Lineare Algebra 1, WS09/10 M. Hortmann

Blatt 9

bitte heften Sie dieses Blatt vor Ihre Lösungen

	Tutor	Namen						
e bearbei	Summe	3	c	b	2a	1c	1b	1a
	7	1	1	1	1	1	1	1

Weihnachtsgeschenk: 6 Punkte=100%.

Alle Körper in den folgenden Aufgaben sind kommutativ, d.h. ihre Multiplikation ist kommutativ.

Aufgabe 1

Sei V ein K-Vektorraum.

Eine lineare Abbildung $\pi: V \to V$ heißt Projektion, wenn $\pi \circ \pi = \pi$.

- a) Man gebe drei von der Identität verschiedene Projektionen $\mathbb{R}^2 \! \to \! \mathbb{R}^2\,$ an .
- b) Sei $\pi: V \to V$ eine Projektion.

Man zeige $V = \ker \pi \oplus \operatorname{Im} \pi$, d.h. $V = \ker \pi + \operatorname{Im} \pi$ und $\{0\} = \ker \pi \cap \operatorname{Im} \pi$.

c) Man finde alle Projektionen $\mathbb{Z}_3^2 \to \mathbb{Z}_3^2$.

Aufgabe 2 Seien V,W K-Vektorräume.

Es sei $\operatorname{Hom}_K(V, W) := \{ \varphi \mid \varphi : V \to W \text{ linear } \}$.

Sind φ , $\psi \in \text{Hom}_K(V, W)$ und $\lambda \in K$, so definiert man für $x \in V$: $(\varphi + \psi)(x) := \varphi(x) + \psi(x)$, sowie $(\lambda \varphi)(x) := \lambda(\varphi(x))$. Auf diese Weise sind also Abbildungen $\varphi + \psi$ und $\lambda \varphi$ definiert.

- a) Man zeige: $\varphi + \psi$ und $\lambda \varphi$ sind linear.
- b) Mit den eben definierten Operationen ist $\operatorname{Hom}_{K}(V, W)$ ein Vektorraum.
- c) Sind $v_1, ..., v_n$, $w_1, ..., w_m$ Basen von V bzw. W, so setze man für $1 \le i \le m$, $1 \le j$, $k \le n$ $\varphi_i^j(v_k) := \delta_k^j w_i = \begin{cases} w_i & \text{falls} & j = k_1 \\ 0 & \text{sonst} \end{cases}$

1 Man setzt
$$\delta_k^j := \begin{cases} 1 & \text{falls} \\ 0 & \text{sonst} \end{cases} j = k$$

Durch diese Vorgabe von Werten auf einer Basis von V werden offenbar für $1 \le i \le m$, $1 \le j \le n$ lineare Abbildungen $\varphi_i^j \in \operatorname{Hom}_K(V, W)$ definiert. Man zeige, daß die φ_i^j eine Basis von $\operatorname{Hom}_K(V, W)$ bilden. Der Vektorraum $\operatorname{Hom}_K(V, W)$ ist also mn-dimensional.

Bemerkung:

Der Dualraum V^* ist offenbar gerade der Vektorraum $\operatorname{Hom}_K(V, K)$.

Im eindimensionalen K-Vektorraum K wählt man üblicherweise die kanonische Basis $w_1 := 1$ und schreibt kurz φ^j statt φ^j_1 . Die φ^j bilden dann die duale Basis zur Basis v_1, \ldots, v_n .

Aufgabe 3

Man erinnere sich an die Definition der dualen Abbildung:

Ist $\Phi: U \to V$ linear, so definiert man die "duale Abbildung" $\Phi^*: V^* \to U^*$ durch $(\Phi^* \varphi) := \varphi \circ \Phi$. Man erinnere sich an die Definition von Exaktheit: Eine Sequenz von linearen Abbildungen $U \xrightarrow{\Phi} V \xrightarrow{\Psi} W$ heißt exakt an der Stelle V, wenn ker $\Psi = \operatorname{Im} \Phi$.

Sei nun $U \xrightarrow{\phi} V \xrightarrow{\Psi} W$ exakt an der Stelle V. Man zeige $W \xrightarrow{\Psi^*} V \xrightarrow{\phi^*} U^*$ ist exakt an der Stelle V^* .

Aufgabe 4 (Freiwillige Sonderaufgabe wg. Induktionsbeweis)

Sei $0 \rightarrow V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{n-1}} V_n \rightarrow 0$ eine exakte Sequenz von Vektorraumhomomorphismen. Man kann diese offenbar (wieso?) zerlegen in eine Folge von kurzen exakten Sequenzen:

$$0 \rightarrow V_1 \xrightarrow{\varphi_1} V_2 \xrightarrow{\varphi_2} \operatorname{Im} \varphi_2 \rightarrow 0$$

$$0 \to \operatorname{Im} \varphi_2 = \ker \varphi_3 \xrightarrow{i_3} V_3 \xrightarrow{\varphi_3} \operatorname{Im} \varphi_3 \to 0$$

$$0 \rightarrow \operatorname{Im} \varphi_3 = \ker \varphi_4 \xrightarrow{i_4} V_4 \xrightarrow{\varphi_3} \operatorname{Im} \varphi_4 \rightarrow 0$$

 $0 \to \operatorname{Im} \varphi_{n-2} = \ker \varphi_{n-1} \xrightarrow{i_{n-1}} V_{n-1} \xrightarrow{\varphi_3} \operatorname{Im} \varphi_{n-1} = V_n \to 0,$

wobei i_k : Im φ_{k-1} =ker $\varphi_k \to V_k$ einfach die Einbettung des Unterraums Im φ_{k-1} =ker φ_k in den Raum V_k bedeute, also $i_k(x)$ =x für $x \in \text{Im } \varphi_{k-1}$ =ker φ_k . Damit ist i_k trivialerweise injektiv.

Wir wissen bereits, daß für eine exakte Sequenz $0 \to U \to V \to W \to 0$ gilt: dim $U-\dim V+\dim W=0$.

Man zeige durch Induktion: $\sum_{i=1}^{n} (-1)^{i} \dim V_{i} = 0.$

Hinweis: dies ist ganz einfach.