Höhere Mathematik II, SS2014 M. Hortmann

Blatt 1

bitte heften Sie dieses Blatt vor Ihre Lösungen

Tutor	Gruppennr.	Namen					
bearbeit	Summe	b	2a	d	c	b	1a
ó	5 Punkte=100%	1	1	1	1	1	1

Vorbemerkungen:

In der Differentialrechnung haben Sie es mit Gleichungen der Form $\lim_{\xi \to 0} f(\xi) = a$ zu tun, wobei $f: U \to F$, $U \subset E$ offen, E, F Banachräume, $a \in F$.

Erinnern Sie sich in diesem Zusammenhang, daß die Gleichung $\lim_{\zeta \to 0} f(\zeta) = a$ definitionsgemäß folgendes bedeutet:

$$\forall \epsilon > 0 \exists \delta > 0 \forall \zeta \in U : ||\zeta|| < \delta \Rightarrow ||f(\zeta) - a|| < \epsilon.$$

Wir nennen f differenzierbar im Punkt x_0 , wenn es eine stetige lineare Abbildung $T: E \to F$ gibt, für die gilt: (*) $\lim_{\xi \to 0} \frac{\|f(x_0 + \xi) - f(x_0) - T(\xi)\|}{\|\xi\|} = 0$.

Dies ist gleichbedeutend mit

(**)
$$\forall \epsilon > 0 \exists \delta > 0 \forall \zeta \in E$$
: $\|\zeta\| < \delta \Rightarrow \|f(x_0 + \zeta) - f(x_0) - T(\zeta)\| \le \epsilon \|\zeta\|^2$.

Wenn es überhaupt eine solche stetige lineare Abbildung gibt, so ist sie eindeutig bestimmt und wird Ableitung von f in x_0 genannt, und als $Df(x_0)$ oder $f'(x_0)$ geschrieben.

Wird eine lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^m$ durch eine Matrix beschrieben, so identifizieren wir sie mit dieser Matrix. In diesem Sinne ist also die Ableitung häufig eine Matrix. Sind die Banachräume E,F beide eindimensional, also gleich \mathbb{R} , so identifizieren wir eine lineare Abbildung $\mathbb{R} \to \mathbb{R}$ mit einer 1x1-Matrix, also einer Zahl. In diesem doppelt-eindimensionalen Fall kann man also sagen, die Ableitung sei eine Zahl.

Bei den folgenden Aufgaben benutzen Sie noch keinerlei "Differentiationsregeln".

¹ Lineare Abbildungen $\mathbb{R}^n \to \mathbb{R}^m$ sind immer stetig.

² Hinten steht "kleinergleich", um den Fall $\zeta=0$ nicht ausschließen zu müssen.

Aufgabe 1

a) Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = 3 + 7x + 15x^2$. Beweisen Sie, daß f in $x_0 = 0$ differenzierbar ist, indem Sie zeigen, daß der Grenzwert $\lim_{\xi \to 0} \frac{f(x_0 + \xi) - f(x_0)}{\xi}$ existiert. Dieser Grenzwert ist dann auch die Ableitung.

- b) Sei $f:\mathbb{R} \to \mathbb{R}$ gegeben durch $f(x)=x^2$. Ist jetzt $x_0 \in \mathbb{R}$, so berechnen Sie $a,b \in \mathbb{R}$ so, daß $f(x)=b+a(x-x_0)+(x-x_0)^2$. Jetzt können Sie den Grenzwert $\lim_{\xi \to 0} \frac{f(x_0+\xi)-f(x_0)}{\xi}$ leicht berechnen und so die Differenzierbarkeit von f in jedem Punkt zeigen. Tun Sie es!
- c) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch f(x,y) = 3 + 7x + 5y + 15xy. Berechnen Sie für $x_0 = (0,0)$ die partiellen Ableitungen $\frac{\partial f}{\partial x}(x_0)$ und $\frac{\partial f}{\partial y}(x_0)$.
- d) Das Ergebnis von c) liefert Ihnen die Matrix der partiellen Ableitungen von f in x_0 . Benutzen Sie diese, um (*) oder (**) und damit tatsächlich die Differenzierbarkeit von f in x_0 zu beweisen.

Aufgabe 2

Bei den beiden folgenden (eigentlich trivialen) Teilaufgaben müssen Sie zunächst die Ableitung raten und dann (*) oder(**) zeigen.

a) Seien E,F Banachräume, $U \subseteq E$ offen, $x_0 \in U$, $f:U \to F$ sei konstant, d.h. es gibt ein $b \in F$ so daß für alle $x \in U: f(x) = b$.

Zeigen Sie, daß f in x_0 differenzierbar ist und berechnen Sie die Ableitung $D\!f\left(x_0\right)$.

b) Seien E,F Banachräume, $f:E\to F$ sei eine stetige lineare Abbildung, es sei $b\in F$ und es seit $g:E\to F$ gegeben durch g(x)=b+f(x).

Zeigen Sie: g ist in jedem Punkt $x_0 \in E$ differenzierbar, und geben Sie die Ableitung $Dg(x_0)$ an.