Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Nick Heilenkötter

Contact Sitemap Impressum [ English | Deutsch ]
Bild  Nick Heilenkötter

Nick Heilenkötter

Research Assistant WG Industrial Mathematics

Room: MZH 2170
Email: nick7@uni-bremen.de
Phone: (0421) 218-63815

Publications (Selection)complete list

  1. M. Beckmann, N. Heilenkötter.
    Equivariant Neural Networks for Indirect Measurements.
    SIAM Journal on Mathematics of Data Science, 6(3), 2024.

    DOI: 10.1137/23M1582862
    online at: https://epubs.siam.org/doi/10.1137/23M1582862

  2. C. Arndt, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, J. Nickel.
    Bayesian view on the training of invertible residual networks for solving linear inverse problems.
    Inverse Problems, 40 045021 40(4), IOPscience, 2024.

    DOI: 10.1088/1361-6420/ad2aaa
    online at: https://www.x-mol.net/paper/article/1682514725633245184

  3. C. Arndt, A. Denker, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, P. Maaß, J. Nickel.
    Invertible residual networks in the context of regularization theory for linear inverse problems.
    Inverse Problems, 39(12), IOPscience, 2023.

    DOI: 10.1088/1361-6420/ad0660
    online at: https://iopscience.iop.org/article/10.1088/1361-6420/ad0660

  4. D. Nganyu Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, P. Maaß.
    Deep learning methods for partial differential equations and related parameter identification problems.
    Inverse Problems, 39(10), 2023.

    DOI: 10.1088/1361-6420/ace9d4

  5. J. Le Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner , J. Schaller , P. Maaß.
    Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
    MDPI Journal of Imaging, 71 7(4), Meisenbach Verlag, Bamberg, 2021.

    DOI: 10.3390/jimaging7040071