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Abstract

Inspired by papers of Vese–Osher [OV02] and Osher–Solé–Vese [OSV02]
we present a wavelet–based treatment of variational problems arising in the
field of image processing. In particular, we follow their approach and discuss a
special class of variational functionals that induce a decomposition of images
into oscillating and cartoon components and possibly an appropriate ‘noise’
component. In the setting of [OV02] and [OSV02], the cartoon component of
an image is modeled by a BV function; the corresponding incorporation of
BV penalty terms in the variational functional leads to PDE schemes that are
numerically intensive. By replacing the BV penalty term by a B

1
1(L1) term

(which amounts to a slightly stronger constraint on the minimizer), and writ-
ing the problem in a wavelet framework, we obtain elegant and numerically
efficient schemes with results very similar to those obtained in [OV02] and
[OSV02]. This approach allows us, moreover, to incorporate general bounded
linear blur operators into the problem so that the minimization leads to a
simultaneous decomposition, deblurring and denoising.

1 Introduction

One important problem in image processing is the restoration of the ‘true’ image
from an observation. In almost all applications the observation is a noisy and blurred
version of the true image. In principle, this problem can be understood as an inverse
problem, i.e. one can attack the restoration problem by solving a related variational
formulation.

In this paper we focus on a special class of variational problems which induce a
decomposition of images in oscillating and cartoon components; the cartoon part
is ideally piecewise smooth with possible abrupt edges and contours; the oscillation
part on the other hand ‘fills’ in the smooth regions in the cartoon with texture
- like features. Several authors, e.g. [OV02, OSV02], propose to model the car-
toon component by the space BV which induces a penalty term that allows edges
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and contours in the reconstructed cartoon images. However, the minimization of
variational problems of this type usually results in PDE based schemes which are
numerically intensive.

The main goal of this paper is to provide a computationally thriftier algorithm
by using a wavelet–based scheme that solves not the same but a very similar vari-
ational problem, in which the BV –constraint, which cannot easily be expressed in
the wavelet domain, is replaced by a B1

1(L1)–term, i.e. a slightly stricter constraint
(since B1

1(L1) ⊂ BV in two dimensions). Moreover, we can allow the involvement of
general linear bounded blur operators, which extends the range of application. By
applying recent results, see [DDD03], we show convergence of the proposed scheme.

In order to give a brief description of the underlying variational problems, we
recall the methods proposed in [OV02, OSV02]. They follow the idea of Y. Meyer
[Mey02], proposed as an improvement on the total variation framework of L. Rudin,
S. Osher and E. Fatemi [ROF92]. In principle, the models can be understood as a
decomposition of an image f into f = u + v, where u represents the cartoon part
and v the texture part. In the Vese–Osher model, see [OV02], the decomposition is
induced by solving

inf
u,g1,g2

Gp(u, g1, g2) , where (1.1)

Gp(u, g1, g2) =

∫

Ω

|∇u| + λ‖f − (u+ divg)‖2
L2(Ω) + µ‖|g|‖Lp(Ω) ,

with f ∈ L2(Ω), Ω ⊂ R
2, and v = divg. The first term is the total variation of u.

If u ∈ L1 and |∇u| is a finite measure on Ω, then u ∈ BV (Ω). This space allows
discontinuities, therefore edges and contours generally appear in u. The second term
represents the restoration discrepancy; to penalize v, the third term approximates
(by taking p finite) the norm of the space of oscillating functions introduced by Y.
Meyer (with p = ∞) which is in some sense dual to BV (Ω). (For details we refer
the reader to [Mey02].) Setting p = 2 and g = ∇P +Q, where P is a single–valued
function and Q is a divergence–free vector field, it is shown in [OSV02] that the
v–penalty term can be expressed by

‖|g|‖L2(Ω) =

(∫

Ω

|∇(∆)−1v|2
)1/2

= ‖v‖H−1(Ω) .

(The H−1 calculus is allowed as long as we deal with oscillatory texture/noise com-
ponents that have zero mean.) With these assumptions, the variational problem
(1.1) simplifies to solving

inf
u,g1,g2

Gp(u, v) , where (1.2)

Gp(u, v) =

∫

Ω

|∇u| + λ‖f − (u+ v)‖2
L2(Ω) + µ‖v‖H−1(Ω) .

In general, one drawback is that the minimization of (1.1) or (1.2) leads to numeri-
cally intensive schemes.

Instead of solving problem (1.2) by means of finite difference schemes, we pro-
pose a wavelet–based treatment. We are encouraged by the fact that elemen-
tary methods based on wavelet shrinkage solve similar extremal problems where
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BV (Ω) is replaced by the Besov space B1
1(L1(Ω)). Since BV (Ω) can not be sim-

ply described in terms of wavelet coefficients, it is not clear that BV (Ω) mini-
mizers can be obtained in this way. Yet, it is shown in [CDPX99], exploiting
B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω))−weak, that methods using Haar systems provide

near BV (Ω) minimizers. So far there exists no similar result for general (in partic-
ular smoother) wavelet systems. We shall nevertheless use wavelets that have more
smoothness/vanishing moments than Haar wavelets, because we expect them to be
better suited to the modeling of the smooth parts in the cartoon image. Though
we may not obtain provable ‘near–best–BV –minimizers’, we hope to nevertheless
not be ‘too far off’. Limiting ourselves to the case p = 2, replacing BV (Ω) by
B1

1(L1(Ω)), and, moreover, extending the range of applicability by incorporating a
bounded linear blur operator, we end up with the following variational problem

inf
u,v

Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

This paper is organized as follows. In Section 2 we recall some basic facts on
wavelets, in Section 3 the numerical scheme is developed and convergence is shown,
in Section 4 we introduce some extra refinements on the scheme, and finally, in
Section 5 we present some numerical results.

2 Preliminaries on wavelets

In this section, we briefly recall some facts on wavelets that are needed later on.
Especially important for our approach are the smoothness characterization proper-
ties of wavelets: one can determine the membership of a function in many different
smoothness functional spaces by examining the decay properties of its wavelets co-
efficients. For a comprehensive introduction and overview on this topic we would
refer the reader to the abundant literature, see e.g. [Dau92, Dau93, CDF92, Dah96,
DJP92, DJP88, FJ90, Tri78].

Suppose H is a Hilbert space. Let {Vj} be a sequence of closed nested subspaces
of H whose union is dense in H while their intersection is zero. In addition, V0

is shift–invariant and f ∈ Vj ↔ f(2j·) ∈ V0, so that the sequence {Vj} forms a
multi-resolution analysis. In many cases of practical relevance the spaces Vj are
spanned by single scale bases Φj = {φj,k : k ∈ Ij} which are uniformly stable.
Successively updating a current approximation in Vj to a better one in Vj+1 can be
facilitated if stable bases Ψj = {ψj,k : k ∈ Jj} for some complement Wj of Vj in
Vj+1 are available. Hence, any fn ∈ Vn has an alternative multi-scale representation
fn =

∑

k∈I0
f0,kφ0,k +

∑n
j=0

∑

k∈Jj
fj,kψj,k. The essential constraint on the choice of

Wj is that Ψ =
⋃

j Ψj forms a Riesz-basis of H, i.e. every f ∈ H has a unique
expansion

f =
∑

j

∑

k∈Jj

〈f, ψ̃j,k〉ψj,k such that ‖f‖H ∼





∑

j

∑

k∈Jj

|〈f, ψ̃j,k〉|
2





1
2

, (2.1)
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where Ψ̃ forms a bi-orthogonal system and is in fact also a Riesz-basis for H, cp.
[Dau92].

For our approch we assume that any function (image) f ∈ L2(I) can be extended
periodically to all of R

2. Here I is assumed to be the unit square (0, 1]2 = Ω.
Throughout this paper we only consider compactly supported tensor product wavelet
systems (based on Daubechies’ orthogonal wavelets, see [Dau93], or symmetric bi-
orthogonal wavelets by Cohen, Daubechies, and Feauveau, see [CDF92]).

We are finally interested in characterizations of Besov spaces, see, e.g., [Tri78].
For β > 0 and 0 < p, q ≤ ∞ the Besov space Bβ

q (Lp(Ω)) of order β is the set of
functions

Bβ
q (Lp(Ω)) = {f ∈ Lp(Ω) : |f |Bβ

q (Lp(Ω)) <∞} ,

where |f |Bβ
q (Lp(Ω)) =

(∫∞

0
(t−βωl(f ; t)p)

qdt/t
)1/q

and ωl denotes the l-th modulus

of smoothness, l > β. These spaces are endowed with the norm ‖f‖Bβ
q (Lp(Ω)) =

‖f‖Lp(Ω) + |f |Bβ
q (Lp(Ω)). (For p < 1, this is not a norm, strictly speaking, and the

Besov spaces are complete topological vector spaces but no longer Banach spaces,
see [DeV98] for details, including the characterization of these spaces by wavelets.)
What is important to us is that one can determine whether a function is in Bβ

q (Lp(Ω))
simply by examining its wavelet coefficients. The case p = q, on which we shall focus,
is the easiest. Suppose that φ has R continuous derivatives and ψ has vanishing
moments of order M . Then, as long as β < min(R,M), one has in, two dimensions,
for all f ∈ Bβ

p (Lp(Ω)),

|f |Bβ
p (Lp(Ω)) ∼

(

∑

λ

2|λ|sp|fλ|
p

)1/p

with fλ := 〈f, ψ̃λ〉 and s = β + 1 − 2/p . (2.2)

In what follows, we shall always use the equivalent weighted `p–norm of the {fλ}
instead of the standard Besov norm; with a slight abuse of notation we shall continue
to denote it by the same symbol, however. When p = q = 2, the space Bβ

2 (L2(Ω))
is the Bessel potential space Hβ(Ω). In analogy with the special case of Bessel
potential spaces Hβ(Ω), the Besov space Bβ

p (Lp(Ω)) with β < 0 can be viewed as

the dual space of Bβ′

p′ (Lp′(Ω)), where β′ = −β and 1/p+ 1/p′ = 1.

3 Image decomposition

As stated in Section 1, we aim to solve

inf
u,v

Ff (v, u) , where (3.1)

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

At first, we may observe the following

Lemma 3.1 If the null–space N (K) of the operator K is trivial, then the variational
problem (3.1) has a unique minimizer.
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This can be seen as follows:

Ff (µ(v, u) + (1 − µ)(v′, u′)) − µFf ((v, u)) − (1 − µ)Ff ((v
′, u′)) =

−µ(1 − µ)
(

‖K(u− u′ + v − v′)‖2
L2(Ω) + γ‖v − v′‖2

H−1(Ω)

)

+2α
(

|µu+ (1 − µ)u′|B1
1(L1(Ω)) − µ|u|B1

1(L1(Ω)) − (1 − µ)|u′|B1
1(L1(Ω))

)

(3.2)

with 0 < µ < 1. Since the Banach norm is convex the right hand side of (3.2) is
non-positive, i.e. Ff is convex. Since N (K) = {0}, the term ‖K(u − u′ + v − v′)‖
can be zero only if u− u′ + v − v′ = 0, moreover, ‖v − v′‖ is zero only if v − v′ = 0.
Hence, (3.2) is strictly convex. �

In order to solve this problem by means of wavelets we have to switch to the sequence
space formulation. When K is the identity operator the problem simplifies to

inf
u,v

{

∑

λ∈J

(

|fλ − (uλ + vλ)|
2 + γ2−2|λ||vλ|

2 + 2α|uλ| · 1{λ∈Jj0
}

)

}

. (3.3)

The minimization of (3.3) is straightforward, since it decouples into easy one–
dimensional minimizations. This results in an explicit shrinkage scheme, presented
also in [DT04]:

Proposition 3.1 Let f be a given function. The functional (3.3) is minimized by
the parametrized class of functions ṽγ,α and ũγ,α given by the following non-linear
filtering of the wavelet series of f :

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[

fλ − Sα(22|λ|+γ)/γ(fλ)
]

ψλ

and
ũγ,α =

∑

k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator.

In the case where K is not the identity operator the minimization process results
in a coupled system of nonlinear equations for the wavelet coefficients uλ and vλ,
which it is not as straightforward to solve. To overcome this problem, we adapt an
iterative approach. As in [DDD03] we derive the iterative algorithm from a sequence
of so-called surrogate functionals that are each easy to minimize, and for which one
hopes that the successive minimizers have the minimizing element of (3.1) as limit.
However, contrary to [DDD03] our variational problem has mixed quadratic and non-
quadratic penalties. This requires a slightly different use of surrogate functionals.
In [DD03b, DD03a] a similar u+ v problem is solved by an approach that combines
u and v into one vector–valued function (u, v). This leads to alternating iterations
with respect to u and v simultaneously. It can be shown that the minimizers of
the resulting alternating algorithm strongly converge to the desired unique solution,
[DD03b].
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We will follow a different approach here, in which we first solve the quadratic
problem for v, and then construct an iteration scheme for u. To this end, we
introduce the differential operator T := (−∆)1/2. Setting v = Tw the variational
problem (3.1) reads as

inf
(u,w)

Ff (w, u) , with (3.4)

Ff (w, u) = ‖f −K(u+ Tw)‖2
L2(Ω) + γ‖w‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Minimizing (3.4) with respect to w results in

w̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently

ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for w̃γ(f, u) in (3.4) and defining

fγ := Tγf, T 2
γ := Id−KT (T ∗K∗KT + γ)−1T ∗K∗ , (3.5)

we obtain
Ff (w̃γ(f, u), u) = ‖fγ − TγKu‖

2
L2(Ω) + 2α|u|B1

1(L1(Ω)) . (3.6)

Thus, the remaining task is to solve

inf
u
Ff (w̃γ(f, u), u) , where (3.7)

Ff (w̃γ(f, u), u) = ‖fγ − TγKu‖
2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

The corresponding variational equations in the sequence space representation are

∀λ : (K∗T 2
γKu)λ − (K∗fγ)λ + αsign(uλ) = 0 .

This gives a coupled system of nonlinear quations for uλ. For this reason we construct
surrogate functionals that remove the influence of K∗T 2

γKu. First, we choose a
constant C such that ‖K∗T 2

γK‖ < C. Since ‖Tγ‖ ≤ 1, it suffices to require that
‖K∗K‖ < C. Then we define the functional

Φ(u; a) := C‖u− a‖2
L2(Ω) − ‖TγK(u− a)‖2

L2(Ω)

which depends on an auxiliary element a ∈ L2(Ω). We observe that Φ(u, a) is strictly
convex in u for any a. Since K can be rescaled, we limit our analysis without loss of
generality to the case C = 1. We finally add Φ(u; a) to Ff (w̃γ(f, u), u) and obtain
the following surrogate functional

F sur
f (w̃γ(f, a), u; a) = Ff (w̃γ(f, u), u) + Φ(u; a)

=
∑

λ

{u2
λ − 2uλ(a+K∗T 2

γ (f −Ka))λ + 2α|uλ|}

+‖fγ‖
2
L2(Ω) + ‖a‖2

L2(Ω) − ‖TγKa‖
2
L2(Ω) . (3.8)
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The advantage of minimizing (3.8) is that the variational equations for uλ decou-
ple. The summands of (3.8) are differentiable in uλ expect at the point of non-
differentiability. The variational equations for each λ are now given by

uλ + αsign(uλ) = (a+K∗T 2
γ (f −Ka))λ .

This results in an explicit soft-shrinkage operation for uλ

uλ = Sα((a+K∗T 2
γ (f −Ka))λ) .

The next proposition summarizes our findings; it is the specialization to our partic-
ular case of a more general theorem in [DDD03].

Proposition 3.2 Suppose K is a linear bounded operator modeling the blur, with
K maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is defined as in
(3.5) and the functional F sur

f (w̃, u; a) is given by

F sur
f (w̃γ(f, u), u; a) = Ff (w̃γ(f, u), u) + Φ(u; a) .

Then, for arbitrarily chosen a ∈ L2(Ω), the functional F sur
f (w̃γ(f, u), u; a) has a

unique minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a+K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ .

The proof follows from [DDD03]. One can now define an iterative algorithm by
repeated minimization of F sur

f :

u0 arbitrary ; un = arg min
u

(

F sur
f (w̃γ(f, u), u; u

n−1)
)

n = 1, 2, . . . (3.9)

The convergence result of [DDD03] can again be applied directly:

Theorem 3.1 Suppose K is a linear bounded operator, with ‖K∗K‖ < 1, and that
Tγ is defined as in (3.5). Then the sequence of iterates

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α of the
functional

Ff (w̃γ(f, u), u) = ‖Tγ(f −Ku)‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of iterates
converges to ũγ,α in norm.

Combining the result of Theorem 3.1 and the representation for ṽ we summarize
how the image can finally be decomposed in cartoon and oscillating components.
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Corollary 3.1 Assume that K is a linear bounded operator modeling the blur, with
‖K∗K‖ < 1. Moreover, if Tγ is defined as in (3.5) and if ũγ,α is the minimizing
element of (3.7), obtained as a limit of un

γ,α (see Theorem 3.1), then the variational
problem

inf
(u,w)

Ff (w, u), with Ff (w, u) = ‖f −K(u+ Tw)‖2
L2(Ω) + γ‖w‖2

L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class

(ũγ,α, (T
∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) .

4 Refinements: using redundancy and adaptivity

to reduce artifacts

The non-linear filtering rule of Proposition 3.1 gives explicit descriptions of ṽ and ũ
that are computed by fast discrete wavelet schemes. However, non-redundant filter-
ing very often creates artifacts in terms of undesirable oscillations, which manifest
themselves as ringing and edge blurring. Poor directional selectivity of traditional
tensor product wavelet bases likewise cause artifacts. In this section we discuss var-
ious refinements on the basic algorithm that address this problem. In particular, we
shall use redundant translation invariant schemes, complex wavelets, and additional
edge dependent penalty weights.

4.1 Translation invariance by cycle–spinning

Assume that we are given an image with 2M rows of 2M pixels, where the gray
value of each pixel gives an average of f on a square 2−M × 2−M , which we denote
by fM

k , with k a double index running through all the elements of {0, 1, . . . , 2M −
1} × {0, 1, . . . , 2M − 1}. A traditional wavelet transform then computes f j

l , dj,i
l

with j0 ≤ j ≤ M , i = 1, 2, 3 and l ∈ {0, 1, . . . , 2j − 1} × {0, 1, . . . , 2j − 1} for
each j, where the f j

l stand for an average of f on mostly localized on (and indexed
by) the squares [l12

−j, (l1 + 1)2−j] × [l22
−j, (l2 + 1)2−j], and the dj,i

l stand for the
different species of wavelets (in two dimensions, there are three) in the tensor product
multi–resolution analysis. Because the corresponding wavelet basis is not translation
invariant, Coifman and Donoho proposed in [CD95] to recover translation invariance
by averaging over the 22(M+1−j0) translates of the wavelet basis; since many wavelets
occur in more than one of these translated bases (in fact, each ψj,i,k(x − 2Mn) in
exactly 22(j+1−j0) different bases), the average over all these bases uses only (M +
1−j0)2

2M different basis functions (and not 24(M+1−j0) = number of bases × number
of elements in each basis). This approach is called cycle–spinning. Writing, with a
slight abuse of notation, ψj,i,k+2j−Mn for the translate ψj,i,k(x − 2Mn), this average
can then be written as

fM = 2−2(M+1−j0)

2M−1
∑

l1,l2=0

{

f j0
l2−M+j0

φj0,l2−M+j0 +
M−1
∑

j=j0

22(j−j0)

3
∑

i=1

dj,i
l2−M+jψj,i,l2−M+j

}

.
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Carrying out our nonlinear filtering in each of the bases and averaging the result
then corresponds to applying the corresponding nonlinear filtering on the (much
smaller number of) coefficients in the last expression. This is the standard way to
implement thresholding on cycle–spinned representations.

The resulting sequence space representation of the variational functional (3.3)
has to be adapted to the redundant representation of f . To this end, we note that
the Besov penalty term takes the form

|f |Bβ
p (Lp) ∼

(

∑

j≥j0,i,k

2(js+2(j−M))|〈f, ψ̃j,i,k2j−M 〉|p

)1/p

.

The norms ‖ · ‖2
L2

and ‖ · ‖2
H−1 change similarly. Consequently, we obtain the same

minimization rule but with respect to a richer class of wavelet coefficients.

4.2 Directional sensitivity by frequency projections

It has been shown by several authers [Kin99, Sel01, FvSCB00] that if one treats pos-
itive and negative frequencies separately in the one–dimensional wavelet transform
(resulting in complex wavelets), the directional selectivity of the corresponding two–
dimensional multi–resolution analysis is improved. This can be done by applying
the following orthogonal projections

P+ : L2 → L2,+ = {f ∈ L2 : supp f̂ ⊆ [0,∞)}

P− : L2 → L2,− = {f ∈ L2 : supp f̂ ⊆ (−∞, 0]} .

The projectors P+ and P− may be either applied to f or to {φ, φ̃} and {ψ, ψ̃}.
In a discrete framework these projections have to be approximated. This has been
done in different ways in the literature. In [Kin99, Sel01] Hilbert transform pairs of
wavelets are used. In [FvSCB00] f is projected (approximately) by multiplying with
shifted generator symbols in the frequency domain. We follow the second approach,
i.e.

(P+f)∧(ω) := f̂(ω)H(ω − π/2) and (P−f)∧(ω) := f̂(ω)H(ω + π/2) ,

where f denotes the function to be analyzed and H is the low–pass filter for a
conjugate quadrature mirror filter pair. One then has

f̂(ω) = (B+P+f)∧(ω) + (B−P−f)∧(ω) , (4.1)

where the back–projections are given by

(B+f)∧ = f̂H(· − π/2) and (B−f)∧ = f̂H(· + π/2)

respectively. This technique provides us with a simple multiplication scheme in
Fourier, or equivalently, a convolution scheme in time domain. In a separable two–
dimensional framework the projections need to be carried out in each of the two
frequency variables, resulting in four approximate projection operators P++, P+−,
P−+, P−−. Because f is real, we have

(P++f)∧(−ω) = (P−−f)∧(ω) and (P+−f)∧(−ω) = (P−+f)∧(ω) ,
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so that the computation of P−+f and P−−f can be omitted. Consequently, the
modified variational functional takes the form

Ff (u, v) = 2
(

‖P++(f − (u+ v))‖2
L2

+ ‖P+−(f − (u+ v))‖2
L2

)

+

2λ
(

‖P++v‖2
H−1 + ‖P+−v‖2

H−1

)

+ 2α|u|B1
1(L1)

≤ 2
(

‖P++(f − (u+ v))‖2
L2

+ ‖P+−(f − (u+ v))‖2
L2

)

+

2λ
(

‖P++v‖2
H−1 + ‖P+−v‖2

H−1

)

+

4α
(

|P++u|B1
1(L1)

+ |P+−u|B1
1(L1)

)

,

which can be minimized with respect to {P++v, P++u} and {P+−v, P+−u} sepa-
rately. The projections are be complex–valued, so that the thresholding operator
needs to be adapted. Parameterizing the wavelet coefficients by modulus and angle
and minimizing yields the following filtering rules for the projections of ṽγ,α and ũγ,α

(where ·· stands for any combination of +, −)

P ··ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[

P ··fλ − Sα(22|λ|+γ)/γ(|P
··fλ|)e

iω(P ··f)
]

ψλ

and

P ··ũγ,α =
∑

k∈Ij0

〈P ··f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

(1 + γ2−2|λ|)−1Sα(22|λ|+γ)/γ(|P
··fλ|)e

iω(P ··f)ψλ .

Finally, we have to apply the back-projections to obtain the minimizing functions

ṽBP
γ,α = B++P++ṽγ,α +B−−P++ṽγ,α +B+−P+−ṽγ,α +B−+P+−ṽγ,α

and

ũBP
γ,α = B++P++ũγ,α +B−−P++ũγ,α +B+−P+−ũγ,α +B−+P+−ũγ,α .

4.3 Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a
positive weight sequence wλ in the H−1 penalty term. Consequently, we aim at
minimizing a slightly modified sequence space functional

∑

λ∈J

(

|fλ − (uλ + vλ)|
2 + γ2−2|λ|wλ|vλ|

2 + 2α|uλ| · 1{λ∈Jj0
}

)

. (4.2)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑

λ∈Jj0

(1 + γwλ2
−2|λ|)−1

[

fλ − Sα(22|λ|+γwλ)/γwλ
(fλ)

]

ψλ
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and
ũw

γ,α =
∑

k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ .

The main goal is to introduce a control parameter that depends on the local structure
of f . The local penalty weight wλ should be large in the presence of an edge and
small otherwise; the result of this weighting is to enhance the sensitivity of u near
edges. In order to do this, we must first localize the edges, which we do by a
procedure similar to an edge detection algorithm in [MZ92]. This scheme rests on
the analysis of the cycle-spinned wavelet coefficients fλ at or near the same location
but at different scales. We expect that the fλ belonging to fine decomposition scales
contain informations of edges (well localized) as well as oscillating components.
Texture oscillating components typically show up in fine scales only; edges on the
other hand leave a signature of larger wavelet coefficients through a wider range of
scales. We thus apply the following not very sophisticated edge detector. Suppose
that f ∈ VM and je denotes some ‘critical’ scale, then for a certain range of scales
|λ| = |(i, j, k)| = j ∈ {j0, . . . , j1 − je − 2, j1 − je − 1} we mark all positions k where
|fλ| is larger than a level dependent threshold parameter tj. Here the value tj is
chosen proportional to the mean value of all wavelet coefficients of level j. We say
that |fλ| represents an edge if k was marked for all j ∈ {j0, . . . , j1−je−2, j1−je−1}.
Finally, we adaptively choose the penalty sequence by setting

wλ =

{

Θλ if j ∈ {M − 1, . . . , j1 − je} and k was marked as an edge ,
ϑλ otherwise ,

where ϑλ is close to one and Θλ is much larger in order to penalize the corresponding
vλ’s.

5 Numerical experiments

In this section, we present some numerical experiments obtained with our wavelet–
based schemes.

We start with the case where K is the identity operator. In order to show how
the nonlinear (redundant) wavelet scheme acts on piecewise constant functions we
decompose a geometric image (representing cartoon components only) with sharp
contours, see Figure 1. We observe that ũ represents the cartoon part very well. The
texture component ṽ (plus a constant for illustration purposes) contains only some
very weak contour structures. Next, in Figure 2 we demonstrate the performance
of the algorithm successively incorporating translation invariance and local penalty
weights. The upper row of images shows the decomposition where the non-redundant
Haar basis was used. Such a nonlinear filtering leads to undesired blocking artifacts.
An improvement is shown in the middle row where we have used a translation invari-
ant representation by cycle spinning. We may clearly observe that cycle spinning
cause edge blurring. This can be reduced by involving additional local dependent
penalty weights as described in Section 4.3, see lower row in Figure 2. The next
experiment is done on a fabric image, see Figure 3. But in contrast to the examples
before, we present here the use of frequency projection as introduced in Section 4.2.
The numerical result shows convincingly that the texture component can be also

11



Figure 1: From left to right: initial geometric image f, ũ, ṽ + 150, computed with
Db3 in the translation invariant setting, α = 0.5, γ = 0.01.

well separated from the cartoon part. In order to compare the performance with
the Vese–Osher TV model and with the Vese–Solé–Osher H−1 model we apply our
scheme to a woman image (the same that was used in [OV02, OSV02]). We obtain
very similar results as obtained with the TV model proposed in [OV02]. Compared
with the results obtained with the H−1 model proposed in [OSV02] we observe that
our reconstruction of the texture component contains much less cartoon information.

We end this section with presenting an experiment where K is not the identity
operator. In our particular case K is a convolution operator with Gaussian kernel.
The implementation is simply done in Fourier space. The upper row in Figure 5
shows the original f and the blurred image Kf . The lower row visualizes the results:
the cartoon component ũ, the texture component ṽ, and the sum of both ũ+ ṽ. One
may clearly see that the deblurred image ũ + ṽ contains (after a small number of
iterations) more small scale details than Kf . This definitely shows the capabilities
of the proposed iterative deblurring scheme (3.9).
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obtained by the Vese–Solé–Osher H−1 model (the scale of gray values is slightly
different) .

[DD03b] M. Defrise and C. DeMol. Linear inverse problems with mixed smooth-
ness and sparsity constraints. Preprint, 2003.

[DDD03] I. Daubechies, M. Defrise, and C. DeMol. An iterative thresholding al-
gorithm for linear inverse problems with a sparsity constraint. Preprint,
2003.

[DeV98] R. DeVore. Nonlinear Approximation. Acta Numerica, 7:51–150, 1998.

14



Figure 5: Top from left to right: initial image f , blurred image Kf ; bottom from
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