

Dr. Tim Haga Aaron Lye Mathematische Grundlagen I WS 2017/18

Übungsblatt 4

Präsenzübungen

- **P9.** Gegeben sei die Menge $M = \{1, 2\}$.
 - a) Geben Sie alle Relationen auf M an.
 - b) Welche der Relationen aus a) sind Äquivalenzrelationen, Halbordnungen, Totale Ordnungen?
 - c) Welche der Relationen aus a) sind linkstotal, rechtseindeutig, beides?
- **P10.** Untersuchen Sie die Abbildungen $f_i \colon X_i \to Y_i, x \mapsto x^2$ auf Injektivität, Surjektivität, Bijektivität:
 - a) $X_1 = Y_1 = \mathbb{R}$;
 - b) $X_2 = Y_2 = \{x \in \mathbb{R} \mid x \ge 0\};$
 - c) $X_3 = \mathbb{N}, Y_3 = \{n^2 \mid n \in \mathbb{N}\}.$

Geben Sie in allen Fällen die Urbildmenge $f_i^{-1}(5)$ an.

P11. Die Abbildungen $f,g: \mathbb{R} \to \mathbb{R}$ sind gegeben durch f(x) = 3x - 11 und $g(x) = x^4$. Bestimmen Sie die Verknüpfungen $f \circ g$ und $g \circ f$.

Hausübungen

H8. Es sei $P \subseteq \mathcal{P}(A)$ eine Partition von A. Die Relation R sei definiert durch

$$xRy \iff \exists M \in P \colon x \in M \land y \in M.$$

Zeigen Sie: *R* ist eine Äquivalenzrelation auf *A*.

(1 Punkt)

- **H9.** Ein *Intervall* in \mathbb{R} ist eine Teilmengen der Form $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$.
 - a) Sei die Abbildung $f: \mathbb{R} \longrightarrow \mathbb{R}$ gegeben durch $x \longmapsto x^2 1$. Bestimmen Sie, jeweils mit kurzer Begründung, die folgenden Mengen (machen Sie sich die Situation ggf. zunächst an einem Schaubild klar):
 - i) f([-1,2])
 - ii) $f^{-1}([0,1])$

iii) $f^{-1}(0)$ (3 Punkte)

b) Bestimmen Sie eine Menge X, so dass die Abbildung $f: X \to \mathbb{R}, x \mapsto x^2 - 1$ injektiv wird. Begründen Sie ihre Antwort. (1 Punkt)

c) Gegeben sei die Funktion $f\colon x\mapsto \frac{x+7}{x+5}$. Bestimmen Sie den größtmöglichen Definitionsbereich D von f. Lösen Sie die Gleichung nach y=f(x) nach x auf. Bestimmen Sie den Wertebereich Bildf und zeigen Sie, dass $f\colon D\to \operatorname{Bild} f$ bijektiv ist. Wie lautet die Umkehrfunktion f^{-1} .

H10. Es seien eine Menge $A = \{1, 2, 3, 4, 5\}$ und eine Relation

$$R = \{(1,1), (1,4), (2,1), (2,2), (3,3), (3,5), (4,3), (4,5), (5,5)\}$$

auf A gegeben.

- a) Warum ist *R* keine Halbordnung? (1 Punkte)
- b) Welche Elemente müssen mindestens zu *R* hinzugenommen werden, um eine Halbordnung zu erhalten? Begründen Sie ihre Antwort. (1 Punkt)
- c) Ist die unter b) erhaltene Halbordnung eine totale Ordnung? Begründen Sie ihre Antwort. (1 Punkt)

Abgabe der Hausübungen am Dienstag, 14.11.2017 im Raum NW1 H1 H0020 vor Beginn der Vorlesung.

Weitere Aufgaben

Diese Aufgaben dienen zur Selbstkontrolle und müssen nicht abgegeben werden.

- 1. Beschreiben sie die folgenden Eigenschaften von Relationen mit eigenen Worten: Reflexivität, Symmetrie, Antisymmetrie, Transitivität, Totalität, Linkstotalität, Rechtseindeutigkeit.
- 2. Finden Sie Beispiele für Äquivalenzrelationen, Halbordnungen und totale Ordnungen auf $\mathbb N$ und auf $\mathcal P(M)$, wobei M eine beliebige Menge ist.
- 3. Geben Sie ein Beispiel für eine Halbordnung, die keine totale Ordnung ist.
- 4. Ist *M* eine Menge und *R* sowohl Äquivalenzrelation als auch totale Ordnung auf *M*, was kann man dann über *M* sagen?
- 5. Warum definiert eine Äquivalenzrelationen auf einer Menge eine Partition der Menge?
- 6. Sei M eine endliche Menge mit $|M| = n \ge 0$.
 - a) Wieviele Elemente muss dann eine reflexive Relation auf *M* wenigstens enthalten?
 - b) Wieviele Elemente muss dann eine symmetrische Relation auf *M* wenigstens enthalten?
 - c) Wieviele Elemente muss dann eine antisymmetrische Relation auf *M* wenigstens enthalten?
 - d) Wieviele Elemente muss dann eine transitive Relation auf *M* wenigstens enthalten?
 - e) Wieviele Elemente muss dann eine Partition von M wenigstens enthalten?
- 7. Kann man Relationen auch zwischen mehr als zwei Mengen definieren? Wie?
- 8. Sei $f: A \to B$ eine Abbildung. Was ist das Bild von f?
- 9. Wann heißt eine Abbildung injektiv, surjektiv, bijektiv?
- 10. Was ist das Urbild einer Abbildung?