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Abstract. Single crystals of Cadmium-Zinc-Telluride are used as a substrate ma-
terial for the production of infrared detectors and are usually grown by the vertical
Bridgman method. We present a simulation of the whole growth process in two
steps: In the first step, the (stationary) heat transport in the furnace is modeled
and calculated for different positions of the ampoule. This provides information
about the most important parameter during this process: the temperature distri-
bution in furnace and ampoule. The obtained temperatures are then used in the
second step as boundary conditions for the (time dependent) simulation of tem-
perature and convection in the ampoule. Only the use of adaptive finite element
methods allows an efficient numerical simulation of the moving phase boundary,
the convection in the melt and the temperature distribution in melt and crystal.
Numerical results are presented for both furnace and ampoule simulations.

1 Introduction

Single crystals of the semiconductor Cadmium-Zinc-Telluride (Cd,Zn)Te are
excellent substrate materials for growth of thin Mercury-Cadmium-Telluride
(Hg,Cd)Te layers, which are used as detector material for infrared radiation,
see [7]. Such (Cd,Zn)Te crystals are usually grown by the vertical Bridgman
method, where an ampoule with material melt is moved in a temperature
field such that the material slowly crystallizes. Fig. 1 shows the schematics of
the furnace with ampoule and heating distribution.

The material, which is placed in a sealed quartz-glass ampoule, is molten
in the hot area of the crystal growth furnace. To start the crystallization
process, a relative motion between the furnace and the ampoule is started
resulting in a temperature reduction at the lower end of the growth ampoule.
When the temperature at the bottom falls below the melting temperature
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Fig. 1. Schematics of growth furnace and heating distribution.

the crystallization process starts. With further movement more and more
material solidifies until finally the whole crystal is grown. The most important
parameter during this process is the temperature distribution in furnace and
ampoule.

In the industrial production of infrared detectors, a significant dependence
of the efficiency of the manufactured detectors on the quality of the substrate
material is observed. Therefore an investigation of the growth conditions
for the substrate material becomes necessary, to optimize the production
process. Key parameters which determine the quality of the grown crystals
are the shape of the phase boundary and the temperature distribution in
its vicinity. Experimental determination of such values during the growth
experiment is almost impossible. To determine these temperatures, numerical
simulations are a feasible way to overcome the technical problems in the direct
measurement.

The simulations are performed in a two step process [5]. The first step is
a global simulation of the heat distribution in the growth furnace. Here, the
(stationary) heat transport in the furnace is calculated for different positions
of the ampoule. To obtain the temperature distribution in the furnace, nu-
merical simulations of the heat transport in the whole assembly have been
performed similarly to [4] by a 2-D axially symmetric finite element model,
using the commercial code FIDAP [11].

The second step is a local simulation of the (time dependent) phase tran-
sition and convection in the ampoule. The objective here is the investigation
of the influence of convection on the moving phase boundary in the ampoule.
The temperature distributions obtained from step one, the global furnace
simulation, are used as boundary conditions.

The model for the local simulation consists of a Stefan problem with con-
vection in both solid and liquid phases and the incompressible Navier-Stokes
equations in the melt (compare Sec. 3). Effects of varying concentration are
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neglected in the simulations presented here. Solvers for the Stefan problem
and the Navier-Stokes equations on time dependent domains are combined in
an adaptive finite element algorithm for the solution of the coupled system
and are implemented in the adaptive finite element toolbox ALBERT [18,19].
The underlying finite element meshes are adapted to the solution in each
time step using information from a posteriori error estimators. Only the use
of adaptive finite element methods allows an efficient numerical simulation of
the moving phase boundary, the convection in the melt, and the temperature
distribution in melt and crystal.

2 Modeling of the Crystal Growth Furnace

In this section we discuss the modeling of the crystal growth furnace and the
influence of the growth ampoule on the temperature distribution. Then the
calculation of the heat transport and relevant results from the simulation are
presented.

2.1 Furnace and Crystal Growth

The crystal growth experiments are performed in a multi-zone resistance fur-
nace. This furnace consists of a hot zone and a cold zone, subdivided into
ten sub-zones each, and separated by an adiabatic zone. The upper hot heat-
ing sub-zones are all kept at a fixed temperature (1140°C) above the melting
point of (Cd,Zn)Te (1092°C). The lower cold sub-zones are adjusted to 840°C
to realize a temperature gradient in the area of the adiabatic zone. For the
solidification process the furnace is slowly moved upwards (30mm/day) to
generate the temperature decrease in the ampoule.

The diameter of the growth ampoule is 65 mm, and the length of the grown
crystals is typically around 125 mm, resulting in crystals of about 2 kg weight.
This makes it necessary to have a furnace with an inner diameter of &~ 95 mm
and a height of more than 1 m to ensure a uniform temperature distribution.
Due to the fact that the temperatures in the hot area of the furnace are
well above 1100°C, radiation plays an important part in the heat transport.
Furthermore, convection (of the gas between furnace wall and ampoule and
of the melt) as well as conduction contribute to the overall heat transport.
In particular, the heat conduction in the furnace insulation is another key
parameter for the heat transport in the assembly [9].

2.2 Modeling of the Heat Transport

For the calculation of the heat transport several assumptions and simplifi-
cations have to be made. Thus the convection in the furnace, either of the
gas between ampoule and furnace wall and in the melt, is modeled by an
effective conductivity consisting of the pure conductivity and an additional
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part from convection. In the furnace insulation pure conductivity is assumed.
The influence of convection (in the porous medium) is neglected as well as
inhomogeneities caused by power supply, furnace control etc.

Thus the heat equation (in dimensional form) has to be solved for the
temperature 9:

pcOd =V (V) + H

where p is the density, ¢ the specific heat, x the conductivity and H gives
the contribution of an volumetric heat source. On a boundary segment the
general heat transfer condition for the normal heat flux q is

g=-n-(kVY) =q. +qr

which consists of a conductive part ¢. and a radiative part g,.. The latter one is
modeled by an additional nonlinear equation for the radiative heat exchange
between all surfaces which includes mutual visibility and shadowing, see [5]
for details.

In the furnace simulation the phase transition in the ampoule is not com-
puted. But using a temperature dependent heat conductivity (different values
for temperatures below or above the melting point), the distinct behavior of
the solid and liquid phase is considered. The simulations are performed for
several positions of the ampoule in the furnace. These values can be used as
boundary conditions for the calculation of the convection/solidification prob-
lem discussed in more detail in Sec. 3. But also some valuable information for
the crystal grower concerning the ampoule-design and crystal growth process
can be derived, which will be presented in the following.

During industrial production, the temperature at the bottom of the crys-
tal is monitored. Temperatures from our simulations are compared with
such measurements, performed by M. Bruder (AIM, AEG Infrarot Module
GmbH). A good agreement between the experimental values and the simula-
tion is observed.

2.3 Results of the Furnace Simulation

A typical temperature distribution in the whole crystal growth assembly
is shown in Fig.2. The temperature difference between the neighbouring
isotherms is 200°C. The shape of the ampoule and the melt is indicated
as well. It can be seen that the ampoule is completely in the hot area of the
furnace. Later, during the growth process, the ampoule is shifted downwards
to start the crystallization.

An important parameter for the crystal grower is the temperature distri-
bution in the melt and crystal at different ampoule locations in the furnace.
Of special importance is the position and shape of the melting-point isotherm,
which corresponds to the phase boundary in the simplified model used here.
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Fig. 2. Calculated temperature distribution in furnace and ampoule. The shape of
the ampoule and several isotherms are given.
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Fig. 3. Temperature distribution in crystal and melt at different ampoule positions
in the furnace (ampoule position measured from bottom of furnace in mm). The
temperature difference between the isotherms is 5°C. The position of the melting
isotherm (9 = 1092°C) is also marked (dashed line).



6 Boschert, Schmidt, Siebert, Biansch, Benz, Dziuk, and Kaiser

In Fig.3 the temperature distribution for different ampoule positions is
given. From left to right a larger portion of material crystallizes. The shape
of the melting-point isotherm changes from slightly concave in the beginning
(unfavorable for crystal growth) to slightly convex in the end. The absolute
position of the phase boundary also moves downwards (during the whole ex-
periment &~ 20 mm). This means that the growth velocity is lower than the
velocity of the ampoule movement. As a consequence the crystal growth pro-
cess needs more time to finish than expected. Such information is important
for the crystal grower because it gives proper means to plan the experiment —
with the pulling rate of 30 mm/day there is nearly one day difference between
the expected and the calculated end of the growth process.
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Fig. 4. Influence of the ampoule mounting on the nucleation process. The change
from a quartz-glass tube (on the left) to a solid quartz rod (on the right) improves
the nucleation process.

The thermal simulation can also be used to improve the design of the
growth ampoule. In the original configuration the ampoule is placed upon
a quartz tube during the experiment. From the simulation can be seen that
this tube influences the thermal field in the beginning of the solidification
process. The coldest place is not the tip of the ampoule but rather the place
where ampoule and quartz tube are connected. This leads to an undesired
nucleation at that place. To overcome this problem a different type of ampoule
mounting has been tested: the quartz tube is replaced by a solid quartz rod.
From Fig.4 it can be seen that after this modification the position of the first
nucleation is shifted to the tip of the ampoule. The undesired nucleation at
the side can thus be avoided. The first crystals produced by AIM with such a
modified ampoule mounting show an improved quality of the grown crystal.
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3 Local Simulation in the Ampoule

In this section we investigate the influence of the convection on the moving
phase boundary in the ampoule, where the results from the global furnace
simulations are used as boundary conditions for the temperature at the am-
poule boundary in the Stefan problem.

Once the pulling rate of the crystal growth process is given, there is a
one-to-one relation between an ampoule position z in the furnace and the
corresponding time ¢. Temperature values at the ampoule boundary are com-
puted for a discrete number of ampoule positions by the global simulation.
The piecewise linear interpolant (in time) of these discrete temperature values
is used for the calculation of enthalpy boundary values up in (1c).

Using the Boussinesq approximation, the moving phase boundary and
convection in the ampoule (2 are modeled by system (1)—(2) for the temper-
ature 9, energy density (enthalpy) u, velocity v, and pressure p. The time
dependent liquid sub-domain is defined via the melting temperature ¥,, by

20t) :={z € 2 : ¥z,t) > I}

Let k denote the heat conductivity, p the density, ¢ the specific heat, L
the latent heat, x the characteristic function of the liquid phase (2;, n the
kinematic viscosity, By the thermal expansion coefficient, and g the vector of
gravity.

The Stefan problem with convection applies in both liquid and solid
phases (2 = 2;(t) U 024(t)),

Ou+ (xv)-Vu—V-(kVY) =0 in 2,t>0, (1a)
u = p(cd + xL) in 2,t >0, (1b)
u=up on 012,t > 0, (1c)

u(-,0) = ug in {2, (1d)

and the incompressible Navier-Stokes equations hold in the liquid phase (2;(t),

1
O —nAv+ (v-V)v + ;Vp =(1—-By(W—9n))g in,t>0, (2a)
dive =0 in 2,,t>0, (2b)

v=0 on 042;,t >0, (2¢)

v(-,0) = vg in £2,t=0. (2d)

The system is coupled by the convection term (xv)-w in (1a) and the Boussi-
nesq forcing term in (2a). The geometry for the local simulation with solid
and liquid phases is shown in Fig. 5.

The solver for the ampoule problem is based on existing solvers for the
classical Stefan problem and the incompressible Navier-Stokes equations, im-
plemented using the finite element toolbox ALBERT [18,19]. The adaptive



8 Boschert, Schmidt, Siebert, Bansch, Benz, Dziuk, and Kaiser

G

a\o/

Fig. 5. Schematics of the geometry for the ampoule simulation at two different
times.

method combines finite elements in space on an underlying triangulation
consisting of triangles (in 2-D) and tetrahedra (in 3-D) with an appropriate
discretization in time. Extensions of the standard solvers were needed to han-
dle convection in the Stefan problem and a time dependent domain for the
Navier-Stokes equations.

3.1 Adaptive Finite Element Methods for Time Dependent
Problems

Given some tolerance for the error between the discrete and true solution,
the aim of an adaptive method is the efficient approximation of the solution
within this prescribed tolerance. For efficiency the underlying grid should be
as coarse as possible but fine in regions where a high resolution is needed
to keep the error below the given tolerance. Usually, these regions of high
resolution move in time and thus, the underlying triangulation is adapted in
each time step. Additionally, the time step size is adjusted, i.e. it is reduced
if the solution changes more rapidly in time and is enlarged if the problem
becomes more stationary.

Since the true solution is not known, information about the error between
discrete and true solution has to be obtained by computable quantities. This
goal can be achieved by a posteriori error estimators, which involve only
information about the discrete solution and data of the problem and are thus
computable [21]. The a posteriori error estimator is given by local indicators,
contributions on single mesh elements, and by a time discretization estimator.

The adaptive method uses such estimators for the adaptation of grids and
time step sizes. Meshes and time step sizes are adjusted by local refinement
and coarsening of mesh elements (see Fig.6) and reduction or enlargement
of the time step size for equidistribution of local contributions over mesh
elements and time steps. The aim is the reduction of computational work
while the error is below the given tolerance.

Starting with an initial grid which is adapted to initial data, we construct
a sequence of (variable) time step sizes and conforming triangulations. In
each time step, the adaptive algorithm iteratively solves the discrete problem
on the current mesh, estimates the error, and adapts the mesh and time step
size until the given tolerance is reached. We start with the mesh and time
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step size from the last time step. The mesh adaption is performed by local
refinement and coarsening. All elements with large local indicator are marked
for refinement and those elements with local indicators much smaller than
the local tolerance are marked for coarsening. Coarsening is an important
ingredient for time dependent problems since regions where a high resolution
is needed move in time. As a consequence, the highly refined regions have
to move in time, too, and parts of the previously refined regions have to be
coarsened in order to keep the mesh as coarse as possible.

Additionally, the time step size is adjusted to the temporal behavior of
the solution. If the time step size is reduced or the grid is refined, the discrete
problem is solved again, and the adaptive process is iterated. Usually, only
a small number of adaptive iterations are needed in each time step. If the
changes of the solution in time are very small, an ezplicit adaptive strategy is
also sufficient, where the problem is solved only once in each time step.

A m reﬂ ne
refine
coarsen , coarsen
A

Fig. 6. Atomic refinement and coarsening operation in 2-D and 3-D.

The refinement and coarsening routines construct a sequence of nested
meshes with a hierarchical structure. During mesh modifications, degrees of
freedom (DOFs) are created or deleted and finite element functions must
be transformed to the new finite element spaces. For example, in time de-
pendent problems we have to transform the solution from the old time step
during these modifications. Usually, these transformations can be realized
by a sequence of local operations during the atomic refinement/coarsening
operation, shown in Fig. 6.

ALBERT provides all tools for the local mesh modifications. It supports
different finite element spaces on the same triangulation, administrates all
used DOFs and all finite element data is automatically transformed during
mesh modifications. For the ampoule simulation, different ansatz spaces for
temperature, pressure, and velocity are used, see Sec. 3.4.

3.2 Navier-Stokes Equations on a Time Dependent Domain

For transient flow problems on fixed domains a solver for the incompress-
ible Navier-Stokes equations is already implemented in ALBERT. The finite
element discretization is based on the Taylor-Hood element using piecewise
polynomials of degree p for the velocity and of degree p — 1 for the pressure
approximation. For the time discretization the so called fractional §-scheme is
used which was introduced in [6]. We use this scheme in a variant as operator
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splitting, which decouples the two fundamental difficulties in the numerical
treatment of the incompressible Navier-Stokes equations: the solenoidal con-
dition and the nonlinearity. Each time step is split into three fractional steps.
In the first and third step we compute a divergence free velocity field with
corresponding pressure by solving a linear saddle point problem and handling
the nonlinearity explicitly. In the second step we disregard the solenoidal con-
dition and solve a non-linear elliptic problem for the velocity. This approach
works well in the case of moderate Reynolds number [1,2]. The stability
and convergence properties of this scheme for the time discretization of the
Navier-Stokes equations are analyzed in [12,14,15].

One main difficulty for the discretization of system (2) is the fact that the
domain is changing in time. The domain for the Navier-Stokes equations will
shrink from the full ampoule at the beginning of the ampoule simulation to
the empty set at the end. We have analyzed and implemented the following
approaches for solving parabolic problems on time dependent domains.

Penalty Approach. The liquid phase is a sub-domain of the complete am-
poule for all times, i.e. 2;(t) C {2 for all ¢ > 0. Extend given data of the
differential equation to {2 and solve the equation in {2 and treat the bound-
ary condition

v=0 on I'(t) :== 002(t) \ 012

by penalizing the solution for being non zero on I'(t). We prove for a linear
model problem [5] that this penalty approach leads to a stable discretization.
The existing solver was extended to time dependent domains by adding
the penalty term. This term reduces to a boundary integral over I'(t) that
has to be assembled into the system matrix for all parts of the fractional 8-
scheme. On the one hand, the penalization part makes the resulting scheme
more stable, because we add a positive semi-definite term. On the other hand,
for stronger penalization this term becomes dominant and makes the system
more stiff. Thus, a special preconditioning for an efficient solution of the
discrete system is needed. For more details about this approach see [5].

Remark. The fictitious domain method was introduced in [13] for the solu-
tion of the Navier-Stokes equations on a fixed domain w with a complicated
boundary I' = Jw. The equations are solved on a bigger domain 2 D w
which can be discretized more easily, and the boundary condition on I" is
treated as a constraint, similar to the solenoidal condition divw = 0. The
objective in this approach is to avoid a complicated meshing of the domain
w but the method can directly be extended to a time dependent domain.
Due to the additional constraint and the discretization of the corresponding
Lagrange multiplier (jump of the normal derivatives of v across I'(t)) this
method turns out to be unstable in practice.
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Sub-domain Approach. ;From a triangulation of the whole ampoule, we
construct a triangulation for the discretization of the Navier-Stokes equation
by collecting all mesh elements which belong completely to the liquid phase,
compare [3]. The original fractional -scheme is then applied on finite element
spaces corresponding to this discrete sub-domain. No-slip boundary values for
the velocity are prescribed explicitly on the boundary of this sub-domain. In
contrast to the penalty approach, the resulting discrete linear systems do
not become more stiff and can thus be solved more efficiently. Additionally,
the dimensions of the finite element spaces get smaller when the liquid sub-
domain shrinks.

3.3 Stefan Problem with Convection

After a Kirchhoff transformation and an appropriate scaling of variables, the
equation for enthalpy v and temperature ¥ = S(u) reads

Su+v-Vu—ABw)=0 inf2,t>0 (3a)
=us ondN,t>0 (3b)
u(-,0) =uo in 2 (3¢)

Assuming piecewise constant physical coefficients in the phases, the nonlinear
function § connecting temperature and enthalpy is piecewise linear, mono-
tone, and vanishes identically for u € [0, 1], resulting in a degenerate parabolic
equation for the energy density. The full discretization of the Stefan problem
combines piecewise linear finite elements in space and a time discretization
including the convection that is based on the method of characteristics [10].
Adaptive finite element methods based on a posteriori error estimates for
such equations were derived in [8,16,17]. Such error indicators are used to
adapt the meshes and time step sizes for the coupled ampoule problem.

3.4 Numerical Method and Results for the Ampoule Problem

We present results of two- and three-dimensional simulations for model prob-
lems. While using non physical coefficients and parameters, they show that
our numerical method is able to efficiently solve the problems of phase tran-
sition and convection in the melt. Results for physical parameters as well
as axisymmetric simulations are work in progress and will be published in a
forthcoming paper.

The simulations are performed for an ampoule with 656 mm in diame-
ter and 127 mm long. A fixed temperature profile, piecewise linear in z di-
rection, is shifted vertically with a pulling rate of 0.5mm/sec to define the
time dependent boundary values for the enthalpy. We use a Reynolds Num-
ber Re = 1000, corresponding to a fluid which is about twice as viscous as
(Cd,Zn)Te, and a dimensionless heat conductivity £ = 1.0 in both phases.
All computations were performed with the adaptive finite element toolbox
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ALBERT [18] using the the cubic/quadratic Taylor-Hood element for velocity
and pressure; figures were prepared using the GRAPE visualization library
[20].

We use the following semi-implicit discretization of system (2),(3). In
the explicit adaptive strategy for the ampoule simulation, the sequence of
calculations for time step n + 1 is:

— Solve the Stefan problem for new temperature @"t! and enthalpy U"*!
with the given velocity V™ from the last time step.

— Define the new discrete liquid phase an+1-

— Solve one time step of the fractional 8-scheme for the Navier-Stokes equa-
tions for new velocity V™' and pressure P"*! with the given tempera-
ture O™ and liquid sub-domain 2.

— Calculate error estimators for the Stefan problem with convection, adapt
mesh and time step size.

Two-Dimensional Simulations. Figure 7 depicts interface positions and
velocities at three different times from a two-dimensional simulation. While
the crystal grows upward, the convection gets stronger in the beginning.
This behavior continues until the crystal grows up to about 3/4 of the total
ampoule height. Later, convection decreases until finally the whole domain
is filled with solid material. Corresponding meshes are shown in Fig.8. The
adaptive method automatically generates highly refined meshes near the mov-
ing interface, while the meshes in the solid part are very coarse, except near
the corners of the domain boundary. In order to resolve the convection, the
mesh in the liquid part of the domain is refined more. The reason for the high
mesh refinement at the interface can be clearly seen in Fig. 9: the enthalpy U,
shown in the upper graph, varies from 0 to 1 in a very narrow region, while it
distributes almost uniformly inside the solid and liquid phases. The velocity
is important only in the liquid, the graph of the modulus |xV| is shown in
the middle and the adapted mesh in the lower part of the figure. Mesh and
graphs are shown for the same time as in the left part of Figs.7 and 8.

The influence of the convection on the temperature distribution is shown
in Fig.10. It depicts the temperature gradients along the axis of symmetry
of the ampoule for a simulation with and without convection. According to
the Stefan condition

[Vol, = =Vr[ul;,

the temperature gradient jumps across the interface; the size of the jump is
given by the product of interface velocity Vi and latent heat [u] = L. The
curve for the simulation with convection corresponds to the result shown
in the middle part of Fig.7. Especially in the important region around the
solid-liquid interface (around z = 0.058), the gradients of the temperature
are larger. On the other hand, the gradients are smaller in the upper part of
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Fig. 7. 2-D simulation. Interface and convection in the melt at different times;

arrow length corresponds to |V|.
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the melt. The influence of the convection on the temperature gradients is not

seen in the furnace simulation and underlines the necessity of the ampoule

simulation. This influence is also reflected by the concave parts of the interface

in the middle part of Fig.7.
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Fig. 9. 2-D simulation. Graph of enthalpy U (top), convection |xV| in the melt
(middle) and adaptive grid (bottom).
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Three-Dimensional Simulation. In three space dimensions, simulations
are much more costly than in two dimensions. ALBERT allows program de-
velopment in two dimensions and, with only few program modifications, sim-
ulations in three dimensions. Figure 11 presents a triangulation of the three-
dimensional ampoule consisting of tetrahedra and the solid-liquid interface
together with the trace of the velocity on the center plane at two different
time steps from the 3-D simulation.

Fig. 11. 3-D simulation. Geometry and grid, interface and trace of convection on
center plane at two different times.
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