		ann			,	latt 8		
Name(n)								ruppennummer
					Punkte			
1a	b	c	d	e	2	3	Summe	% bearbeitet

1. Sei
$$f: \mathbb{R} \to \mathbb{R}$$
, a) $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$ b) $f(x) = \begin{cases} \exp\left(\frac{-1}{x}\right) & \text{für } x > 0 \\ 0 & \text{für } x \leq 0 \end{cases}$

Man zeige: f ist in ganz \mathbb{R} differenzierbar und berechne die Ableitung in jedem Punkt.

- c) Seien $a,b\in\mathbb{R}$, a< b und $\epsilon>0$. Z.B. mit Hilfe der Funktion aus 1b) konstruiere man eine auf ganz \mathbb{R} differenzierbare Funktion, für die gilt f(x)=0 für $x\leqslant a-\epsilon$ und $x\geqslant b+\epsilon$, f(x)=1 für $a\leqslant x\leqslant b$. (Hinweis: überlegen Sie sich zunächst, wie der Graph von f aussehen muß. Wie könnte er aussehen, wenn man nur die Stetigkeit von f fordert?)
- d) Sei $a \in \mathbb{R}^2$, $r, \epsilon > 0$. Konstruieren Sie eine auf ganz \mathbb{R}^2 differenzierbare Funktion, für die gilt: f(x) = 1 für $x \in U_r(a)$, f(x) = 0 für $x \notin U_{r+\epsilon}(a)$.
- e) Sei $\epsilon > 0$. Konstruieren Sie auf ganz \mathbb{R}^2 differenzierbare Funktion, für die gilt: f(x) = 1 für $x \in U_1(1,0) \cup U_1(0,0)$, f(x) = 0 für $x \notin \left(U_{1+\epsilon}(1,0) \cup U_{1+\epsilon}(0,0)\right)$.

Es ist natürlich der Beweis zu führen, daß die jeweils konstruierte Funktion differenzierbar ist. Dabei darf jeweils das Ergebnis der vorangehenden Aufgabe benutzt werden.

Anwendungen des Mittelwertsatzes:

- 2. Sei $g: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Abbildung mit beschränkter Ableitung, d.h. $\exists M \in \mathbb{R} \ \forall x \in \mathbb{R} : |g'(x)| \leq M$. Zeigen Sie, daß man ein $\epsilon > 0$ so wählen kann, daß die durch $f(x) = x + \epsilon g(x)$ gegebene Abbildung $f: \mathbb{R} \to \mathbb{R}$ injektiv ist.
- 3. Sei $f: \mathbb{R} \to \mathbb{R}$ eine Abbildung mit $\forall x, y \in \mathbb{R}: |f(x) f(y)| \leq (x y)^2$. Man zeige, daß f konstant ist.