Lineare Algebra 2, SS06 M. Hortmann

Blatt 1

Aufgabe 1

Sei R ein Ring mit 1.

Gibt es zu $e \in R$ ein $e' \in R$ mit $e \cdot e' = 1$ und $e' \cdot e = 1$, so nennt man e eine "Einheit". Die Einheiten sind also die Elemente, die ein multiplikativ Inverses besitzen.

- a) Man zeige, daß die Einheiten in *R* eine Gruppe bezüglich der Ringmultiplikation bilden. (Dabei ist *R* nicht unbedingt nullteilerfrei oder kommutativ!)
- b) Man bestimme die Einheitengruppen der folgenden Ringe:

$$\mathbb{Z}$$
, \mathbb{Z}_{21} , $\mathbb{Z}[\omega] = \left\{ a + b\omega \middle| a, b \in \mathbb{Z} \right\}$, wobei $\omega = \frac{1}{2} + i\frac{\sqrt{3}}{2} \in \mathbb{C}$.

Wieso handelt es sich bei $\mathbb{Z}[\omega]$ überhaupt um einen Ring?

c) Man zeige: enthält ein Ideal $I \subseteq R$ eine Einheit, so ist I = R.

Aufgabe 2

- a) Man zeige, daß die Restklassenringe \mathbb{Z}_n sämtlich Hauptidealringe sind. (Hinweis: man gehe ähnlich vor wie bei \mathbb{Z} .)
- b) Man schreibe alle Ideale von \mathbb{Z}_{45} explizit hin.
- c) Man gebe ein Ideal im Polynomring $\mathbb{Z}[X]$ an, welches kein Hauptideal ist.

Aufgabe 3

Sei
$$R := \{f :]0,1[\rightarrow \mathbb{R} \mid f \text{ stetig} \}$$
.

R ist ein kommutativer Ring mit Eins via (f+g)(x) := f(x) + g(x), $(f \cdot g)(x) := f(x) \cdot g(x)$ Welches ist das neutrale Element der Addition, welches das der Multiplikation?

a) Ist dieser Ring nullteilerfrei? (Beweis!)

Ein Ideal I heißt maximal, wenn es kein nicht-triviales Ideal J Ideal gibt mit $I \subset J$, $I \neq J$.

b) Sei
$$0 < x_0 < 1$$
. Wieso ist $I(x_0) := \{ f \in R | f(x_0) = 0 \}$ ein maximales Ideal in R ?