Mathematik III für Physiker und Elektrotechniker WS04/05 Aufgabenblatt 2

Name(n)	Tutor	Datum

Lesen Sie neben Ihrer Vorlesungsmitschrift die "Definitionen und Aussagen zur Maßtheorie", http://www.informatik.uni-bremen.de/~michaelh/Lehrveranstaltungen/mathphysIII WS04/Masstheorie.pdf

Aufgabe 1

Man betrachte das abgeschlossene Intervall M=[0,1] und das Lebesgue-Maß λ auf diesem Raum, welches Intervallen in M ihre Länge zuordnet.

$$\begin{aligned} & \text{Man setze auf } M \quad f_0 \equiv 1 \quad , \quad f_1(x) = \begin{cases} 1, \text{falls } 0 \leqslant x < \frac{1}{2} \\ -1 \text{ falls } \frac{1}{2} \leqslant x < 1 \end{cases}, \quad g_1(x) = \begin{cases} 1, \text{falls } \frac{1}{4} \leqslant x < \frac{3}{4} \\ -1 \text{ sonst} \end{cases} \\ & \text{und dann induktiv} \quad f_{n+1}(x) = \begin{cases} f_n(2x), \text{ falls } 0 \leqslant x < \frac{1}{2} \\ f_n\left(2(x - \frac{1}{2})\right) \text{ sonst} \end{cases}, \quad g_{n+1}(x) = \begin{cases} g_n(2x), \text{ falls } 0 \leqslant x < \frac{1}{2} \\ g_n\left(2(x - \frac{1}{2})\right) \text{ sonst} \end{cases}$$

Wir betrachten den Raum der meßbaren quadratintegrablen Funktionen auf M, also $L^2_{\mathbb{R}}(M,\lambda)$ mit dem Skalarprodukt $\langle f,g \rangle = \int_M fg \, \mathrm{d} \lambda$.

- a) Skizzieren Sie, wie die Treppenfunktionen f_i, g_i aussehen und zeigen Sie dann, daß die f_i, g_i ein Orthonormalsystem bilden, daß sie also paarweise bezüglich obigen Produkts aufeinander senkrecht stehen und die Norm 1 besitzen. (Wenn Ihnen der allgemeine Beweis schwer fällt, suchen Sie nur eine Begründung für die f_i, g_i mit $i \le 3$.)
- b) Berechnen Sie für die Funktion $\varphi(x)=1-x^2$ die Koeffizienten $a_i=<\varphi$, $f_i>$ für $0 \le i \le 3$ und $b_i=<\varphi$, $g_i>$ für $1 \le i \le 3$. Plotten Sie anschließend die Funktionen φ und $\varphi_3=a_0+\sum_{i=1}^3 a_i f_i+\sum_{i=1}^3 b_i g_i$. (Computereinsatz!)

Aufgabe 2

Interpretieren Sie die in Aufgabe 1 definierte Funktion f_1 als Funktion auf \mathbb{R} und definieren Sie für $n \in \mathbb{N}$ und $x \in \mathbb{R}$ $f_{2n}(x) = f_1\left(x - n + \frac{1}{2}\right)$ $f_{2n+1}(x) = f_1(x-n)$.

Die f_n sind allesamt Treppenfunktionen, daher ist ihr Integral leicht zu berechnen.

Setzen Sie nun $g_n = \sum_{i=1}^n f_i$ und machen sich eine Skizze vom Verlauf der f_n und der g_n .

- a) Berechnen Sie für alle $x \in \mathbb{R}$ die Grenzfunktion $g_{(x)} = \lim_{n \to \infty} g_n(x)$.
- b) Stellen Sie fest, ob $\lim_{n\to\infty} \int_{\mathbb{R}} g_n d\lambda = \int_{\mathbb{R}} g d\lambda$. (*)

Falls nein, begründen Sie, wieso dies nicht dem Satz von der beschränkten Konvergenz widerspricht, d.h. geben Sie genau an, wo eine von dessen Voraussetzungen verletzt ist.

c) Nicht abzugeben: Überlegen Sie, wieso die Gleichung (*) äquivalent ist zu $\sum_{i=1}^{\infty} \int_{\mathbb{R}} f_n d\lambda = \int_{\mathbb{R}} \left(\sum_{i=0}^{\infty} f_i \right) d\lambda$

Aufgabe 3

Denken Sie sich ein gleichseitiges Dreieck Δ_1 der Kantenlänge 1, inclusive seinen Randpunkten. Indem Sie die Mittelpunkte der Seiten verbinden, entstehen 4 gleichseitige Dreiecke der Kantenlänge $\frac{1}{2}$. Nehmen Sie das innere Dreieck heraus, belassen jedoch seine Kanten und nennen die entstehende Figur Δ_2 . Δ_2 besteht nun aus drei abgeschlossenen Teildreiecken der Kantenlänge $\frac{1}{2}$. Unterteilen Sie diese Dreiecke wieder in 4 vier kongruente Teildreiecke und nehmen jeweils das mittlere, aber nicht dessen Kanten, heraus. Dadurch erhalten Sie Δ_3 , undsoweiter bis zu Δ_n und $\Delta_\infty = \bigcap_{n \in \mathbb{N}} \Delta_n$.

- a) Stellen Sie die einige der Δ_n graphisch dar, indem Sie z.B. die Menge der herausgenommenen Dreiecke schwarz färben, oder die jeweils belassenen Dreiecke rot, grün und blau färben.
- b) Wieso ist Δ_{∞} Borel-meßbar? (Die Borelsche σ -Algebra ist die kleinste σ -Algebra , welche die offenen Teilmengen des \mathbb{R}^2 enthält.)
- c) Welchen Flächeninhalt besitzt Δ_{∞} ? (Hinweis: dies ist m.E. die einfachste Teilaufgabe.)
- d) Geben Sie die Koordinaten von 10 Punkten von Δ_{∞} an.
- e) Freiwillige Sonderaufgabe: Vielleicht bringt Sie die Lösung von d) auf eine Begründung dafür, daß Δ_{∞} sogar überabzählbar unendlich viele Punkte besitzt.