Dr. Maximilian Schmidt
Research Assistant WG Industrial Mathematics, Research Training Group π3Email: maximilian.schmidt@uni-bremen.de
Phone: (0421) 218-63826
ORCID iD: 0000-0001-8710-1389
CV
Theses
- Master Thesis (12/2018)
-
Investigation of Neural Capsule Networks in the Context of Image Classification and Semantic Segmentation
German title: Untersuchung Neuronaler Kapsel-Netze im Kontext der Bildklassifikation und Semantischen Segmentierung
Supervisors: Prof. Dr. Dr. h.c. Peter Maaß, Dr. Jens Behrmann
University of Bremen - Bachelor Thesis (09/2016)
-
Classification on MALDI Data with Non-Negative Matrix Factorization and Supervised Learning
German title: Klassifikation auf MALDI-Daten mit nichtnegativer Matrixfaktorisierung und überwachtem Lernen
Supervisors: Prof. Dr. Dr. h.c. Peter Maaß, Delf Lachmund
University of Bremen
Work & Research
- PhD Student RTG π3 (since 09/2019)
-
R3-10: Learning Tikhonov Functionals for Inverse Problems
Center for Industrial Mathematics
University of Bremen - Research Assistant (since 01/2019)
-
Deep Learning & Inverse Problems
Center for Industrial Mathematics
University of Bremen - Internship (08/2017 - 10/2017)
-
Size Reduction of Artificial Neural Networks
Bosch, Research Department
Hildesheim, Germany - Student Assistant (08/2014 - 12/2018)
-
Machine Learning & MALDI Imaging
Center for Industrial Mathematics
University of Bremen
Research Areas
- Deep Learning
- Inverse Problems
- Computed Tomography
Projects
- Neural networks in MALDI imaging (since 01.10.2016)
Courses (Selection)
- Computerpraktikum (Wintersemester 2019/2020)
- Übungen Mathematical Foundations of Machine Learning (Sommersemester 2019)
Theses (Selection)
- Active learning for semantic segmentation in digital pathology (Jannik Wildner)
- Out of Distribution Detection for Purity Assessment of Pellets using Neural Networks (Jannik Wildner)
Publications (Selection)
- R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
How GAN Generators can Invert Networks in Real-Time.
The 15th Asian Conference on Machine Learning - ACML 2023, 11.11.-14.11.2023.
PMLR, 222:422-437, 2024. - P. Jansen, J. Le Clerc Arrastia, D. Otero Baguer, M. Schmidt, J. Landsberg, J. Wenzel, M. Emberger, D. Schadendorf, E. Hadaschik, P. Maaß, K. G. Griewank.
Deep learning based histological classification of adnex tumors.
European Journal of Cancer, 113431 196, 2024. - R. Herdt, M. Schmidt, D. Otero Baguer, P. Maaß.
Smooth Deep Saliency.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2404.02282
- R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
Model Stitching and Visualization How GAN Generators can Invert Networks in Real-Time.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2302.02181
- T. Lütjen, F. Schönfeld, J. Leuschner, M. Schmidt, A. Wald, T. Kluth.
Learning-based approaches for reconstructions with inexact operators in nanoCTapplications.
Zur Veröffentlichung eingereicht.online at: https://aps.arxiv.org/abs/2307.10474