Lösungen Blatt5

Aufgabe 1

c) Sei $U \subset \mathbb{R}^n$ eine Umgebung von 0, $g: U \to \mathbb{R}$ eine C^{∞} - Funktion mit $\forall x \in U: |g(x)| \le ||x||^2$, $\partial: C_0^{\infty} \to \mathbb{R}$ eine Derivation. Man zeige: $\partial(\overline{g}) = 0$. (Dabei ist \overline{g} der durch g definierte Funktionskeim in 0)

Zu dieser Zeit war in der Vorlesung schon behauptet worden: Jede Derivation in 0 ist eine Richtungsableitung, d.h. es gibt ein $v \in \mathbb{R}^n$ mit $\partial = \partial_v$.

Beweis 1: Inzwischen kennen wir den Beweis dieser Behauptung, der entscheidend benutzt, daß eine Zerlegung $g(x) = g(0) + \sum_{i=1}^{n} h_i(x) x_i$ mit glatten Funktionen h_i für g existiert. In unserem

Fall folgt aus der Abschätzung für g daß g(0)=0, also haben wir sogar $g(x)=\sum_{i=1}^n h_i(x)x_i$. Wenn man jetzt zeigen kann, daß für alle i $h_i(0)=0$ gilt, sind wir fertig, denn dann folgte $\partial g = \sum_{i=1}^n h_i(0) \partial x_i + x_i(0) \partial h_i = 0$.

Nehmen wir deshalb oBdA an $h_1(0)\neq 0$ und bilden die Funktion f(t)=g(t,0,...,0)=t $h_1(t)$, die in einem offenen Intervall um 0 erklärt und glatt ist. Es ist $|f(t)|=|t||h_1(t)|\leqslant |t|^2$, also $|h(t)|\leqslant |t|$ für $|t|\neq 0$. Aus Stetigkeitsgründen kann dann nur $h_1(0)=0$ gelten. Fertig.

Beweis 2: Benutzen wir die Behauptung aus der Vorlesung und gehen davon aus, daß die gegebene Derivation eine Richtungsableitung ist und berechnen diese, indem wir – siehe unsere Definition von Richtungsableitung – f(t)=g(tv) setzen und damit definitionsgemäß $\partial_v g=f'(0)$ haben. Nun ist aber $|f(t)|=|g(tv)|\leqslant ||tv||^2=|t|^2||v||^2$. Hieraus folgt sofort $0=\lim_{t\to 0}\left|\frac{f(t)}{t}\right|=|f'(0)|$, also $f'(0)=\partial_v g=0$, fertig.