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ABSTRACT

We discuss a wavelet based treatment of variational problems arising in the context of image processing, inspired
by papers of Vese–Osher and Osher–Solé–Vese, in particular, we introduce a special class of variational function-
als, that induce a decomposition of images in oscillating and cartoon components. Cartoons are often modeled
by BV functions. In the setting of Vese et.el. and Osher et.al. the incorporation of BV penalty terms leads to
PDE schemes that are numerically intensive. We propose to embed the problem in a wavelet framework. This
provides us with elegant and numerically efficient schemes even though a basic requirement, the involvement
of the space BV , has to be softened slightly. We show results on test images of our wavelet algorithm with a
B1

1(L1) penalty term, and we compare them with the BV restorations of Osher–Solé–Vese.

Keywords: Contour and texture analysis, near BV restoration, non-linear wavelet filtering

1. INTRODUCTION

One important problem in image processing is the reconstruction of the ‘true’ image from an observation. In
almost all applications the observation is a noisy and blurred version of the true image. In principle, this
problem can be understood as an inverse problem. Consequently, the reconstruction can be done be means of
regularization techniques and minimization of related variational functionals.

In this paper we consider a special class of variational problems which induce a decomposition of images
in oscillating and cartoon components. Vese–Osher and Osher–Solé–Vese suggested incorporating BV penalty
terms in the variational treatment of this problem in order to allow edges and contours in the reconstructed
images. However, the resulting PDE based scheme is numerically intensive. Solving the variational problem in a
wavelet regime would provide efficient techniques, even though the current state of the art of wavelet theory does
not allow the involvement of the space BV , but of the smaller space B1

1(L1). Nevertheless, despite this drawback,
it seems to be worthwhile to apply wavelet based methods. Here we show how this wavelet method works, and
we investigate the discrepancy between BV restoration and the wavelet based method for reconstructing ‘near’
BV image components.

In order to give a description of the underlying variational problems, we recall the methods proposed by
Vese–Osher and Osher–Solé–Vese.1, 2 They follow the idea of Y. Meyer in a total variation framework of L.
Rudin, S. Osher and E. Fetami. In principle, the models can be understood as a decomposition of an image of
the form f = u+ v, where u represents the cartoon part and v the texture part. In the Vese–Osher model1 the
decomposition is given by infu,g1,g2

Gp(u, g1, g2), where

Gp(u, g1, g2) =

∫

Ω

|∇u| + λ‖f − (u+ divg)‖2
L2(Ω) + µ‖|g|‖Lp(Ω) , (1.1)

where f ∈ L2(Ω), Ω ⊂ R2, and v = divg with g = (g1, g2) ∈ L∞(Ω) × L∞(Ω) (i.e. p → ∞). The first term
is the total variation of u. If u ∈ L1 and

∫

Ω
|∇u| < ∞, then u ∈ BV (Ω). This space allows discontinuities,

therefore edges and contours generally appear in u. The minimization of (1.1) is performed with respect to
the unknown components u and g. To model v they use the space of oscillating functions introduced by Y.
Meyer which is in some sense dual to BV (Ω).3 This model was extensively studied and many convincing test
examples were presented. Under the assumption that g = ∇P +Q, where P is a single–valued function and Q



is a divergence–free vector field, Osher–Solé–Vese show how the v–penalty term can be expressed by means of
Sobolev norms.2 By setting p = 2, one has

‖|g|‖L2(Ω) =

(∫

Ω

|∇(∆)−1v|2
)1/2

= ‖v‖H−1(Ω) .

This H−1 calculus is allowed as long as we deal with zero mean oscillatory texture/noise components. With this
simplification, the functional (1.1) reduces to

G̃p(u, v) =

∫

Ω

|∇u| + λ‖f − (u+ v)‖2
L2(Ω) + µ‖v‖H−1(Ω) , (1.2)

In the H−1 framework Osher–Solé–Vese have also proposed the following model

inf
u

Ff (u) =

∫

Ω

|∇u| + λ‖f − u‖2
H−1(Ω) , (1.3)

which leads to an equivalent fourth order Euler-Lagrange PDE. In general, one drawback is that the minimization
of 1.1 as well as 1.3 lead to numerically intensive schemes.

Instead of solving PDE systems, we propose a wavelet based treatment of problem (1.1). We are encouraged
by the fact that many function spaces of interest can be characterized by means of wavelet coefficients. Moreover,
it is well-known that elementary methods based on wavelet shrinkage solve extremal problems, e.g. problem (1.3)
where BV (Ω) is replaced by the Besov space B1

1(L1(Ω)). Since BV (Ω) can not be simply described in terms
of wavelet coefficients, it is not clear that BV (Ω) minimizers can be obtained in this way. When one restricts
oneself to Haar wavelets, it is shown, exploiting B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω))−weak, that methods based

on the involvement of Haar systems provide near BV (Ω) minimizers.4 However, so far there exists no closed
theory incorporating general wavelet systems. We naturally propose to replace BV (Ω) by B1

1(L1(Ω)). Moreover,
we limit ourselves to the case p = 2, i.e. we aim at incorporating the H−1 norm. Altogether this leads to a
somewhat different variational problem

inf
u,v

Ff (v, u) = ‖f − (u+ v)‖2
L2(Ω) + λ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) , (1.4)

where the minimization is performed with respect to u and v.

This paper is organized as follows. In Section 2 we summarize some results on wavelets and function spaces.
Section 3 is mainly concerned with minimizing the variational functional and with creating a somewhat advanced
wavelet scheme. In Section 5 we present results obtained with our wavelet based model, and, moreover, we discuss
and compare the results with other proposed models.

2. PRELIMINARIES

In this section, we briefly recall some facts on wavelets which are needed later on. For a comprehensive introduc-
tion and in order to solve the variational problem (1.4) we would like to incorporate smoothness characterization
properties of wavelets, which means that one can determine the membership of a function in many different
function spaces by examining its wavelets coefficients.5–12

Suppose H is a Hilbert space. Let {Vj} be a sequence of closed nested subspaces of H whose union is dense
in H while their intersection is zero. By the requirements f ∈ Vj ↔ f(M j ·) ∈ V0 and V0 is shift–invariant
the sequence {Vj} forms a multi-resolution analysis. In many cases of practical relevance the spaces Vj are
spanned by single scale bases Φj = {φj,k : k ∈ Ij} which are uniformly stable. Successively updating a current
approximation in Vj to a better one in Vj+1 can be facilitated if stable bases Ψj = {ψj,k : k ∈ Jj} for some
complement Wj of Vj in Vj+1 are available. Any fn =

∑

k∈In
cn,kφn,k ∈ Vn has then an alternative multi-scale

representation fn =
∑

k∈I0
c0,kφ0,k +

∑n
j=0

∑

k∈Jj
dj,kψj,k. Of course, there is a continuum of possible choices



of such complements. The essential constraint on the choice of Wj is that Ψ =
⋃

j Ψj forms a Riesz-basis of H,
i.e. every f ∈ H has a unique expansion

f =
∑

j

∑

k∈Jj

〈f, ψ̃j,k〉ψj,k such that ‖f‖H ∼





∑

j

∑

k∈Jj

|〈f, ψ̃j,k〉|
2





1
2

, (2.1)

where Ψ̃ forms a bi-orthogonal system and is in fact also a Riesz-basis for H.5

In order to adjust this setting to the needs of image processing, we assume that any function f ∈ L2(I)
can be extended periodically to all of R2. Here I is assumed to be the unit square (0, 1]2. The periodization
is performed by mirroring f down- and sidewards (now supported in Ω = [−1, 1]2) followed by k–shifts, where
k ∈ 2Z2. The resulting function f represents our image. Throughout this paper we only consider compactly
support wavelet systems, e.g., such as Daubechies’ orthogonal wavelets6 or symmetric bi-orthogonal wavelets by
Cohen, Daubechies, and Feauveau.7 We assume that we have scaling functions φ, φ̃ and wavelets ψi, ψ̃i, where
i = 1, 2, 3, constructed by tensor products of one-dimensional bi-orthogonal wavelet systems. Moreover, it will
be convenient to introduce the following notation. Let

J := {λ = (i, j, k) : k ∈ Jj , j ∈ Z, i = 1, 2, 3},

Jj0 := {λ = (i, j, k) : k ∈ Jj , j ≥ j0, i = 1, 2, 3} ,

and define |λ| := j if λ ∈ Jj ; then any function f ∈ L2(Ω) can be represented by

f =
∑

λ∈J

〈f, ψ̃λ〉ψλ =
∑

k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

〈f, ψ̃λ〉ψλ . (2.2)

We are interested in characterizations of Besov spaces.12 For β > 0 and 0 < p, q ≤ ∞ the Besov space
Bβ

q (Lp(Ω)) of order β is the set of functions

Bβ
q (Lp(Ω)) = {f ∈ Lp(Ω) : |f |Bβ

q (Lp(Ω)) <∞} ,

where |f |Bβ
q (Lp(Ω)) =

(∫ ∞

0
(t−βωl(f ; t)p)

qdt/t
)1/q

and ωl denotes the l-th modulus of smoothness, l > β. This

space is equipped with the norm ‖f‖Bβ
q (Lp(Ω)) = ‖f‖Lp(Ω)+|f |Bβ

q (Lp(Ω)). However, what is important to us is that

one can determine whether a function is in Bβ
q (Lp(Ω)) simply by examining its wavelet coefficients. Here we are

only interested in the especially simple case p = q. To this end, suppose that φ has R continuous derivatives and
ψ has vanishing moments of order M . Then, as long as β < min(R,M), one can prove that for all f ∈ Bβ

p (Lp(Ω))
one has

|f |Bβ
p (Lp(Ω)) ∼





∑

λ∈Jj0

2|λ|sp|〈f, ψ̃λ〉|
p





1/p

(2.3)

and

‖f‖Bβ
p (Lp(Ω)) ∼ |f |Bβ

p (Lp(Ω)) +





∑

k∈Ij0

|〈f, φ̃j0,k〉|
p





1/p

, (2.4)

where s = β+1−2/p. In case of p = q = 2 the space Bβ
2 (L2(Ω)) is the Bessel potential space Hβ(Ω). In analogy

with the special case of Bessel potential spaces Hβ(Ω), the Besov space Bβ
p (Lp(Ω)) with β < 0 is understood

as the dual space of Bβ′

p′ (Lp′(Ω)), where β′ = −β and 1/p + 1/p′ = 1. Here we are interested in B1
1(L1(Ω)),

B−1
2 (L2(Ω)) = H−1(Ω), and B0

2(L2(Ω)) = L2(Ω).



3. VARIATIONAL PROBLEM AND MINIMIZATION

In this section, we consider the family of variational problems (1.4) that naturally give rise to a parametrized
class of solutions: Given positive parameters (γ, α), the Besov space B1

1(L1(Ω)), and the dual Bessel potential
space H−1(Ω); find functions ṽγ,α ∈ H−1(Ω) and ũγ,α ∈ B1

1(L1(Ω)) minimizing the functionals

Ff (v, u) = ‖f − (u+ v)‖2
L2(Ω) + λ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

Applying the stability property (2.1) and the smoothness characterization of wavelets, see 2.3, 2.4, we have

‖f − (u+ v)‖2
L2(Ω) ∼

∑

λ∈J

|fλ − (uλ + vλ)|2,

‖v‖2
H−1(Ω) ∼

∑

λ∈J

2−2|λ||vλ|
2,

|u|B1
1(L1(Ω)) ∼

∑

λ∈Jj0

|uλ|,

where fλ, vλ, uλ denote the λ–th wavelet coefficients. Combining these sequence sums, we have the following
equivalent convex sequence based functional

Sf (v, u) =
∑

λ∈J

(

|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|
2 + 2α|uλ| · 1{λ∈Jj0

}

)

. (3.1)

The sequence space variational functional (3.1) can be minimized by minimizing separately for each term.
Let [·]λ denote the λ–th addend in (3.1), then the derivative with respect to vλ is given by

Dvλ
[Sf (v, u)]λ = −2(fλ − uλ) + 2(1 + γ2−2|λ|)vλ .

Consequently, the λ–th wavelet coefficient of the minimizer ṽγ,α has to satisfy

(ṽγ,α)λ = (fλ − uλ)(1 + γ2−2|λ|)−1 . (3.2)

Replacing vλ by (3.2) in [Sf (v, u)]λ yields

[Sf (ṽγ,α, u)]λ = µ1,λ(fλ − uλ)2 + 2µ2,λ|uλ| , (3.3)

where µ1,λ = γ2−2|λ|(1 + γ2−2|λ|)−1 and µ2,λ = α · 1{λ∈Jj0
}. Hence, the derivative of (3.3) with respect to uλ is

given by
Duλ

[Sf (ṽγ,α, u)]λ = −2µ1,λ(fλ − uλ) + 2µ2,λsgn(uλ) .

Consequently, the wavelet coefficients of the minimizer ũγ,α must fulfill

(ũγ,α)λ = fλ −
µ2,λ

µ1,λ
sgn((ũγ,α)λ) , i.e. (ũγ,α)λ = Sµ2,λ/µ1,λ

(fλ) , (3.4)

where St denotes the soft threshold operator with threshold t. Finally, by replacing uλ by (ũγ,α)λ in (3.2), we
obtain

(ṽγ,α)λ =
(

fλ − Sµ2,λ/µ1,λ
(fλ)

)

(1 + γ2−2|λ|)−1 . (3.5)

Altogether, we summarize the results (3.5) and (3.4) in the following

Proposition 3.1. Let f be a given function. The functional (1.4) is minimized by the parametrized class of

functions ṽγ,α and ũγ,α given by the following non-linear filtered wavelet series of f

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[

fλ − Sα(22|λ|+γ)/γ(fλ)
]

ψλ

and

ũγ,α =
∑

k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ .



4. SEVERAL REFINEMENTS

The advantages of the non-linear filtering rule (Proposition 3.1) are given by explicit descriptions of ṽ and ũ
and by related fast discrete wavelet schemes. However, non-redundant filtering very often creates artifacts in
terms of unmeant oscillations. This mainly results in edge blurring. Moreover, we are probably faced with poor
directional selectivity. These problems might be circumvented by high redundancy, by designs improving the
directional selectivity13–15 , and by additional edge dependent penalty weights. Sometimes one is also confronted
with restoration problems in the presence of blur. In this case one might apply the idea of surrogate functionals
which induce iterative schemes.16

4.1. Redundancy by translation invariance

One way to achieve redundancy is given by translation invariant representations. This can be described as
follows. For b ∈ Ω, we introduce the translation operator Tbf(x) = f(x − b). At first, we derive the wavelet
representation of T−bf . Secondly, we apply Tb to this wavelet representation. Finally, we have to average over
all b ∈ Ω.

The wavelet expression of T−bf is given by

T−bf =
∑

k∈Ij0

〈f, φ̃j0,k(· − b)〉φj0,k +
∑

j≥j0,k∈Jj ,i

〈f, ψ̃i,j,k(· − b)〉ψi,j,k . (4.1)

Applying Tb to (4.1) and averaging yield

f =

∫

Ω

Tb(T−bf)db

=

∫

Ω





∑

k∈Ij0

〈f, φ̃j0,k(· − b)〉φj0,k(· − b)+

∑

j≥j0,k∈Jj ,i

〈f, ψ̃i,j,k(· − b)〉ψi,j,k(· − b)



 db

=
∑

k∈Ij0

∫

Ω

〈f, φ̃j0,2j0b〉φj0,2j0bdb+
∑

j≥j0,k∈Jj ,i

∫

Ω

〈f, ψ̃i,j,2jb〉ψi,j,2jbdb

(4.2)

= 22j0

∫

Ω

〈f, φ̃j0,2j0b〉φj0,2j0bdb+
∑

j≥j0,i

22j

∫

Ω

〈f, ψ̃i,j,2jb〉ψi,j,2jbdb .

(4.3)

Formula (4.2) is no longer dependent on translations k. Consequently, (4.3) represents a shift invariant wavelet
series expression of f . In practical applications, there is only a finite amount of data. Hence, we cannot compute
(4.3) for all j ≥ j0 and all translations b ∈ I. To this end, we assume that we are given 2M rows of 2M pixels,
where each pixel is the average of f on a square 2−M × 2−M . Thus we calculate (4.3) for all j0 ≤ j < M
and average over 22M different translations b = k2−M , where k = (k1, k2) and 0 ≤ k1, k2 < 2M . Under these
assumptions, we obtain the following discretized version of (4.3)

fM = 22(j0−M)
∑

k

〈f, φj0,k2j0−M 〉φj0,k2j0−M +

∑

M>j≥j0,i,k

22(j−M)〈f, ψi,j,k2j−M 〉ψi,j,k2j−M . (4.4)

The translation invariant representation (4.4) has redundancy 22M . We remark that the entire calculation takes
O(M22M ) operations, instead of O(22M ) operations for the classical discrete wavelet transform.



The resulting sequence space representation of the variational functional (3.1) has to be adapted to the
redundant representation of f . To this end, we note that the Besov penalty term takes the form

|f |Bβ
p (Lp) ∼





∑

j≥j0,i,k

2(js+2(j−M))|〈f, ψ̃i,j,k2j−M 〉|p





1/p

.

The norms ‖ · ‖2
L2

and ‖ · ‖2
H−1 change similarly. Consequently, we obtain the same minimization rule but with

respect to a richer class of wavelet coefficients.

4.2. Directional sensitivity by frequency projections

In order to improve directional selectivity one should treat positive and negative frequencies separately, which
might be obtained be applying the following orthogonal projections

P+ : L2 → L2,+ = {f ∈ L2 : supp f̂ ⊆ [0,∞)}

P− : L2 → L2,− = {f ∈ L2 : supp f̂ ⊆ (−∞, 0]}

The projectors P+ and P− may be either applied to f or to {φ, φ̃} and {ψ, ψ̃}. In a discrete framework one has to
approximate these projections in some suitable way. The literature suggests distinct approaches. One approach
aims at creating Hilbert transform pairs of wavelets.13, 14 This approach uses the identities P+ = (Id+ iH)/2
and P− = (Id− iH)/2. Another approach deals with projecting f by multiplying with certain shifted generator
symbols in frequency domain.15

For our purposes it is convenient to focus on frequency projections. Let H denote the symbol of an orthogonal
(or bi-orthogonal) generator function φ. This generator function must not necessarily coincide with the generator
used in the decomposition scheme (2.2). We introduce projections P+ and P− in one dimension by defining

(P+f)∧(ω) := f̂(ω)H(ω − π/2) and (P−f)∧(ω) := f̂(ω)H(ω + π/2) ,

where f denotes the function to be analyzed.15 The idea is that the shifts by π/2 attenuate negative and
positive frequencies of f respectively. Obviously, P+ and P− only approximate P+ and P−. However, this
decomposition ensures perfect reconstruction

f̂(ω) = (B+P+f)∧(ω) + (B−P−f)∧(ω) , (4.5)

where the back-projections are given by

(B+f)∧ = f̂H(· − π/2) and (B−f)∧ = f̂H(· + π/2)

respectively. Formula (4.5) becomes clear by the orthogonality condition of H

(

|H(ω − π/2)|2 + |H(ω + π/2)|
)

f̂(ω) = f̂(ω).

This technique provides us with a simple multiplication scheme in Fourier, or equivalently, a convolution scheme
in time domain. In a separable two dimensional framework the projections take the form

(P++f)∧(ω1, ω2) = f̂(ω1, ω2)H(ω1 − π/2)H(ω2 − π/2) ,

(P+−f)∧(ω1, ω2) = f̂(ω1, ω2)H(ω1 − π/2)H(ω2 + π/2)

(P−+f)∧(ω1, ω2) = f̂(ω1, ω2)H(ω1 + π/2)H(ω2 − π/2) ,

(P−−f)∧(ω1, ω2) = f̂(ω1, ω2)H(ω1 + π/2)H(ω2 + π/2) .

The perfect reconstruction follows immediately. We observe that

|f |2 = |P++f |2 + |P+−f |2 + |P−+f |2 + |P−−f |2.



Moreover, we note that

(P++f)∧(−ω) = (P−−f)∧(ω) and (P+−f)∧(−ω) = (P−+f)∧(ω).

Hence, the computation of P−+f and P−−f can be omitted. Consequently, the modified variational functional
takes the form

Ff (u, v) = 2
(

‖P++(f − (u+ v))‖2
L2

+ ‖P+−(f − (u+ v))‖2
L2

)

+

2λ
(

‖P++v‖2
H−1 + ‖P+−v‖2

H−1

)

+ 2α|u|B1
1(L1)

≤ 2
(

‖P++(f − (u+ v))‖2
L2

+ ‖P+−(f − (u+ v))‖2
L2

)

+

2λ
(

‖P++v‖2
H−1 + ‖P+−v‖2

H−1

)

+

4α
(

|P++u|B1
1(L1)

+ |P+−u|B1
1(L1)

)

,

which can be minimized with respect to {P++v, P++u} and {P+−v, P+−u} separately. We note that the pro-
jections might be complex-valued. Parameterizing the wavelet coefficients by modulus an angle and minimizing
yields the following filtering rules for the projections of ṽγ,α and ũγ,α

P ··ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[

P ··fλ − Sα(22|λ|+γ)/γ(|P ··fλ|)e
iω(P ··f)

]

ψλ

and
P ··ũγ,α =

∑

k∈Ij0

〈P ··f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

(1 + γ2−2|λ|)−1Sα(22|λ|+γ)/γ(|P ··fλ|)e
iω(P ··f)ψλ ,

where P ·· denotes P++ and P+− respectively. Finally, we have to apply the back-projections to obtain the
minimizing functions

ṽBP
γ,α = B++P++ṽγ,α +B−−P++ṽγ,α +B+−P+−ṽγ,α +B−+P+−ṽγ,α

and
ũBP

γ,α = B++P++ũγ,α +B−−P++ũγ,α +B+−P+−ũγ,α +B−+P+−ũγ,α .

4.3. Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a positive weight sequence wλ

in the H−1 penalty term. Consequently, we aim at minimizing a slightly modified sequence space functional

Sw
f (v, u) =

∑

λ∈J

(

|fλ − (uλ + vλ)|2 + γ2−2|λ|wλ|vλ|
2 + 2α|uλ| · 1{λ∈Jj0}

)

. (4.6)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑

λ∈Jj0

(1 + γwλ2−2|λ|)−1
[

fλ − Sα(22|λ|+γwλ)/γwλ
(fλ)

]

ψλ

and
ũw

γ,α =
∑

k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ .



This refinement seems to be somewhat ad hoc. However, the main goal consists of introducing a control parameter
which depends on the local structure of f . The local penalty weight wλ should be large in the presence of an
edge and small otherwise. The main problem is to localize edges. The basic idea of the procedure proposed here
is similar to an edge detection algorithm proposed by Mallat and Zhong.17

Our scheme rests on the analysis of the wavelet coefficients fλ at or near the same location but at different
scales. We expect that the fλ belonging to fine decomposition scales contain informations of edges (well localized)
as well as oscillating components. Consequently, in order to avoid an additional penalization of the texture
oscillating components it seems natural to search in coarser scales for edges, and to keep the information in
order to adjust the weights in finer scales. To keep the computational effort at a reasonable level we do not
apply a very sophisticated edge detector. We simply assume that wavelet coefficients representing edges must
appear throughout a certain number of scales. Suppose that f ∈ VM and je denotes some ‘critical’ scale, then
for a certain range of scales |λ| = |(i, j, k)| = j ∈ {j0, . . . , j1 − je − 2, j1 − je − 1} we mark all positions k where
|fλ| is larger than a level dependent threshold parameter tj . Here the value tj is chosen proportional to the
mean value of all wavelet coefficients of level j. We say that |fλ| represents an edge if k was marked for all
j ∈ {j0, . . . , j1 − je − 2, j1 − je − 1}. Finally, we adaptively choose the penalty sequence by setting

wλ =

{

Θλ if j ∈ {M − 1, . . . , j1 − je} and k was marked as an edge ,
ϑλ otherwise ,

where ϑλ has to be close to one and Θλ (> ϑλ) can be tuned manually in order to penalize the corresponding
fλ’s.

4.4. Restoration in the presence of blur

Very often only a blurred version of an image is available. In this case, if K is a linear operator modeling the
blur, the variational functional (1.4) reads as

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + λ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)). (4.7)

Minimizing (4.7) results in a coupled system of nonlinear equations for uλ and vλ. However, this can be
circumvented by constructing a surrogate functional that removes the influence of K∗K(u+ v). This technique
was elaborated for similar variational problems involving one non-quadratic regularizing penalty.16 Moreover,
it is shown that the resulting iterative scheme converges in norm. For our purpose we have to apply the idea of
surrogate functionals to (4.7). Since K can be renormalized, we restrict ourselves without loss generality to the
case ‖K∗K‖ < 1. For some h ∈ L2(Ω) the surrogate functional for (4.7) is of the form

Fsur
f (v, u, h) = Ff (v, u) + ‖u+ v − h‖2

L2(Ω) − ‖K(u+ v − h)‖2
L2(Ω). (4.8)

One can try to approach the minimizers of Ff (v, u) by an iterative process. One suitable iterative scheme can
be formulated as follows

h0 = u0 + v0 arbitrary ;

(un, vn) = arg min
u,v

(

Fsur
f (v, u, hn−1)

)

, hn = un + vn ; n = 1, 2, . . . (4.9)

Proposition 4.1. Let K be some bounded linear operator modeling the blur, with ‖K∗K‖ < 1, and suppose the

given function f belongs to L2(Ω). Then the n-th iteration (un,γ,α, vn,γ,α) of the scheme (4.9) is given by

vn,γ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1 [((K∗f)λ + (hn−1)λ − (K∗Khn−1)λ−

Sα(22|λ|+γ)/γ((K∗f)λ + (hn−1)λ − (K∗Khn−1)λ)
]

ψλ



and

un,γ,α =
∑

k∈Ij0

〈K∗f + hn−1 −K∗Khn−1, φ̃j0,k〉φj0,k +

∑

λ∈Jj0

Sα(22|λ|+γ)/γ((K∗f)λ + (hn−1)λ − (K∗Khn−1)λ)ψλ ,

where hn−1 = un−1,γ,α + vn−1,γ,α.

We remark that a final proof of convergence of the proposed iterative scheme has not come in yet. However,
the experiments are quite convincing.

5. NUMERICAL EXAMPLES

Finally, we present some numerical results obtained with our wavelet based approach. All results were computed
on the basis of redundant decompositions (either complex valued or translation invariant). In order to compare
the results we have attached a resulting decomposition presented in papers of Osher–Solé–Vese and Osher–Vese,
see Figure 5. In all presented examples the tuning parameters α, γ,Θλ, ϑλ are chosen manually.

In order to show how the proposed non-linear wavelet scheme acts on piecewise constant functions we start
with a geometric image f representing cartoon components only but with sharp contours, see Figure 1. We
observe that ũ represents the cartoon very well (this result was computed without edge enhancement, i.e.,
without a special adjustment of wλ). Note that a slight change of γ produces a cartoon with less sharp edges.
The texture component ṽ contains some very weak contour information.

In Figure 2 we demonstrate the performance of our algorithm involving the additional local penalty weight
sequence wλ. The upper row of images shows the decomposition result where the algorithm automatically
incorporates the contour structure of the image. The lower row shows the result without edge enhancements.
We observe that the upper texture image ṽ contains less cartoon structure than the lower one.

In certain applications a segmentation of an image is required. To this end, it might be useful to decompose
the image beforehand in order to separate oriented patterns. Figure 3 shows a fabric texture image. Here
the cartoon mainly contains non-oriented structures whereas the texture very clearly reveals oriented structures
(without any disturbing components as in the original image).

In Figure 4 non-linear wavelet filtering was applied to a woman image. The initial image contains edges,
contours and several types of textures. Comparing the reconstruction ũ and ṽ with u and v obtained with the
TV model we observe that ṽ contains less cartoon information than v whereas the edges are somehow better
preserved in u than in ũ. We remark that our gray scale was chosen somehow different than the gray scale used
in the PDE schemes.

We finish with presenting some results in the presence of blur, see Figure 6. The original image (a section of
the woman image) was multiplied in Fourier space with the Gaussian in order to create a blurred image f , i.e. K
is a convolution operator. Here a reconstruction after 30 iterations is presented. As expected, a comparison of
f with ũ30 + ṽ30 shows that blurred contours become sharper during the iteration process. A basic observation
is that the iterative scheme converges very fast.
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Figure 1. From left to right: initial geometric image f , ũ, ṽ + 150, Db3, α = 0.5, γ = 0.01.

Figure 2. Up: with edge enhancement, down: without edge enhancement; From left to right: the initial image f , ũ,
ṽ + 150, α = 0.5, γ = 0.0001, computed with Db1 and critical scale je = −3.
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Modellierung der Abkühlung von Stahlbrammen, März 2000.

00–08. Stephan Dahlke, Peter Maaß, Gerd Teschke:
Interpolating Scaling Functions with Duals, April 2000.

00–09. Jochen Behrens, Fabian Wirth:
A globalization procedure for locally stabilizing controllers, Mai 2000.



00–10. Peter Maaß, Gerd Teschke, Werner Willmann, Günter Wollmann:
Detection and Classification of Material Attributes – A Practical Application of Wavelet
Analysis, Mai 2000.

00–11. Stefan Boschert, Alfred Schmidt, Kunibert G. Siebert, Eberhard Bänsch, Klaus-Werner
Benz, Gerhard Dziuk, Thomas Kaiser:
Simulation of Industrial Crystal Growth by the Vertical Bridgman Method, Mai 2000.

00–12. Volker Lehmann, Gerd Teschke:
Wavelet Based Methods for Improved Wind Profiler Signal Processing, Mai 2000.

00–13. Stephan Dahlke, Peter Maass:
A Note on Interpolating Scaling Functions, August 2000.

00–14. Ronny Ramlau, Rolf Clackdoyle, Frédéric Noo, Girish Bal:
Accurate Attenuation Correction in SPECT Imaging using Optimization of Bilinear Func-
tions and Assuming an Unknown Spatially-Varying Attenuation Distribution, September
2000.

00–15. Peter Kunkel, Ronald Stöver:
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03–04. Michael Böhm, Jörg Kropp, Adrian Muntean:
A Two-Reaction-Zones Moving-Interface Model for Predicting Ca(OH)2 Carbonation in
Concrete, April 2003.

03–05. Vladimir L. Kharitonov, Diederich Hinrichsen:
Exponential estimates for time delay systems, May 2003.
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