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Abstract

While many familiar varieties have a minimal varietal generator, i.e., a

regular projective �nitely presentable regular generator such that none of its
retracts is a regular generator, and even a unique one, we present (a) a variety

having no minimal varietal generator at all and (b) a variety having two non-

isomorphic minimal varietal generators. Moreover we demonstrate that the
same e�ects can happen with respect to a weaker notion of minimality and

are common even in module categories.
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Introduction

It is well known that the varieties W Morita equivalent to a given variety V are

determined by the varietal generators of V, i.e., by those regular generators G

of V which are �nitely presentable and regular projective: the Lawvere theory

ThW of W is isomorphic to the theory Th
V
G for some varietal generator G in V

(where Th
V
G is the dual of the full subcategory of V spanned by all �nite copowers

nG, one for each n 2 N). Thus, the possible equational representations of V are

given by its varietal generators. Given varietal generators G and Q, there exists

a retraction r : nG �! Q for some n 2 N. Given a retraction r : G �! Q (with

section s : Q �! G) between non-isomorphic varietal generators G and Q of the

variety V the equational representation of V by means of Q is simpler than the

representation given by G in the following sense:

1. for each V in V the underlying set hom
V
(Q; V ) is \smaller" than the under-

lying set hom
V
(G; V ) since hom(r; V ) embeds the �rst into the latter;
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2. the theory Th
V
Q has \fewer" morphisms than Th

V
G, since the theory-mor-

phism �u : Th
V
G �! Th

V
Q de�ned by

�u(jG
t
�! kG) = jQ

js
�! jG

t
�! kG

kr
�! kQ

is surjective on morphisms: for each jQ
�
�! kQ there exists, by projectivity

of jG, some jG
t
�! kG with kr Æ t = � Æjr; then �u(t) = �1 (see [8] for details).

In order to �nd an as simple as possible equational representation of V one, there-

fore, has to look for a varietal generator G of V which is, in some sense, minimal

with respect to the following preorder on (isomorphism classes of) varietal genera-

tors:

H v G i� H is a retract of G.

De�nition. A varietal generator G in a variety V is called minimal provided none

of its proper2 retracts is a regular (hence varietal) generator. G will be called

preminimal provided that, for each varietal generator H with H v G, one also has

G v H.

Note that a varietal generator G is preminimal i� [G] is minimal in the order

associated to the preorder v. A minimal varietal generator is preminimal.

In many familiar varieties as, e.g., Ab, Ring, and Bool, the representing objects

of the canonical underlying functors (Z; Z[X], and
�

�

�

�

��@@
@@�� respectively) are the

only minimal varietal generators (see [9]). In contrast to these observations | and

maybe contradicting algebraic intuition | we will show in this note that

� a variety need not to have a (pre)minimal varietal generator, and

� a variety might have even two non-isomorphic (pre)minimal varietal genera-

tors.

We are going to use two completely di�erent methods to produce such varieties.

The �rst uses fundamental results of categorical algebra while the second is based

on a result of Bergman [5] and shows that (some of) the varieties in question can

even be chosen to be categories of R-modules for suitable rings R.

The following immediate consequence of the de�nitions will be useful here.

Lemma 1 If P is a preminimal varietal generator in V then either P is minimal

or there exists a preminimal varietal generator Q in V such that P and Q are not

isomorphic but mutually retracts of each other.

1It also holds that ThVQ embeds into ThVG|though not as a subcategory.
2We call a retract G0 of G proper, if G0 is not isomorphic to G; observe that a retract might

be improper even if the retraction under consideraton is not an isomorphism.



Varieties Without Minimal Generators 3

1 Varieties without minimal generators

The varieties in this section are constructed as model categories of �nite product

sketches. The corresponding facts important for this note are collected as follows: If

A is a small category with some speci�ed set of �nite products, we denote by ModA

the category of all Set-valued functors preserving all the speci�ed �nite products.

This category is equivalent to a (many-sorted) variety. Aop is contained as a full

subcategory in ModA via Yoneda embedding. The dual of the closure of Aop in

ModA under �nite coproducts is called the �nite product theory FP(A) generated

by A; it is again a sketch by all its �nite products. FP(A)op is the full subcategory

of ModA consisting of the �nitely generated free algebras in ModA w.r.t. to the

evaluation functor ModA �! SetobA. FP(A) sketches the same variety as A (i.e.,

ModA ' ModFP(A)) and its dual is a regular generator of ModA (see [3, 8.4,

Theorem 1]).

A given variety V can have several (non-equivalent) �nite product theories. But

all these theories have the same Cauchy-completion which is the dual of the full

subcategory ProjfpV of V consisting of its �nitely presentable regular projectives.

Following [7, 11.10], (ProjfpV)
op is the only Cauchy-complete �nite product theory

sketching V (see [1] and [8] for more details3). We can collect the just stated facts

as follows.

Theorem 1 For each small category A with a speci�ed set of �nite products the

following hold:

1. There are equivalences

ModA ' ModFP(A) ' Mod(ProjfpModA)op

given by extending the models.

2. The subcategory FP(A)op is a regular (even a dense) generator of ModA.

3. If A is Cauchy-complete, so is FP(A) and FP(A) = (ProjfpModA)op. If, in

addition, A has all �nite products one even has A = FP(A) = (ProjfpModA)op.

The resulting one-to-one correspondence between Cauchy-complete categories

with �nite products and varieties can be extended to a dual biequivalence. Mor-

phisms among Cauchy-complete categories with �nite products then are �nite

product preserving functors while morphisms among varieties are right adjoints

preserving �ltered colimits and regular epimorphisms.

3A category A is called Cauchy-complete provided every idempotent morphism u in A splits

as u = sr with rs = 1; every category A has a Cauchy-completion, i.e, a full embedding E into a

Cauchy-complete category A� such that any functor F from A into a Cauchy-complete category

B factors uniquely over E.
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Theorem 2 ([1]) The passage A �! ModA serves as a dual biequivalence between

small Cauchy-complete categories with �nite products and varieties.

Remark 1 If, in a Cauchy complete category A with �nite coproducts, there exists

some object G such that each A-object A is a retract of some �nite copower of G,

the variety determined by A is even one-sorted. In fact ModA is equivalent to the

variety V with Lawvere theory ThV = Th
A
opG made up by G and its �nite powers

in A. ThV is, as a category, equivalent to FP(A).

1.1 A variety without preminimal generators

We are going to sketch a variety as follows:

Let Ni = fn 2 N j n � ig for i 2 N. Denote by �i and �i the maps Ni+1 �! Ni

with �i(i+1) = ei; �i(i+1) = oi and �i(n+1) = �i(n)+ 2; �i(n+1) = �i(n)+ 2,

where ei is smallest even number in Ni and oi the smallest odd number in Ni

respectively. Then Ni+1
�i
��! Ni

�i
 ��� Ni+1 is a coproduct in Set. There is

a codiagonal 4i : Ni �! Ni+1 de�ned by 4i�i = 4i�i = 1 and a symmetry

si : Ni �! Ni de�ned by si�i = �i and si�i = �i.

Let F be the subcategory of Set generated by the sets and maps just de�ned.

Then the following facts are easily seen to be true:

Fact 1 For each i 2 N the diagram

Ni+1
�i
��! Ni

�i
 ��� Ni+1

is a coproduct in F .

Fact 2 For i; j 2 N; i < j; Ni is not a retract of Nj in F .

Fact 3 For i; j 2 N; i 6= j, the objects Ni and Nj are not isomorphic in F .

Fact 4 F is a Cauchy complete category.

Fop, together with the products speci�ed in Fact 1 now sketches a (possibly

many-sorted) variety V.

Proposition 1 V is a one-sorted variety without preminimal varietal generators.

Proof. Let us observe �rst that each object Ni is | considered as a V-object

| a varietal generator of V. Clearly, each Ni belongs to ProjfpV. N0 is a varietal

generator of V. Indeed, since FP(Fop)op is a regular generator of V, for each V-

object V there exists a regular epimorphism
`

J Nij

q
�! V . Now, for each k 2 N,
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by de�nition of F there exists a retraction rk : N0 �! Nk. Hence there results a

regular epimorphism

J �N0

`
J rij

����!
a
J

Nij

q
���! V:

Thus, N0 is a regular generator of V, and V is one-sorted.

But then also each Ni is a regular (hence varietal) generator; in fact each regular

quotientX �N0! V is a regular quotient YNi! V since, for each i 2 N; N0 = 2iNi.

Assume now that G is a preminimal varietal generator. By Theorem 1 and Fact

4 G =
k̀

j=1

Nij . With m = minfnijg and n = maxfnijg + 1 there are retractions

G ! Nm and G ! Nn. Since G is preminimal G has to be a retract of Nn. It

follows that Nm is a retract of Nn which contradicts Fact 2 since m < n. 3

1.2 A universal variety with two non-isomorphic preminimal

generators

We de�ne a Cauchy complete category as follows.

Let F be the free category over the graph

-�
� -

Q0 Q1

�

�
s

r

subject to the equations

rs = 1Q1
and �� = 1Q0

:

Lemma 2 Let v be a morphism in F , v not an identity. Then v is of precisely

one of the following types:

Type 1 a composition of �nitely many copies of r and �;

Type 2 a composition of �nitely many copies of s and �;

Type 3 a composition w2 Æw1, where w1 is of type 1 and w2 is of type 2.

Proof. Since none of the morphisms r; s; �; � is an isomorphism the obove types

exclude each other.

Assume v is neither of type 1 nor of type 2. v can be written as a composition

of r; s; �; � containing no sequence rs and ��. Decompose v as

v = wn Æ : : : Æw1
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such that each wi is a composition of either retractions r and � or sections s and

� and, for each i < n, if wi consists of sections (retractions), wi+1 consists of

retractions (sections).

Now only one of the segments wi consists of sections only. For, if wi = s Æ : : : ,

wi+1 must be of the form wi+1 = : : :Æ r since the composition wi+1 Æwi is de�ned.

But this is impossible since v contains no sequence rs. Similarly for wi = � Æ : : : .

Hence v = w2 Æw1 where w1 consists of retractions and w2 consists of sections

only. 3

Fact 5 Q0 and Q1 are not isomorphic in F .

Proof. None of the types of morphisms listed in the Lemma allows for an

isomorphism. 3

Fact 6 F is Cauchy complete.

Proof. Any idempotent v|say v : Q0 ! Q0|can, by the Lemma, be decomposed

as v = w2 Æw1.

Case 1: cod w1 = dom w2 = Q0

Then w1 = �r : : :�r = (�r)n

w2 = s� : : : s� = (s�)m

Now v2 = v means

(s�)m(�r)n(s�)m(�r)n = (s�)m(�r)n

which implies (since sections are monomorphisms and retractions epimorphisms)

(�r)n(s�)m = 1:

Consequently n = m since otherwise r or s would be an isomorphism, contradicting

Fact 5. Thus the decomposition w2 Æw1 is a splitting of v.

Case 2: cod w1 = dom w2 = Q1

Then w1 = r� : : : �r = (r�)nr

w2 = s� : : :�s = s(�s)m

Here v2 = v means

s(�s)m(�r)nrs(�s)m(�r)nr = s(�s)m(�r)nr

and one can conclude as above that m = n since rs = 1. Again, w2 Æ w1 is a

splitting of v. 3

Remark 2 Instead of proving Facts 5 and 6 directly one might alternatively use

the general methods developed in [10].
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F (without any speci�ed products) sketches a (possibly many-sorted) variety

W with unary operations only; i.e. W = SetF .

Let F̂ = FP(F). Then the following holds where we implicitely refer to Theorem

1. Note in particular that the varietal generators of W (if they exist) are precisely

those F̂-objects G such that every F̂-object is a retract of some �nite copower mG.

Note also that the coproducts in F̂ are coproducts in W and that F̂ , hence W,

contains F as a full subcategory.

Fact 7 Every object of F̂, di�erent from the initial one, is a varietal generator of

W; in particular W is a one-sorted variety.

Proof. Let G =
`

I Qi; H =
`

j Qj be in F̂ , hence Qi; Qj 2 fQ0; Q1g, with

I 6= ;. Choose i0 2 I and, for each k 2 I [ J , a retraction

Qk
sk
�! Qi0

rk
�! Qk = 1

with ri0 = 1. This is possible by the de�nition of F . Then one gets retractions

a
J

Qi0

`
J rj

����!
a
J

Qj = H

and a
I

Qi

[ri ]=r
����! Qi0

(de�ned by r Æ �i = ri for i 2 I; observe r�i0 = ri0 = 1). Thus,

a
J

�a
I

Qi

�
J�r
���!

a
J

Qi0

`
J rj

����! H

is a retraction. 3

Fact 8 Every object G of F̂ , di�erent from the initial one, has a retract Q in F̂ ,

di�erent from the initial one, which is not isomorphic to G.

Proof. Let G =
`

I Qi be in F̂ , I 6= ;. By the proof of Fact 7 Q0 or Q1 is a

retract of G which certainly is not isomorphic to G provided that jIj > 1 according

to the construction of F̂ . Finally, the case jIj = 1 is settled by Fact 5 since Q0 is

a retract of Q1 and Q1 is a retract of Q0. 3

We summarize these results as

Proposition 2 W is a �nitary one-sorted variety which has no minimal but pre-

cisely two non-isomorphic preminimal varietal generators.



8 H.{E. Porst and J. Rosick�y

Remark 3 In view of Lemma 1 the varietyW constructed above has the smallest

possible number of preminimal varietal generators which are not minimal.

This variety is, moreover, universal in the following sense: Let W0 be a variety

with two non-isomorphic preminimal varietal generators P0; P1. By Lemma 1 there

exist retractions P1
�s
�! P0

�r
�! P1 = id and P0

��
�! P1

�%
�! P0 = id. Hence there

exists a unique functor S : F �! W0 sending Qi to Pi and the morphisms in our

starting graph to the corresponding barred ones. It is not diÆcult to see that S in

fact embeds F into the canonical algebraic theory ofW0. Thus, F is a subtheory of

the canonical algebraic theory of W0 for each variety W0 with two non-isomorphic

preminimal varietal generators; in other words (see Theorem 2): W is a quotient

of each such variety.

2 Module categories with non-isomorphic

(pre-)minimal generators

In this section we show that varieties with non-isomorphic preminimal (or even

minimal) varietal generators can even appear as categories R-Mod of leftR-modules

for some ring R.

Concerning varietal generators in categories of modules the following is obvious:

Lemma 3 A varietal generator G in R-Mod is

� minimal i� none of its proper direct summands is a varietal generator;

� preminimal i� each varietal generator H has G as a direct summand, provided

H is a direct summand of G.

(G = H �H0 ) H = G� G0)

Now denote, for a given ring R, by P(R) its monoid of projectives, i.e., the

monoid of isomorphism classes jP j of �nitely generated projective left R-modules

P with the operation jP j+ jQj = jP � Qj. P(R) is always conical, (i.e., x + y =

0 ) x = 0 = y) and has an order-unit, i.e., an element e 6= 0 such that for each

x there is y and n 2 N such that x + y = ne (order-units correspond to varietal

generators).

Our construction is based on the following result of Bergman:

Theorem 3 ([5, 6.2, 6.4]) For any conical commutative monoidM with an order-

unit there exists a ring RM such that P(RM ) and M are isomorphic. This ring is

even hereditary (i.e., submodules of projective RM -modules are projective) provided

that M is �nitely generated.

Since �nite sums of varietal generators are varietal generators and, for each

module category R-Mod, the varietal generators are precisely the order units of the
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monoid P(R), the order units of P(R) form a subsemigroup V(R). The following

is then a direct consequence of Lemma 3.

Lemma 4 If, for some ring R, the monoid V(R) is a non-trivial group, the cate-

gory R-Mod has no minimal varietal generator and cardV(R) non-isomorphic pre-

minimal varietal generators.

In order to produce conical monoids with order units the following observation

is useful: for any commutative monoid M , let M� be the monoid obtained by

adding a new zero-element 0, i.e., M� = M [ f0g and m + 0 = 0 +m = m for all

m 2M . Then M� is conical and order units ofM remain to be order units in M�.

If in particular M is a group, each element of M is an order unit in M�.

Proposition 3 For any cardinal number � > 1 there exists a ring R� such that

the variety R�-Mod has no minimal varietal generator, but � non-isomorphic pre-

minimal ones.

Proof. Chose an Abelian group M of cardinality �. Then RM� has the required

properties by Lemma 4. 3

Proposition 4 There exists a ring R such that the variety R-Mod has two non-

isomorphic minimal varietal generators.

Proof. LetM be the free commutativemonoid with two generators p; g satisfying

p2 = g2. Then M consists of elements 1; pngm; n;m 2 N. M is conical and both,

p and g are order units because

(pngm)gm = png2m = pnp2m = pn+2m

pn(pngm) = p2ngm = g2ngm = g2n+m

Moreover p - g and g - p. Hence RM-Mod has two non-isomorphic minimal varietal

generators corresponding to p and g. 3

3 When minimal generators do exist

Here we present suÆcient conditions for the existence of minimal varietal genera-

tors.

Proposition 5 Let V be a variety where �nitely generated objects are �nitely pre-

sentable or regular projective objects are closed under directed colimits. Then V has

a minimal varietal generator.
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Proof. Assume that V does not have a minimal varietal generator. Then there

is a descending chain

P0
r0
�! P1

r1
�! P2 �! : : :

of �nitely presentable regular projectives and proper retractions. Let P! be a

colimit of this chain. Since the colimit component p0 : P0 �! P! is a regular

epimorphism (recall that the colimiting cone (pi) is jointly surjective), P! is �nitely

generated. If it is �nitely presentable, some of the pi : Pi �! P! has a right

inverse s; hence pi = pi Æ s Æ pi. Due to the construction of directed colimits in

varieties, for each a 2 Pi, there is some j > i such that rij(a) = rij(spi(a)) where

rij = rj�1 Æ : : : Æ ri. Since Pi is �nitely generated one even has, for a suitable j,

rij = rij Æ spi = rij Æ spj Æ rij, which implies rij Æ spj = 1. Therefore pj is an

isomorphism. Hence rj is an isomorphism, which is impossible.

If P! is regular projective then it is again �nitely presentable because �nitely

generated regular projectives are �nitely presentable. In fact, a �nitely generated

regular projective P admits a retraction P
s
�! F

r
�! P = id with a �nitely

generated free object F and, hence a coequalizer diagram

-- -F
1

sr
F P

r

Thus P is �nitely presentable. 3

Corollary 1 Let R be either a left Noetherian ring or a left perfect ring. Then

R-Mod has a minimal varietal generator.

Proof. If R is left Noetherian (i.e., left ideals of R are �nitely generated) then any

�nitely generated at left R-module is projective ([6, 11.31]). Hence any �nitely

generated directed colimit of projective modules is projective ([6, 11.32]). By the

proof of Proposition 5, R-Mod has a minimal varietal generator.

If R is left perfect (i.e., satis�es d.c.c. on principal right ideals), every at left

module is projective (see [4]). Hence projective left R-modules are closed under

directed colimits. 3

Corollary 2 ([9]) The categories Grp of groups, Bool of Boolean algebras and

cRng of commutative unital rings have a (unique) minimal varietal generator.

Proof. For groups this follows from the fact that projective groups are free.

The free group on one generator is the unique minimal varietal generator in Grp.

In the remaining categories under consideration the �nitely generated objects are

�nitely presentable: in Bool every �nitely generated algebra is �nite; in cRng it is

a quotient of Z[X1; : : :Xn] for some natural number n. But each congruence on

Z[X1; : : :Xn] is �nitely generated. For the unicity arguments see [9]. 3
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