Mathematik I, Logik und Algebra, WS2010/11 M. Hortmann

Blatt 2

bitte heften Sie dieses Blatt vor Ihre Lösungen

Namen						Gruppe	Tutor
						-	
						-	
1	2	3a	b	c	4	Summe	bearbeitet
2	2	1	1	1	2	8 Punkte=100%	

Aufgabe 1

Seien A,B,C Mengen. Man zeige, daß die drei folgenden Aussagen äquivalent sind: $A \subseteq B \cup C$, $(A \setminus B) \cap (A \setminus C) = \emptyset$, $(A \setminus B) \subseteq C$.

Aufgabe 2

Seien a, b, c, d Mengen. Man zeige:

Die Mengen $\{a, \{a, b\}\}$ und $\{c, \{c, d\}\}$ sind genau dann gleich, wenn a=c und b=d.

Aufgabe 3

Das Fundierungsaxiom der Mengenlehre lautet:

In jeder nicht-leeren Menge A gibt es ein Element B mit $A \cap B = \emptyset$.

Zeigen Sie, daß aus dem Fundierungsaxiom folgt:

- a) für jede Menge M gilt: $M \notin M$.
- b) sind M, N beliebige Mengen, so ist es nicht möglich, daß $M \in N$ und $N \in M$.
- c) Es gibt keine Menge, die alle Mengen als Element besitzt¹.

Aufgabe 4

Finden Sie eine bijektive Abbildung zwischen der Menge der Bitstrings der Länge 8² und der Potenzmenge einer achtelementigen Menge³.

¹ d.h. es gibt nicht die "Menge aller Mengen".

² z.B. sind 011101010 und 11001101 solche Bitstrings. Bitstrings der Länge 8 heißen auch "Bytes".

³ Es soll dabei gezeigt werden, daß die angegebene Abbildung bijektiv ist.