Lineare Algebra 2, SS06 M. Hortmann

Blatt 10

Aufgabe 1

- a) Man betrachte die Abbildungsvorschrift $x \rightarrow \frac{x^2+2}{2x}$. Man zeige, daß dadurch auf dem Intervall [1,2] eine Kontraktion definiert wird und bestimme deren Grenzwert.
- b) Man betrachte die Abbildungsvorschrift $x \to 2 + \frac{1}{x}$ und zeige daß dadurch auf dem Intervall [2,3] eine Kontraktion g definiert wird. Man bestimme den Grenzwert und gebe eine Rekursionsformel für die Zähler und Nenner der durch $x_0=2$, $x_{n+1}=g(x_n)$ definierten Folge rationaler Zahlen an.

Aufgabe 2

Auf dem Raum $M_n(\mathbb{R})$ wird für eine Matrix $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{nl} & \cdots & a_{nn} \end{pmatrix}$ durch $||A|| = \sqrt{\sum_{i,j=1}^n a_{ij}^2}$ eine Norm und durch d(A,B) = ||A-B|| eine Metrik definiert.

- a) Man zeige mit Hilfe der Cauchy-Schwarzschen Ungleichung, daß für A, $B \in M_n(\mathbb{R})$ gilt: $||AB|| \le ||A|| ||B||$.
- b) Für die Matrix $A = \begin{pmatrix} 0.2 & 0.3 \\ 0.4 & 0.5 \end{pmatrix}$ gilt offenbar ||A|| < 1. Daher ist die Folge der Partialsummen $B_n = \sum_{i=0}^n A^i$ eine Cauchyfolge. Für den Grenzwert gilt $\sum_{i=0}^\infty A^i = (E-A)^{-1}$. Berechnen Sie mit Hilfe von Pari oder einem anderen Computeralgebraprogramm B_{20} durch $B(\dots((B+E)B+E)B+E)\dots) + E$ und vergleichen Sie Ihr Ergebnis mit der Matrix $(E-A)^{-1}$.

Aufgabe 3

Betrachten Sie das reelle lineare Gleichungssystem $\begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Bekanntlich kann man dies mit dem Gaußschen Algorithmus lösen. Wir benutzen hier den Banachschen Fixpunktsatz:

Man zerlege dazu die Matrix
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} = D + \overline{D}$$
 und forme $Ax = b$ um in

 $b = (D + \overline{D})x = Dx + \overline{D}x$ und dies in die Fixpunktgleichung $x = D^{-1}(b - \overline{D}x)$.

- a) Zeigen Sie, daß eine Abbildung $\mathbb{R}^n \to \mathbb{R}^n$, $x \to Cx + d$ mit $C \in M_n(\mathbb{R})$, $d \in \mathbb{R}^n$ eine Kontraktion ist, wenn $\|C\| < 1$.
- b) Zeigen Sie, daß die Abbildung $\mathbb{R}^2 \to \mathbb{R}^2$, $x \to D^{-1}(b \overline{D}x)$ eine Kontraktion ist.
- c) Berechnen Sie den Fixpunkt dieser Abbildung iterativ mit Pari und vergleichen Sie das Ergebnis mit der mittels des Gaußschen Algorithmus gewonnenen Lösung.

Aufgabe 4

Sei $A \in M_n(\mathbb{R})$.

Der Spektralradius ist definitionsgemäß das Minimum der Beträge der Eigenwerte von A. Zeigen Sie, daß der Spektralradius von A kleiner oder gleich der obigen Matrixnorm $\|A\|$ ist.