Lineare Algebra 2, SS06 M. Hortmann

Blatt 8, Lösung zu Aufg. 2

Aufgabe 2

a) Man denke sich den \mathbb{R}^2 als xy-Ebene im \mathbb{R}^3 eingebettet und definiere die Abbildung $\Psi: \mathbb{R}^2 \to S^2 - N$, indem man $\begin{pmatrix} x \\ y \end{pmatrix}$ mit dem Nordpol $N = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ der Sphäre durch eine Gerade verbindet und als $\Psi \begin{pmatrix} x \\ y \end{pmatrix}$ den Schnittpunkt dieser Geraden mit der Sphäre wählt. Dabei treten alle

Punkte der Sphäre außer dem Nordpol als Bildpunkte auf. Man berechne Ψ und Ψ^{-1} .

Lösung:

Die Gerade im \mathbb{R}^3 durch den Punkt $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ und den Nordpol $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ist gegeben durch $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} (1-t)x \\ (1-t)y \\ t \end{pmatrix}$. Man setze hilfsweise s=1-t und erhält für den Schnittpunkt

der Gerade mit der Sphäre die Gleichung $s^2 x^2 + s^2 y^2 + (1-s)^2 = 1$, also $0=s^2(x^2+y^2+1)-2s=s(s(x^2+y^2+1)-2)$. Die Lösung s=0 ergibt den Nordpol, die Lösung $s = \frac{2}{x^2 + y^2 + 1}$, also $t = 1 - s = \frac{x^2 + y^2 - 1}{x^2 + y^2 - 1}$ ist die, die wir suchen. Einsetzen in die

Geradengleichung ergibt den Punkt $\Psi\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2x}{x^2 + y^2 + 1} \\ \frac{2y}{x^2 + y^2 + 1} \\ \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1} \end{pmatrix} \in S^2 - N .$

Die Umkehrfunktion berechnen wir analog. Wir gehen aus vom Punkt $\begin{pmatrix} u \\ v \\ w \end{pmatrix} \in S^2 - N$, also

 $u^2+v^2+w^2=1$, $w\neq 1$, und berechnen den Schnittpunkt der Gerade, die durch diesen Punkt und den Nordpol geht, mit der xy-Ebene. Die Gerade ist also diesmal gegeben durch

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} u \\ v \\ w \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} tu \\ tv \\ 1 + t(w-1) \end{pmatrix}$$
, und den Schnittpunkt mit der xy-Ebene finden wir, indem

wir die dritte Komponente Null setzen, wodurch man $t = \frac{1}{1-w}$ erhält und jedenfalls nicht durch

Null dividiert. Es ergibt sich also
$$x = \frac{u}{1-w}$$
 und $y = \frac{u}{1-w}$. Setzen wir $X \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} \frac{u}{1-w} \\ \frac{v}{1-w} \end{pmatrix}$, so

wird dadurch eine Abbildung $X: S^2 \to \mathbb{R}^2$ definiert.

Man rechnet jetzt explizit nach, daß es sich um die Umkehrabbildung von $\Psi: \mathbb{R}^2 \to S^2 - N$ handelt, indem man die Gültigkeit von $X \circ \Psi = \mathrm{id}_{\mathbb{R}^2}$ und $\Psi \circ X = \mathrm{id}_{S^2 - N}$ nachweist. Andererseits ist diese Beziehung aufgrund der geometrischen Konstruktion auch vorher klar.

b) Durch
$$\Phi\begin{bmatrix} \zeta \\ \eta \end{bmatrix} := \begin{pmatrix} \frac{2\operatorname{Re}\zeta\overline{\eta}}{|\zeta|^2 + |\eta|^2} \\ \frac{2\operatorname{Im}\zeta\overline{\eta}}{|\zeta|^2 + |\eta|^2} \\ \frac{|\zeta|^2 - |\eta|^2}{|\zeta|^2 + |\eta|^2} \end{pmatrix}$$
 wird eine bijektive Abbildung $\mathbb{P}^1(\mathbb{C}) \xrightarrow{\Phi} S^2$ definiert. Man berechne die Umkehrabbildung Φ^{-1} . Welche Punkte von $\mathbb{P}^1(\mathbb{C})$ entsprechen dabei dem

berechne die Umkehrabbildung Φ^{-1} . Welche Punkte von $\mathbb{P}^1(\mathbb{C})$ entsprechen dabei dem Nordpol, dem Südpol und dem Äquator der S^2 , welche der nördlichen und welche der südlichen Halbkugel? Beachten Sie die Beziehung zwischen den Aufgabenteilen a), b).

Lösung:

Man beachte, daß zur Wahrung der Konsistenz mit 2a) die Reihenfolge der Koordinaten von Φ modifiziert wurde; auch ersetzen wir die Variablen z,w durch ζ , η , weil w bereits also Koordinatenvariable auf der Sphäre gebraucht wird und z als Variable in der komplexen Ebene.

Die in 2a) konstruierten Abbildungen Ψ , $X = \Psi^{-1}$ lassen sich durch die Identifikation $\mathbb{R}^2 = \mathbb{C}$

via
$$z=x+iy=\begin{pmatrix} x \\ y \end{pmatrix}$$
 auch so auffassen: $\mathbb{C} \overset{\Psi}{\Leftrightarrow} S^2-N$, also $\Psi(z)=\begin{pmatrix} \frac{2\operatorname{Re} z}{|z|^2+1} \\ \frac{2\operatorname{Im} z}{|z|^2+1} \\ \frac{|z|^2-1}{|z|^2+1} \end{pmatrix} \in S^2-N$,

$$X \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \frac{u}{1-w} + i \frac{v}{1-w} \quad \text{Betrachten wir die Teilmenge} \quad U = \left\{ \begin{bmatrix} \zeta \\ \eta \end{bmatrix} \middle| \quad \zeta, \eta \in \mathbb{C}, \eta \neq 0 \right\} \subset \mathbb{P}(\mathbb{C}) \quad \text{, so}$$

ist die Abbildung $U \stackrel{\pi}{\to} \mathbb{C}$ $\begin{bmatrix} \zeta \\ \eta \end{bmatrix} \stackrel{\pi}{\to} z = \frac{\zeta}{\eta}$ bijektiv. Der Menge U fehlt ja gegenüber dem ganzen Raum $\mathbb{P}(\mathbb{C})$ nur ein einziger Punkt, nämlich der "Nordpol" $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Wir rechnen nun nach, daß auf U gilt: $\Phi = \Psi \circ \pi$:

1. Komponente:

$$(\Psi_{1} \circ \pi) \left(\begin{bmatrix} \zeta \\ \eta \end{bmatrix} \right) = \Psi_{1} \left(\frac{\zeta}{\eta} \right) = \frac{2 \operatorname{Re} \frac{\zeta}{\eta}}{\frac{|\zeta|^{2}}{|\eta|^{2}} + 1} = \frac{\frac{\zeta}{\eta} + \frac{\overline{\zeta}}{\overline{\eta}}}{\frac{|\zeta|^{2} + |\eta|^{2}}{|\eta|^{2}}} = \frac{\frac{\zeta \overline{\eta} + \overline{\zeta} \eta}{|\eta|^{2}}}{\frac{|\zeta|^{2} + |\eta|^{2}}{|\eta|^{2}}} = \frac{2 \operatorname{Re} \zeta \overline{\eta}}{|\zeta|^{2} + |\eta|^{2}} = \frac{2 \operatorname{Re} \zeta \overline{\eta}}{|\zeta|^{2} + |\eta|^{2}}$$

2. Komponente: analog

3. Komponente:

$$(\Psi_{3} \circ \pi) \left(\begin{bmatrix} \zeta \\ \eta \end{bmatrix} \right) = \Psi_{3} \left(\frac{\zeta}{\eta} \right) = \frac{\frac{|\zeta|^{2}}{|\eta|^{2}} - 1}{\frac{|\zeta|^{2}}{|\eta|^{2}} + 1} = \frac{\frac{|\zeta|^{2} - |\eta|^{2}}{|\eta|^{2}}}{\frac{|\zeta|^{2} + |\eta|^{2}}{|\eta|^{2}}} = \frac{|\zeta|^{2} - |\eta|^{2}}{|\zeta|^{2} + |\eta|^{2}}$$

 $\text{Man stellt nun fest, daß die Abbildungsvorschrift} \quad \Phi \begin{bmatrix} \zeta \\ \eta \end{bmatrix} := \begin{pmatrix} \frac{2\operatorname{Re}\zeta\,\overline{\eta}}{|\zeta|^2 + |\eta|^2} \\ \frac{2\operatorname{Im}\zeta\,\overline{\eta}}{|\zeta|^2 + |\eta|^2} \\ \frac{|\zeta|^2 - |\eta|^2}{|\zeta|^2 + |\eta|^2} \end{pmatrix} \quad \text{nicht nur auf } U \text{, sondern}$

auch für den "Nordpol" $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{P}(\mathbb{C})$ Sinn macht und als Wert der Nordpol $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in S^2$ herauskommt.

Umgekehrt betrachten wir jetzt die Abbildung $S^2 - N \xrightarrow{X} \mathbb{C} \xrightarrow{\pi^{-1}} U \subset \mathbb{P}(\mathbb{C})$ und erhalten

$$\pi^{-1} \circ X \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \pi^{-1} \left(\frac{u}{1-w} + i \frac{v}{1-w} \right) = \left[\frac{u}{1-w} + i \frac{v}{1-w} \right] = \left[\frac{u+iv}{1-w} \right].$$

Definiert man jetzt $\Sigma: S^2 \to \mathbb{P}(\mathbb{C})$ durch $\begin{pmatrix} u \\ v \\ w \end{pmatrix} \to \begin{cases} \begin{bmatrix} u+iv \\ 1-w \end{bmatrix}$, falls w $> 1 \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so ist offenbar $\Sigma = \Phi^{-1} \quad \text{Bezüglich} \quad S^2 - N \Leftrightarrow U = \mathbb{P}(\mathbb{C}) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ wurde ja bereits alles gezeigt, und für den Nordpol stimmt die Sache auch.}$