COMPLEX SHEARLET TRANSFORMS AND APPLICATIONS TO EDGE AND LINE DETECTION

Georg Heygster1, Zhen Li1, Johannes Kiefer2, Emily J. King3, Rafael Reisenhofer3

(1) Institut für Umweltphysik, Universität Bremen, (2) FG Technische Thermodynamik, Universität Bremen, (3) AG Computational Data Analysis, Universität Bremen

NoKo 2015, Jacobs University, 25 April 2015

Universität Bremen
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
Edge Detection

- Edges can be sharp or smooth transitions
- Edges are not characterized by a high contrast but by a clearly defined structure
- We would like our edge measure to
 - be contrast invariant
 - be stable in the presence of noise
 - provide information about the geometry of an object
LINE DETECTION
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
REAL WORLD DATA: FLAME FRONTS

Planar Laser-Induced Fluorescence (PLIF) image of excited **OH**

Planar Laser-Induced Fluorescence (PLIF) image of excited **CH**

Images from Johannes Kiefer
REAL WORLD DATA: TIDAL FLATS

Synthetic Aperture Radar (SAR) image of the Wadden flats

Heygster, Dannenberg & Notholt 2010; Li 2014
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
Standard Approach to Edge Detection

1. Smooth image
2. Approximate gradients
3. Find local maxima and threshold

- The gradient barely recognizes the geometry of an object
- Gradient-based methods will always pick up two edges instead of one line
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
Basic Idea of Applied Harmonic Analysis
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
- A perfect 1D edge can be modeled as a simple step function
- A 1D line is something close to a delta distribution
Wavelets

- Quite popular, quite old! (Date back to Haar, 1909)
- Consider systems of small waves with a strong decay that can be differently scaled (i.e. squeezed and stretched) and translated

\[\Psi = \{ \psi_{a,t} = a^{1/2} \psi(a \cdot -t) : (a, t) \in \Gamma \} \]

- For a generating wavelet \(\psi \in L^2(\mathbb{R}) \) and indices \(\Gamma \subset \mathbb{R}^+ \times \mathbb{R} \), a wavelet system is given by

- The corresponding wavelet transform for \(f \in L^2(\mathbb{R}) \) is given by

\[(\mathcal{W}_\psi f)(a, t) = \langle f, \psi_{a,t} \rangle_{L^2} \]
Why Wavelets?

Wavelets are well suited for sparsely approximating piecewise smooth functions in 1D
Complex Wavelet Transforms

▶ Consider the structure of the complex exponential
\[e^{ix} = \cos(x) + i \sin(x) \]

▶ Cosine is symmetric
▶ Sine is odd-symmetric
▶ Cosine and sine differ by a 90° phase shift
▶ Magnitude response of Fourier transform is perfectly shift invariant
\[|\langle f, e^{i \cdot} \rangle_{L^2}| = |\langle f(\cdot - t), e^{i \cdot} \rangle_{L^2}| \]

We want to define a complex-valued transform which is well suited for representing 1D piecewise smooth functions and retains some of the nice properties of the Fourier transform

HILBERT TRANSFORM

DEFINITION (HILBERT TRANSFORM)
Let $f \in L^2(\mathbb{R})$, then the Hilbert transform of f is given by

$$(\mathcal{H}f)(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(t)}{t-x} dt$$

or equivalently in the Fourier domain

$$\mathcal{F}(\mathcal{H}f)(\xi) = -i\text{sgn}(\xi)\hat{f}(\xi),$$

where i denotes the imaginary unit and sgn the sign function.

- The Hilbert transform interchanges sine and cosine

$$\mathcal{F}^{-1}\mathcal{H}f)(x) = \frac{1}{\pi} \int_{0}^{\infty} \text{Re}(\hat{f}(\xi))\cos(\xi x) - \text{Im}(\hat{f}(\xi))\sin(\xi x) d\xi$$

$$\mathcal{F}^{-1}\mathcal{H}f)(x) = \frac{1}{\pi} \int_{0}^{\infty} \text{Re}(\hat{f}(\xi))\sin(\xi x) + \text{Im}(\hat{f}(\xi))\cos(\xi x) d\xi$$
COMPLEX WAVELETS

- Take a real-valued symmetric wavelet generator $\psi \in L^2(\mathbb{R})$
- Define complex-valued wavelet ψ^c via Hilbert transform

$$\psi^c = \psi + i\mathcal{H}\psi$$
STEP DETECTION WITH COMPLEX WAVELETS

With \(\text{Re}(\psi) \) and \(\text{Im}(\psi) \) being \(L^1 \)-normalized
DEFINITION
For a signal $f \in L^2(\mathbb{R})$ and a location $x \in \mathbb{R}$, a step measure is given by

$$E_\psi(f, x) = \frac{\left| \sum_{a \in A} \text{Im}(\langle f, \psi^c_{a,x}\rangle_{L^2}) \right| - \sum_{a \in A} \left| \text{Re}(\langle f, \psi^c_{a,x}\rangle_{L^2}) \right|}{|A| \max_{a \in A} \left| \text{Im}(\langle f, \psi^c_{a,x}\rangle_{L^2}) \right| + \epsilon},$$

where $A \subset \mathbb{R}^+$ is a set of scaling parameters, ψ is a real-valued symmetric wavelet and ϵ prevents division by zero.

- Similar ideas have been developed by Kovesi (phase congruency) and du Buf
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
The 2D Case
Shearlets

- Quite new (Kutyniok, Labate et al. 2005), not so famous (yet!)
- **Anisotropic scaling** is used to better represent 2D features

- Orientation has to be changed
- **Shears** are used instead of rotations to keep the integer grid intact
To construct a shearlet system, one needs
- a shearlet generator $\psi \in L^2(\mathbb{R}^2)$
- anisotropic scaling and shear matrices

$$A_{a} = \begin{pmatrix} a & 0 \\ 0 & a^{\alpha} \end{pmatrix} \quad \text{and} \quad S_{s} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$

with parameters $a \in \mathbb{R}^+$ and $s \in \mathbb{R}$
- $\alpha \in [0, 1]$ determines the degree of anisotropy
- For a set of parameters $\Gamma \subset \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^2$, a shearlet system is given by

$$\Psi_{\psi} = \left\{ \psi_{a,s,t} = a^{(1+\alpha)/2} \psi(S_{s}A_{a}(\cdot - t)) : (a, s, t) \in \Gamma \right\}$$

The corresponding shearlet transform for $f \in L^2(\mathbb{R}^2)$ is given by

$$\left(S_{\psi} f \right)(a, s, t) = \langle f, \psi_{a,s,t} \rangle_{L^2}$$

Guo, Kutyniok & Labate 2005; Grohs, Keiper, Kutyniok & Schäfer 2014
Complex Shearlet Transform

- Hilbert transform can be generalized to 2D
- Given a real-valued (typically symmetric) shearlet generator $\psi \in L^2(\mathbb{R}^2)$, a complex-valued shearlet generator is given by

$$\psi^c = \psi + i\mathcal{H}\psi$$

- The Hilbert transform commutes with scalings, translates and shears
- For a real-valued generator $\psi \in L^2(\mathbb{R}^2)$ and a set of parameters $\Gamma \subset \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^2$, a complex shearlet-based dictionary is given by

$$\Psi^c_{\psi} = \{\psi^c_{a,s,t} = (\psi^c)(S_sA_a(\cdot - t)) : (a,s,t) \in \Gamma\}$$

Storath 2013; R 2014
Edge Detection With Complex Shearlets

Definition
For an image \(f \in L^2(\mathbb{R}^2) \), a location \(x \in \mathbb{R}^2 \) and a shear parameter \(s \in \mathbb{R} \), an edge measure is given by

\[
E_\psi(f, x, s) = \left| \sum_{a \in A} \text{Im}(\langle f, \psi_{a,s,x}^c \rangle_{L^2}) \right| - \left| \sum_{a \in A} \text{Re}(\langle f, \psi_{a,s,x}^c \rangle_{L^2}) \right|
\]

\[
\frac{|A| \max_{a \in A} \left| \text{Im}(\langle f, \psi_{a,s,x}^c \rangle_{L^2}) \right| + \epsilon}{\left| \sum_{a \in A} \text{Im}(\langle f, \psi_{a,s,x}^c \rangle_{L^2}) \right| - \left| \sum_{a \in A} \text{Re}(\langle f, \psi_{a,s,x}^c \rangle_{L^2}) \right|},
\]

where \(A \subset \mathbb{R}^+ \) is a set of scaling parameters, \(\psi \) is a real-valued symmetric shearlet and \(\epsilon \) prevents division by zero.

- A specific orientation parameter \(s \) can be chosen...
 - beforehand, by searching for the largest odd-symmetric coefficient over all orientations
 - in hindsight, by searching for the largest edgeness over all orientations
OUTLINE

EDGE AND LINE DETECTION
Real World Problems
Standard Approach to Edge Detection

COMPLEX SHEARLET-BASED EDGE/LINE DETECTION
The 1D Case: Complex Wavelet-Based Step Detection
The 2D Case: Complex Shearlet-Based Edge Detection

RESULTS
EDGE DETECTION WITH COMPLEX SHEARLETS

Live Demo
Line Detection With Complex Shearlets

\[E_\psi(f, x, s) = \frac{\sum_{a \in A} \text{Im}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) - \sum_{a \in A} \text{Re}(\langle f, \psi^c_{a,s,x} \rangle_{L^2})}{|A| \max_{a \in A} \left| \text{Im}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) \right| + \epsilon} \]

We just reverse the roles of \(\text{Im}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) \) and \(\text{Re}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) \)

\[L_\psi(f, x, s) = \frac{\sum_{a \in A} \text{Re}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) - \sum_{a \in A} \text{Im}(\langle f, \psi^c_{a,s,x} \rangle_{L^2})}{|A| \max_{a \in A} \left| \text{Re}(\langle f, \psi^c_{a,s,x} \rangle_{L^2}) \right| + \epsilon} \]
SUMMARY AND OUTLOOK

- Interplay of even-symmetric and odd-symmetric basis functions can be used to
 - detect edges and lines
 - approximate tangential directions
- The method is stable in the presence of noise and by construction contrast invariant
- Can the parameters - especially for the construction of the analyzing functions - be chosen automatically?
- Method can easily be generalized to 3D data
- There are many connections to things in the primary visual cortex, but I didn’t have time to tell you