Lineare Algebra 2, SS06 M. Hortmann

Blatt 9

Lösung Aufgabe 2

Gegeben seien ein zweidimensionaler Unterraum $U \subset \mathbb{R}^3$, also eine Ebene durch 0, sowie 4 auf verschiedenen Geraden durch Null gelegene von Null verschiedene Punkte $x, y, z, w \in U^{-1}$.

Man betrachte nun eine Ebene V im \mathbb{R}^3 , die nicht parallel zu U liegt und die den Nullpunkt nicht enthält. V und U schneiden sich in einer Geraden g. Wir nehmen an, daß die Geraden durch Null und die Punkte x, y, z, $w \in U$ nicht parallel zu g sind, so daß sie g in 4 Punkten x_g , y_g , z_g , w_g schneiden. Ist d(a,b) die euklidische Distanz zwischen zwei Punkten im \mathbb{R}^3 , so bildet man das sog. "Doppelverhältnis" $\frac{d(x_g,z_g)\cdot d(y_g,w_g)}{d(x_g,w_g)\cdot d(y_g,z_g)}$.

Man zeige, daß das Doppelverhältnis sich bei einer anderen Wahl von V nicht ändert².

Lösung

Man muß zunächst erkennen, daß alle Punkte, deren Distanzen im Doppelverhältnis auftauchen, sowie sämtliche Geraden, die für das Problem eine Rolle spielen, in der Ebene U liegen, die wir mit \mathbb{R}^2 identifizieren.

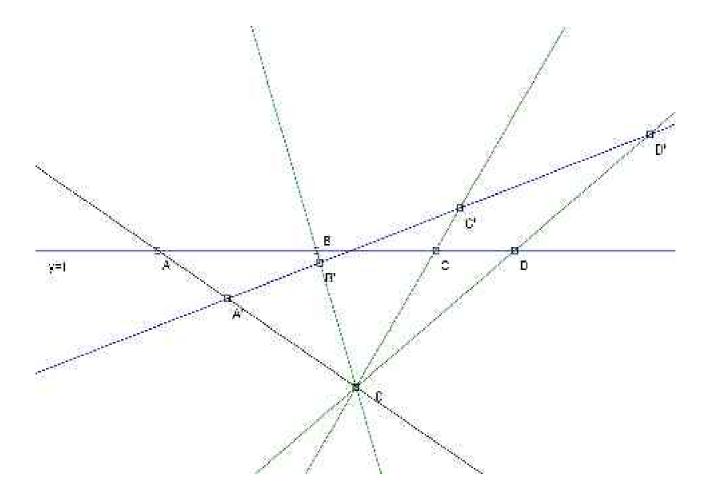
Man kann also umformulieren:

Gegeben seien 4 verschiedene Geraden durch den Nullpunkt im \mathbb{R}^2 und zwei weitere Geraden, die nicht durch den Nullpunkt gehen. Keine zwei dieser 6 Geraden seien parallel.

Nach einer Drehstreckung, im \mathbb{R}^2 , durch die Längenverhältnisse unverändert bleiben, können wir annehmen, daß die erste der Geraden, die nicht durch Null geht, die Gerade y=1 ist. Wir haben also folgende Situation

¹ Damit sind 4 Punkte auf einer projektiven Geraden im $\mathbb{P}^2(\mathbb{R})$ gegeben.

² Das Doppelverhältnis ist also eine Invariante von 4 "kollinearen" Punkten im projektiven Raum.



Dieses Bild wurde übrigens erzeugt mit dem Programm "Zirkel und Lineal", welches man von http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/java/zirkel/doc_de/index.html unentgeltlich herunterladen kann.

Wir benutzen jetzt die Schreibweise [P] für die Gerade, die durch 0 und P geht. In diesem Sinne benennen wir die Geraden $g_1=[A]$, $g_2=[B]$, $g_3=[C]$, $g_4=[D]$, wobei $A=\begin{pmatrix} a\\1 \end{pmatrix}$, $B=\begin{pmatrix} b\\1 \end{pmatrix}$, $C=\begin{pmatrix} c\\1 \end{pmatrix}$, $D=\begin{pmatrix} d\\1 \end{pmatrix}$. Natürlich gilt auch $g_1=[A']$, $g_2=[B']$, $g_3=[C']$, $g_4=[D']$

Wir setzen $A_1=A$. Weil A auf der Geraden durch B und C liegt, gibt es eine Darstellung $A=B+\mu(C-B)$, also $\mu\,C=A+(\mu-1)\,B$ mit $\mu\neq 0,1$, $\mu=\frac{a-b}{c-b}$, $1-\mu=\frac{c-a}{c-b}$. Wir setzen $B_1=(\mu-1)\,B$, $C_1=\mu\,C$ und haben dadurch $A_1+B_1=C_1$

Außerdem liegt B auf der Geraden durch A und D. Also gibt es eine Darstellung $B = D + \kappa (A - D) = (1 - \kappa)D + \kappa A \quad \text{mit} \quad \kappa \neq 0, 1 \qquad \kappa = \frac{b - d}{a - d} \quad \text{, also}$ $B_1 = (\mu - 1)B = (\mu - 1)(1 - \kappa)D + (\mu - 1)\kappa A \quad \text{. Wir setzen} \quad D_1 = (\mu - 1)(1 - \kappa)D \quad \text{und}$

$$\lambda = (1-\mu)\kappa = \frac{c-a}{c-b}\frac{d-b}{d-a}$$
 und haben damit $D_1 = \lambda A_1 + B_1$.

Der Skalar λ ist aber auch gerade (zufällig:-) das Doppelverhältnis der 4 Punkte A, B, C, D.

Wir beginnen jetzt dieselbe Konstruktion aufs Neue, ausgehend von den Punkten A', B', C', D'

$$A_1'=A' \ , \ A'=B'+\mu'(C'-B') \ , \ \text{also} \ \ \mu'C'=A'+(\mu'-1)B' \ \text{mit} \ \ \mu'\neq 0,1 \ .$$
 Zur Gleichung $B'-A'=(-\mu')(C'-B')$ addieren wir auf beiden Seiten $C'-B'$ und erhalten $C'-A'=(1-\mu')(C'-B')$ und somit $|1-\mu'|=\frac{\|B'-A'\|}{\|C'-B'\|}$.

Wir setzen auch wieder $C_1'=\mu'C'$ und $B_1'=(\mu'-1)B'$, so daß sich die Gleichung $C_1'=A_1'+B_1'$ ergibt.

Wie vorher geht es weiter mit

$$\begin{split} B' &= D' + \kappa' (A' - D') = (1 - \kappa') D' + \kappa' A' \quad \text{mit} \quad \kappa \neq 0, 1 \qquad |\kappa| = \frac{\|B' - D'\|}{\|A' - D'\|} \quad \text{, also} \\ B_1' &= (\mu' - 1) B' = (\mu' - 1) \kappa' A' + (\mu' - 1) (1 - \kappa') D' \quad \text{. Wir setzen} \quad D_1' = (\mu' - 1) (1 - \kappa) D' \quad \text{und} \\ \text{haben} \quad D_1' &= \lambda' A' + B_1' \quad \text{mit} \quad \lambda' = (1 - \mu') \kappa' = \pm \frac{\|C' - A'\|}{\|C' - B'\|} \frac{\|B' - D'\|}{\|A' - D'\|} \end{split}$$

Wenn wir zeigen können, daß $\lambda' = \lambda$, sind wir fertig, denn λ war positiv, so daß dann $\lambda' = \frac{\|C' - A'\|}{\|C' - B'\|} \frac{\|B' - D'\|}{\|A' - D'\|}$ gelten muß.

Wir haben

$$\begin{split} g_1 &= [A] = [A_1] = [A'] = [A_1'] \\ g_2 &= [B_1] = [B] = [B'] = [B_1'] \\ g_3 &= [C] = [C_1] = [A_1 + B_1] = [C'] = [C_1'] = [A_1' + B_1'] \\ g_4 &= [D] = [D_1] = [\lambda A_1 + B_1] = [D] = [D_1'] = [\lambda' A_1' + B_1'] \end{split}$$

Wir erhalten also Skalarfaktoren α , β , γ , $\delta \in \mathbb{R}$, alle ungleich Null, mit $A_1' = \alpha A_1$, $B_1' = \beta B_1$, $C_1' = A_1' + B_1' = \gamma C_1 = \gamma (A_1 + B_1)$ und $D_1' = \delta D_1$, so daß $\alpha A_1 + \beta B_1 = \gamma A_1 + \gamma A_1$, woraus wegen der linearen Unabhängigkeit von A_1 , B_1 zunächst $\alpha = \gamma = \beta$ folgt.

Schließlich gilt auch noch $D_1' = \lambda' A_1' + B_1' = \lambda' \alpha A_1 + \alpha B_1 = \alpha (\lambda' A_1 + B_1) = \alpha \lambda' A_1 + \alpha B_1$ und wegen $D_1' = \delta D_1$ auch $D_1' = \delta D_1 = \delta (\lambda A_1 + B_1) = \delta \lambda A_1 + \delta B_1$.

Aufgrund der linearen Unabhängigkeit von A_1 und B_1 ergibt sich $\alpha = \delta$ und $\alpha \lambda' = \delta \lambda$, also, wie erwünscht: $\lambda = \lambda'$!