Lineare Algebra 1, WS05/06 M. Hortmann

Blatt 1

Aufgabe 1

a) Seien A,B Aussagen. Die Aussagenverknüpfung $A \otimes B$ sei durch folgende Wahrheitstafel definiert:

\boldsymbol{A}	В	$A \otimes B$	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Man versuche, Aussagenverknüpfungen von A und B zu finden, in denen ausschließlich die Operation \otimes benutzt wird, die äquivalent sind zu $A \wedge B$, $A \vee B$, $A \rightarrow B$. Man muß also die gesuchten Verknüpfungen so konstruieren, daß in ihrer der Wahrheitstafel schließlich dieselben Wahrweitswerte stehen wie bei den drei oben genannten.

(Hinweis: Beispielsweise hat $A \otimes A$ dieselbe Wahrheitstafel wie $\neg A$)

b) Finden Sie eine Verknüpfung der Aussagen A,B,C mit Hilfe der Operationen \neg , \land , \lor , so daß sich folgende Wahrheitstafel ergibt:

A	В	C	?
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Nehmen Sie zur Kenntnis, daß die Einträge in die letzte Spalte zufällig gewählt wurden. (Hinter diesem Einzelfall steckt die Tatsache, daß beliebige "Wahrheitsfunktionen" mit Hilfe von ¬, ∧, ∨ ausgedrückt werden können. Nach 1a) sogar ausschließlich mit Hilfe von ⊗ . Die Informatiker nennen ⊗ übrigens NAND. (Warum wohl?))

Aufgabe 2

Sei M eine Menge. Eine Relation $R \subset M \times M$ heißt Äquivalenzrelation, wenn gilt:

$$\begin{array}{ll} \forall \ x \in M: \ xRx \\ \forall \ x, \ y \in M: \ xRy \rightarrow yRx \\ \forall \ x, \ y, \ z \in M: \ \left(\ xRy \land yRz \ \right) \ \rightarrow \ xRz \end{array} \qquad \begin{array}{ll} \text{Symmetrie} \\ \text{Transitivität.} \end{array}$$

(Erinnern Sie sich, daß die Schreibweise xRy bedeutet, daß $(x, y) \in R$.)

Zu jedem $x \in M$ definiert man die Menge $\overline{x} := \{y \in M \mid yRx\}$ und nennt \overline{x} die Äquivalenzklasse von x.

a) Betrachten Sie nun die Menge $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$ der ganzen Zahlen und definieren die Relation $R \subset \mathbb{Z} \times \mathbb{Z}$ durch $R := \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists c \in \mathbb{Z} : 5c = a - b\}^{-1}$.

Begründen Sie, daß R eine Äquivalenzrelation ist. Beschreiben Sie anschließend alle Äquivalenzklassen. (Hinweis: es gibt genau 5)

b) Sei $R \subset M \times M$ eine Äquivalenzrelation. Zeigen Sie, daß die Aussagen $\overline{x} = \overline{y}$ und xRy äquivalent sind. Zeigen Sie auch, daß $\neg(xRy)$ äquivalent ist zu $\overline{x} \cap \overline{y} = \emptyset$.

c) Sei $M = \{a, b, c\}$ eine dreielementige Menge. Finden Sie alle Äquivalenzrelationen auf M und schreiben Sie diese Mengen vollständig hin.

Bemerkung: Äquivalenzrelationen und Äquivalenzklassen gibt es in zahllosen Beispielen in der gesamten Mathematik, auch in der Linearen Algebra. Also: wichtig!

Wichtung:

Aufgabenteile 1a, 1b, 2a, 2b, 2c: jeweils 20%:

Für jeden dieser Aufgabenteile gibt es einen Punkt; 5 Punkte sind erreichbar.

¹ Dabei ist ∃ Abkürzung für "es gibt". Damit gilt offenbar aRb genau dann, wenn die Differenz a-b ein ganzzahliges Vielfaches von 5 ist.