Höhere Mathematik I, WS2013/14 M. Hortmann

Blatt 8 bitte heften Sie dieses Blatt vor Ihre Lösungen

Gruppennr. Tutor	Namen					
Summe bearbeitet	4	b	3a	b	2a	1
4 Punkte=100%	1	1	1	1	1	1

Aufgabe 1

Seien $a, b \in \mathbb{C}$. Gehen Sie aus von der Dreiecksungleichung $|a+b| \le |a| + |b|$, und zeigen Sie, daß auch $|a| - |b| \le |a-b|$ und $|a| - |b| \le |a+b|$ gelten muß.

Aufgabe 2

a) Sei (M,d) ein metrischer Raum. Sei $x_0 \in M$ und $f: M \to \mathbb{R}$ gegeben durch $x \mapsto d(x, x_0)$. Man zeige: f ist stetig (in jedem Punkt von M.)

b) Die Abbildung
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 sei durch $(x, y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x, y) \neq (0, 0) \\ 0 & \text{für } (x, y) = (0, 0) \end{cases}$ gegeben.

Geben Sie eine Folge (x_n, y_n) mit Grenzwert (0,0) an, für welche die Folge $f(x_n, y_n)$ einen Grenzwert besitzt, der von 0 verschieden ist. (Daher ist f unstetig im Punkt (0,0).)

Freiwillige Sonderaufgabe:

c) Die Abbildung
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 sei durch $(x, y) \mapsto \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{für } (x, y) \neq (0, 0) \\ 0 & \text{für } (x, y) = (0, 0) \end{cases}$ gegeben.

Man zeige: Ist (x_n, y_n) eine beliebige Folge mit Grenzwert (0,0), so besitzt die Folge $f(x_n, y_n)$ den Grenzwert 0. (Daher ist f stetig im Punkt (0,0).)

Aufgabe 3

Sei M ein metrischer Raum und f, $g: M \to \mathbb{R}$ seien Abbildungen. Durch $x \mapsto \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}$ wird dann eine Abbildung $\begin{pmatrix} f \\ g \end{pmatrix}: M \to \mathbb{R}^2$ definiert. Betrachten Sie \mathbb{R}^2 als metrischen Raum mit der Euklidischen Metrik und zeigen Sie:

- a) Sind f und g stetig, so auch $\begin{pmatrix} f \\ g \end{pmatrix}$.
- b) Ist $\begin{pmatrix} f \\ g \end{pmatrix}$ stetig, so sind auch f und g stetig.

Aufgabe 4

Folgern Sie aus der Tatsache, daß die Abbildung $\exp: \mathbb{C} \to \mathbb{C}$ stetig im Punkt 0 ist, daß sie dann auch stetig in jedem anderen Punkt $x_0 \in \mathbb{C}$ sein muß.