Mathematik II, Analysis und Lineare Algebra, Sommersemester 2011 M. Hortmann

Blatt 5

bitte heften Sie dieses Blatt vor Ihre Lösungen

Namen								Gruppe	Tutor
1a	b	С	2a	b	3a	b	4	Summe	bearbeitet
1	1	1	1	1	1	1	1	7 Punkte=100%	

1.

- a) Man gebe ein Beispiel einer unbeschränkten Funktion $f:[1,2] \to \mathbb{R}$. (Beweis!)
- b) Man gebe ein Beispiel einer unbeschränkten stetigen Funktion $f:]1,2[\rightarrow \mathbb{R}$. (Beweis!)
- c) Man betrachte die Funktion $f:[-2,2] \to \mathbb{R}$, gegeben durch $f(x)=x^3-3x$, und zeige, daß f in den Punkten -2 und 1 ein Minimum, und in den Punkten -1 und 2 ein Maximum annimmt. (Keine Differentialrechnung benutzen!)
- 2. Für $n \in \mathbb{N}$ und $x \in [0,1]$ setze man $f_n(x) := \begin{cases} nx & \text{für} \\ 1 & \text{sonst} \end{cases}$.
- a) Für jedes $x \in [0,1]$ zeige man, daß die Folge $(f_n(x))$ konvergiert und berechne den Grenzwert und bezeichne ihn mit f(x).

Dadurch wird eine Funktion $f:[0,1] \rightarrow \mathbb{R}$ definiert.

b) Man zeige: die Funktionenfolge (f_n) konvergiert nicht gleichmäßig gegen f. (Gleichmäßige Konvergenz würde bedeuten: $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in [0,1]$: $|f_n(x) - f(x)| < \varepsilon$.)

3.

- a) Man zeige, daß die Menge $\{(x, y) | x^2 + y^2 < 1\}$ offen in \mathbb{R}^2 ist.
- b) Man zeige, daß die Menge (x, y) $x^2 + y^2 \le 1$ abgeschlossen in \mathbb{R}^2 ist.

Bemerkung: Sie können jede der Ihnen bekannten Metriken im \mathbb{R}^2 benutzen. Mit der Euklidischen Metrik gelingt es am einfachsten.

4.

Für $n \ge 2$ setze man $a_n := \frac{1}{n^2 - 1}$. Man finde eine Formel für die Partialsummen der Reihe $\sum_{n=2}^{\infty} a_n$ und benutze diese, um den Grenzwert der Reihe zu berechnen.