [γ12 ◦(Id+α2)(s2), s2]
T

under Γ along with a few similar considerations. The latter is equivalent to the
condition in the small-gain theorem of [4], namely, that for some α̃1, α̃2 ∈ K∞ it
should hold that

(Id + α̃1) ◦ γ21 ◦ (Id + α̃2) ◦ γ12(s) ≤ s , ∀s > 0 , (4.43)

for all s ∈ R+, hence our theorem contains this result as a particular case.

Example 12. The condition (4.43) of [4] seems to be very similar to the small-gain
condition γ12 ◦γ21(s) < s of [5] and [3], however those γ’s have some different mean-
ings in these papers. This similarity raises the question, whether the compositions
with (Id + α̃i), i = 1, 2 in (4.43) or more generally with D in (3.13) is necessary.
The answer is positive. Namely, there is a counterexample providing a system of two
ISS subsystems with γ12 ◦ γ21(s) < s (γ’s are defined as above) which is not ISS.

Consider the equation

ẋ = −x+ u(1 − e−u), x(0) = x0 ∈ R, u ∈ R.

Integrating it follows

x(t) = e−tx0 +

∫ t

0
e−(t−τ)u(τ)(1 − e−u(τ)) dτ

≤ e−tx0 + ||u||∞(1 − e−||u||∞) = e−tx0 + γ(‖u‖∞), γ(s) < s.

Then for a feedback system

ẋ1 = −x1 + x2(1 − e−x2) + u(t), (4.44)

ẋ2 = −x2 + x1(1 − e−x1) + u(t) (4.45)

we have ISS for each subsystem with xi(t) ≤ e−tx0
i + γi(||xi||) + ηi(||u||), where

γi(s) < s and hence γ1 ◦ γ2(s) < s for s > 0, but there is a solution x1 = x2 = const,
i.e.,

ẋ1 = −x2e
−x2 + u, with u = x2e

−x2 ,

and x1 = x2 can be chosen arbitrary large with u → 0 for x1 → ∞. Hence the
condition Γ(s) 6≥ s, for all s ∈ Rn

+ \ {0}, or for two subsystems γ12 ◦ γ21(s) < s, for
all s > 0, is not sufficient for the input-to-state stability of the composite system in
the nonlinear case.
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4.2 Algebraic Interpretation

In this subsection we first relate the network small-gain condition (3.13) to well known
properties of matrices in the linear case. This gives some idea how the new condition
can be understood and what subtle differences appear in the nonlinear case. Then
we extend some graph theoretical results for non-negative matrices to nonlinear gain
matrices. These are needed later on.

For a start, we discuss some algebraic consequences from (3.13). Recall that for a
non-negative matrix Γ the following are equivalent:

(i) ρ(Γ) < 1,

(ii) ∀s ∈ Rn
+ \ {0} : Γs 6≥ s,

(iii) Γk → 0, for k → ∞,

(iv) there exist a1, . . . , an > 0 such that ∀s ∈ Rn
+ \ {0}:

Γ(I + diag(a1, . . . , an))s 6≥ s.

Note that (iv) is the linear version of (3.13). As condition (i) is not useful in the
nonlinear setting, we have turned to (ii), which we later strengthened to (3.13).

In the nonlinear case we find the obvious implication:

Proposition 13. Condition (3.13) implies that

Γ(s) � s for any s ∈ Rn
+ \ {0}. (4.46)

Proof. By the monotonicity of Γ it is obvious that (3.13) implies (4.46).

Note that the contrary is not true:

Example 14. Let
γ12 = IdR+

and
γ21(r) = r(1 − e−r).

Since already limr→∞(γ12 ◦γ21− Id)(r) = 0 there are certainly no class K∞ functions
α̃i, i = 1, 2 such that (4.43) holds.

Remark 15. We like to point out the connections between non-negative matrices,
our gain matrix and directed graphs.

A (finite) directed graph G = {V,E} consists of a set V of vertices and a set of
edges E ⊂ V × V . We may identify V = {1, . . . , n} in case of n vertices. The
adjacency matrix AG = (aij) of this graph is defined by

aij =

{

1 if (i, j) ∈ E,

0 else.
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The other way round, given an n×n-matrix A, one defines the graph G(A) = {V,E}
by V := {1, . . . , n} and E = {(i, j) ∈ V × V : aij 6= 0}.

There are several concepts and results of (non-negative) matrix theory, which are of
purely graph theoretical nature. Hence the same can be done for our interconnection
gain matrix Γ. We may associate a graph G(Γ), which represents the interconnections
between the subsystems, in the same manner, as we would do for matrices.

We could also use the graph of the transpose of Γ here for compatibility with our
previous notation (γij encodes whether or not subsystem j influences subsystem i) and
the standard notation in graph theory (edge from i to j), then the arrows in G(Γ)
would point in the ‘right’ direction. But this does not affect the following results.

For instance, we say Γ is irreducible, if G(Γ) is strongly connected, that is, for
every pair of vertices (i, j) there exists a sequence of edges (a path) connecting vertex
i to vertex j. Obviously Γ is irreducible if and only if ΓT is. Γ is called reducible if
it is not irreducible.

The gain matrix Γ is primitive, if its associated graph GΓ := G(Γ) is primitive,
i.e., there exists a positive integer m such that (AGΓ

)m has only positive entries.
These definitions and the following important facts can be found in [1] and only

depend on the associated graph.
If Γ is reducible, then a permutation transforms it into a block upper triangular

matrix. From an interconnection point of view, this splits the system into cascades
of subsystems each with irreducible adjacency matrix.

Lemma 16. Assume the gain matrix Γ is irreducible. Then there are two distinct
cases:

a) The gain matrix Γ = (γij(·)), where γij(·) ∈ K or γij = 0, is primitive and

hence there is a non-negative integer k0 such that Γk0 has elements γk0

ij (·) ∈ K

for any i, j.

b) The gain matrix Γ can be transformed to

PΓP T =










0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
. . .

...
0 0 0 . . . Aν−1,ν

Aν1 0 0 . . . 0










(4.47)

using some permutation matrix P , where the zero blocks on the diagonal are
square and where Γν is of block diagonal form with square primitive blocks on
the diagonal.

Proof. Let AGΓ
be the adjacency matrix corresponding to the graph associated with

Γ. This matrix is primitive if and only if Γ is primitive. Note that the (i, j)th entry

of Ak
GΓ

is zero if and only if the (i, j)th entry of Γk is zero. Multiplication of Γ by a
permutation matrix only rearranges the positions of the class K-functions, hence this
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operation is well defined. From these considerations it is clear, that it is sufficient to
prove the lemma for the matrix A := AGΓ

. But for non-negative matrices this result
is an aggregation of known facts from the theory of non-negative matrices, see, e.g.,
[1] or [7].

4.3 Asymptotic Behavior of Γk

A related question to the stability of the composite system (2.7) is, whether or not
the discrete positive dynamical system defined by

sk+1 = Γ(sk), k = 1, 2, . . . (4.48)

with given initial state s0 ∈ Rn
+ is globally asymptotically stable. Under the assump-

tions we made for Theorem 4 this is indeed true for irreducible Γ.

Theorem 17. Assume that Γ is irreducible. Then the system defined by (4.48) is
globally asymptotically stable if and only if Γ(s) 6≥ s for all s ∈ Rn

+ \ {0}.

The proof will make use of the following result:

Proposition 18. The condition

lim
k→∞

Γk(s) → 0 for any fixed s ∈ Rn
+ (4.49)

implies (4.46). Moreover if Γ is irreducible, then both are equivalent.

Note that the converse implication is generally not true for reducible maps Γ, such
that (4.46) holds. See Example 19. But it is trivially true, if Γ is linear.

Proof. Condition (4.46) follows from (4.49), since if Γ(s0) ≥ s0 for some s0 ∈ Rn
+\{0}

then Γk(s0) ≥ Γk−1(s0) ≥ s0 for k = 2, 3, . . .. Hence the sequence {Γk(s0)}∞k=0 does
not converge to 0.

Conversely, assume that (4.46) holds and that Γ is irreducible.
Step 1. First we prove that for any s ∈ Rn

+ \ {0}

Γk(s) � s, k ∈ N. (4.50)

Assume there exist some k > 1 and s 6= 0 with Γk(s) ≥ s. Define z ∈ Rn
+ as

z := max
l=0,...,k−1

{Γl(s)}
≥

6=
0 .

By (2.6) and using Γk(s) ≥ s we have

Γ(z) ≥ max
l=1,...,k

{Γls} = max
l=0,...,k

{Γls} ≥ max
l=0,...,k−1

{Γls} = z.

This contradicts (4.46).
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Step 2. For any fixed s we prove that lim supk→∞ |Γk(s)| < ∞. By Lemma 16
we have two cases. We only consider case a), then case b) follows with a slight
modification.

Assume that s is such that lim supk→∞ |Γk(s)| = ∞. For ti > 0 denote the ith

column of Γk0 by

Γk0

i (ti) =






γk0

1i (ti)
...

γk0

ni (ti)






As Γk0 has no zero entries, for i = 1, . . . , n there are Ti ∈ R+ such that

Γk0

i (ti) > s for any ti > Ti. (4.51)

If |Γk(s)| → ∞ there exists a k1 and an index i1 such that

Γk1(s)i1 ≥ Ti1 .

The vector Γk0 ◦ Γk(s), seen as a sum of columns, is greater than the maximum over
these columns, i.e.,

Γk0 ◦ Γk1(s) ≥ max
i

Γk0

i (Γk1(s)i) ≥ Γk0

i1
(Γk1(s)i1)

≥ Γk0

i1
(Ti1) ≥ s.

(4.52)

This contradicts Step 1.
Step 3. So

{
Γk(s)

}

k≥1
is bounded for any fixed s ∈ Rn

+. The omega-limit set ω(s)
is defined by

ω(s) =
{

x
∣
∣ ∃ subsequence {kj}j=1,2,...

such that Γkj (s)
j→∞
−−−→ x

}

.
(4.53)

This set is not empty by boundedness of
{
Γk(s)

}

k≥1
. The following properties

follow from this definition and boundedness of the set
{
Γk(s)

}

k≥1
:

∀x ∈ ω(s) ⇒ Γ(x) ∈ ω(s),

∀x ∈ ω(s) ∃ y ∈ ω(s) : Γ(y) = x.

i.e., ω(s) is invariant under Γ. The boundedness of ω(s) allows to define a finite vector

z = supω(s).

Then for any x ∈ ω(s) it follows z ≥ x and hence Γ(z) ≥ Γ(x). Let y ∈ ω(s) be such
that Γ(x) = y. Then Γ(z) ≥ y. By the invariance of ω(s) it follows that

Γ(z) ≥ sup{Γ(x) | ∀x ∈ ω(s)} = z.

This contradicts (4.46) if z 6= 0, i.e., ω(s) = {0}. This is true for any s ∈ Rn
+. Hence

(4.49) is proved as a consequence of (4.46), provided that Γ is irreducible.
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Example 19. Consider the map Γ : R2
+ → R2

+ defined by

Γ :=

[
γ11 id
0 γ22

]

where for t ∈ R+

γ11(t) := t(1 − e−t)

and the function γ22 is constructed in the sequel. First note that γ11 ∈ K∞ and
γ11(t) < t, ∀t > 0. Let {εk}

∞
k=1 a strictly decreasing sequence of positive real numbers,

such that limk→∞ εk = 0 and limK→∞
∑K

k=1 εk = ∞. For k = 1, 2, . . . define

γ22

(

εk + (1 +

k−1∑

j=1

εj)e
−(1+

Pk−1

j=1
εj)

)

:= εk+1 + (1 +

k∑

j=1

εj)e
−(1+

Pk
j=1

εj)

and observe that

εk + (1 +

k−1∑

j=1

εj)e
−(1+

Pk−1

j=1
εj) > εk+1 + (1 +

k∑

j=1

εj)e
−(1+

Pk
j=1 εj) ,

since εk > εk+1 for all k = 1, 2, . . . and the map t 7→ t · e−t is strictly decreasing on
(1,∞).

Moreover we have by assumption, that

εk + (1 +

k−1∑

j=1

εj)e
−(1+

Pk−1

j=1
εj) −−−→

k→∞
0.

These facts together imply that γ22 may be extrapolated to some K∞-function, in a
way such that γ22(t) < t, ∀t > 0 holds.

Note that by our particular construction we have Γ(s) 6≥ s for all s ∈ R2
+ \ {0}.

Now define s1 ∈ R2
+ by

s1 :=

[
1

1 + e−1

]

and for k = 1, 2, . . . inductively define sk+1 := Γ(sk) ∈ R2
+.

By induction one verifies that

sk+1 = Γk(s1) =

[

1 +
∑k

j=1 εj

εk+1 + (1 +
∑k

j=1 εj)e
−(1+

Pk
j=1

εj)

]

.

By our previous considerations and assumptions we easily obtain that the second
component of the sequence {sk}∞k=1 strictly decreases and converges to zero as k tends
to infinity. But at the same time the first component strictly increases above any given
bound.

Hence we established that Γ(s) 6≥ s ∀s 6= 0 in general does not imply ∀s 6=
0 : Γk(s) → 0 as k → ∞.
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Remark 20. Note that we can even turn the constructed 2x2-Γ into the null-diagonal
form, that is assumed in Theorem 4. Using the same notation for γij as in Exam-
ple 19, we just define

Γ :=







0 γ11 id 0
γ11 0 0 id
0 0 0 γ22

0 0 γ22 0







and s1 :=







1
1

1 + e−1

1 + e−1







and easily verify that Γk(s1) does not converge to 0.

of Theorem 17. If (4.48) is asymptotically stable, it is in particular attracted to zero,
so by Proposition 18 and irreducibility of Γ we establish (4.46).

Conversely assume (4.46). Clearly 0 ∈ Rn
+ is an equilibrium point for (4.48) and by

Proposition 18 it is globally attractive. It remains to prove stability, i.e., for any ε > 0
there exists a δ > 0 such that |s0| < δ implies Γk(s0) < ε for all times k = 0, 1, 2, . . .

Given ε > 0 we can choose an r ∈
⋂n

i=1 Ωi ∩ Sε where Sε is the sphere around 0 of
radius ε in Rn

+. Define δ by

δ := sup{d ∈ R+ : s < r ∀s ∈ Bd(0)}.

Here Bd(0) denotes the ball of radius less than d in Rn
+ around the origin with respect

to the Euclidean norm. Clearly we have r > s0 for all |s0| < δ. Since r ∈
⋂n

i=1 Ωi 6= ∅

we have r > Γ(r) and therefore r > Γ(r) ≥ Γ2(r) ≥ . . . and even Γk(r)
k→∞
−−−→ 0 again

by Proposition 18.
Hence for any s0 such that |s0| < δ we have Γk(r) ≥ Γk(s0) for all k = 0, 1, 2, . . .

by monotonicity of Γ and therefrom Γk(s0) < ε for all k = 0, 1, 2, . . .

4.4 Geometrical Interpretation

For the following statement let us define the open domains

Ωi =






x ∈ RN : |xi| >

∑

j 6=i

γij(|xj |)






,

where N =
∑n

j=1Nj and x is partitioned to (x1, . . . , xn) with xi ∈ RNi , i = 1, . . . , n,
as in (2.3).

Proposition 21. Condition (4.46) is equivalent to

n⋃

i=1

Ωi = RN \ {0} and
n⋂

i=1

Ωi 6= ∅. (4.54)

Proof. Let s 6= 0. Formula (4.46) is equivalent to the existence of at least one index
i ∈ {1, . . . , n} with si >

∑

j 6=i γij(sj). This proves the first part of (4.54).
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It remains to show, that (4.46) implies
⋂n

i=1 Ωi 6= ∅. We may restrict ourselves to
the positive orthant in Rn, and the sets

Ω̃i =






s ∈ Rn

+ : si >
∑

j 6=i

γij(sj)







instead of Ωi, i = 1, . . . , n.
For an index set I we define EI = {s ∈ Rn

+ : sm = 0 for m /∈ I}. Note that

points of EI can not be in Ω̃m for m /∈ I. Consider Ω̃i and Ω̃j for any i 6= j. The
intersections Ω̃i ∩E{i,j} and Ω̃j ∩E{i,j} of this two domains with the plane E{i,j} are

nonempty. The points of ∂Ω̃i lying in this plane do not belong to Ω̃k for any k 6= j,
hence they are in Ω̃j. Since the domains are open it follows that the intersections
Ω̃i ∩ Ω̃j 6= ∅ for any i 6= j. Denote Ω̃ij = Ω̃i ∩ Ω̃j which has nonempty intersection
with E{i,j} by construction. Take any k 6= i, j. Consider E{i,j,k} ⊃ E{i,j} which has

non-empty intersection with Ω̃ij. Let x ∈ Ω̃ij ∩ E{i,j,k}. There is some y ∈ E{i,j,k}

with y /∈ Ωij (say y ∈ E{k}). Since E{i,j,k} is convex the segment xy ⊂ E{i,j,k}, hence

there is some point z ∈ E{i,j,k} belonging to ∂Ω̃ij , i.e., E{i,j,k} ∩ ∂Ω̃ij is non-empty.

The points of ∂Ω̃ij , which are not in Ω̃i, Ω̃j and lying in E{i,j,k} can not belong to

Ω̃ν , ν 6= k. Hence they are in Ω̃k and it follows Ω̃i ∩ Ω̃j ∩ Ω̃k 6= ∅. By iteration the
second part of (4.54) follows.

Ω3

Ω2

Ω1

Figure 2: Overlapping of Ωi domains in R3

Let us briefly explain, why the overlapping condition (4.54) is interesting: From
the theory of ISS-Lyapunov functions it is known, that a system of the form (2.9) is
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ISS if and only if there exists a smooth Lyapunov function V with the property

|x| ≥ γ(|u|) ⇒ ∇V (x)f(x, u) < −W (|x|) ,

for some W ∈ K. In the case of our interconnected system this condition translates
to the existence of Lyapunov functions Vi for the subsystems i = 1, . . . , n with the
property

|xi| ≥
∑

γij(|xj |) + γ(|u|)

⇒ ∇Vi(xi)fi(x, u) < −Wi(|xi|) ,
(4.55)

Now for u = 0 the condition of (4.55) is simply, that x ∈ Ωi. Thus the overlapping
condition states that in each point of the state space one of the Lyapunov functions of
the subsystems is decreasing. It is an interesting problem if via this an ISS-Lyapunov
function for the whole system may be constructed.

A typical situation in case of three one dimensional systems (R3) is presented on
the Figure 2 on a plane crossing the positive semi axis. The three sectors are the
intersections of the Ωi with this plane.

4.5 Summary map of the interpretations concerning Γ

In Figure 3 we summarize the relations between various statements about Γ that
were proved in section 4.

∃D as in (3.12) : Γ ◦D(s) 6≥ s

⇓ (⇑ if Γ is linear)

Γk(s)
k→∞
−−−→ 0

⇒

⇐∗
Γ(s) 6≥ s ⇐⇒

⋃n
i=1 Ωi = RN \ {0}

m if Γ is linear

ρ(Γ) < 1

Figure 3: Some implications and equivalences of the generalized small-gain condition.
All statements are supposed to hold for all s ∈ Rn

+, s 6= 0. The implication
denoted by ∗ holds if Γ is linear or irreducible.

5 Application to linear systems

An important special case is, of course, when the underlying systems are linear them-
selves. Consider the following setup, where in the sequel we omit the external input,
formerly denoted by u, for notational simplicity. Let

ẋj = Ajxj, xj ∈ RNj , j = 1, . . . , n (5.56)
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describe n globally asymptotically stable linear systems, which are interconnected by
the formula

ẋj = Ajxj +
n∑

k=1

∆jkxk j = 1, . . . , n, (5.57)

which can be rewritten as
ẋ = (A+ ∆)x, (5.58)

where A is block diagonal, A = diag(Aj , j = 1, . . . , n), each Aj is Hurwitz (i.e.,
the spectrum of Aj is contained in the open left half plane) and the matrix ∆ =
(∆jk) is also in block form and encodes the connections between the n subsystems.
We suppose that ∆jj = 0 for all j. Define the matrix R = (rjk), R ∈ Rn×n

+ , by
rjk := ||∆jk||. For each subsystem, there exist positive constants Mj , λj , such that
eAjt ≤Mje

−λj t for all t ≥ 0.

Define a matrix D ∈ Rn×n
+ by D := diag(

Mj

λj
, j = 1, . . . , n).

From the last subsection we obtain

Corollary 22. If ρ(D · R) < 1 then (5.58) is globally asymptotically stable.

Note that this is a special case of a theorem, which can be found in Vidyasagar
[17, p. 110], see Remark 9.

Proof. Denote the initial value by x0. Then by elementary ODE theory we have

xj(t) = eAj tx0
j +

∑

k 6=j

∫ t

0
eAj(t−s)∆jkxk(s)ds (5.59)

and by standard estimates

|xj(t)| ≤Mje
−λjt +

∑

k 6=j

rjk
Mk

λk
||xk,[0,t]||. (5.60)

As one can see from (5.60), in this case the gain matrix happens to be Γ = D ·R.

It is noteworthy, that this particular corollary is also a consequence of more general
and precise results of a recent paper [6] by Hinrichsen, Karow and Pritchard.

6 Conclusions

We considered a composite system consisting of an arbitrary number of nonlinear
arbitrarily interconnected subsystems, as they arise in applications.

For this general case we derived a multisystem version of the nonlinear small-gain
theorem. For the special case of linear interconnection gains this is a special case of a
known Theorem, cf. [17, page 110]. We also showed how our generalized small-gain
theorem for networks can be applied to linear systems.

Many interesting questions remain, for instance concerning the construction of
Lyapunov functions in case of nonlinear gain functions.
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02–14. Michael Böhm, Martin Hunkel, Alfred Schmidt, Michael Wolff:
Evaluation of various phase-transition models for 100Cr6 for application in commercial
FEM programs, Dezember 2002.

03–01. Michael Wolff, Michael Böhm, Serguei Dachkovski:
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Zur makroskopischen Modellierung von spannungsabhängigem Umwandlungsverhalten und
Umwandlungsplastizität bei Stählen und ihrer experimentellen Untersuchung in einfachen
Versuchen, Juli 2003.

03–07. Serguei Dachkovski, Michael Böhm, Alfred Schmidt, Michael Wolff:
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