	nalysis . Hortn		507,	Aufg	gabenb	latt 6			
Name(n)								Gruppennummer	
					Punkte				
1a	b	c	d	e	2a	b	Summe		% bearbeitet

Aufgabe 1

Seien E,F normierte Vektorräume, $\varphi:E\to F$ eine lineare Abbildung. Man zeigt leicht, daß φ genau dann stetig ist, wenn φ stetig in 0 ist.

- a) Man zeige, daß φ genau dann stetig in 0 ist, wenn φ auf der abgeschlossenen Einheitskugel $B_1(0) := \{x \in E | ||x|| \le 1\}$ beschränkt ist.
 - φ ist also genau dann stetig, wenn $\|\varphi\| := \sup_{\|x\| \le 1} \|\varphi(x)\| < \infty$.
- b) Ist φ stetig, so zeige man $\forall x \in E : ||\varphi(x)|| \le ||\varphi||||x||$.
- c) Seien φ , ψ : $E \to F$ zwei stetige lineare Abbildungen. Bekanntlich wird dann durch $(\psi + \varphi)(x) := \psi(x) + \varphi(x)$ eine weitere stetige lineare Abbildung $E \to F$ definiert. Man zeige: $\|\psi + \varphi\| \le \|\psi\| + \|\varphi\|$.
- d) Seien $\varphi: E \to F$, $\psi: F \to G$ stetige lineare Abbildungen zwischen normierten Vektorräumen. Bekanntlich ist dann $\psi \circ \varphi: E \to G$ ebenfalls linear und stetig. Man zeige: $\|\psi \circ \varphi\| \le \|\psi\| \|\varphi\|$.
- e) Man gebe ein Beispiel, bei dem $\|\psi\circ\varphi\|=\|\psi\|\|\varphi\|$ und eines, bei dem $\|\psi\circ\varphi\|<\|\psi\|\|\varphi\|$. (Beweis!)
- f) Freiwillige Sonderaufgabe: Sei F ein normierter Vektorraum und $\varphi: \mathbb{R}^n \to F$ linear. Man zeige: φ ist stetig. (Einfaches Kompaktheitsargument.)

Aufgabe 2

Man betrachte die euklidische Norm im \mathbb{R}^3 als Abbildung $n: \mathbb{R}^3 \to \mathbb{R}$, $x \to ||x||$. a) Man zeige, daß n im Nullpunkt nicht differenzierbar ist.

b) Sei $v \in \mathbb{R}^2$, $v \neq 0$. Man berechne die Richtungsableitung $(\partial_v n)(v)$. Freiwillige Sonderaufgabe: $w \in \mathbb{R}^2$ stehe senkrecht auf v. Man zeige $(\partial_w n)(v) = 0$. (In beiden Fällen: Keine Kettenregel benutzen!)

Definitionen:

Ist $I \subseteq \mathbb{R}$ ein offenes Intervall, $g: I \to F$ differenzierbar in $t_0 \in I$, so setzt man $g'(t_0) := \lim_{h \to 0} \frac{g(t_0 + h) - g(t_0)}{h} = (Dg(t_0))(1)$.

Man beachte, daß $g'(t_0){\in}F$, während $Dg(t_0){\in}\mathscr{L}(\mathbb{R},F)$. Die Räume F, $\mathscr{L}(\mathbb{R},F)$ sind kanonisch isomorph via $F{\ni}v{\to}(h{\to}hv){\in}\mathscr{L}(\mathbb{R},F)$ bzw. umgekehrt $\mathscr{L}(\mathbb{R},F){\ni}\varphi{\to}\varphi(1){\in}F$, d.h. der Vektor $g'(t_0)$ und die lineare Abbildung $Dg(t_0)$ tragen dieselbe Information.

Sind E,F Banachräume, $U \subseteq E$ offen, $f:U \to F$ differenzierbar in $x_0 \in U$ und $v \in E$, so legt man mit $c(t) := x_0 + tv$ die durch die Richtung v bestimmte Gerade durch x_0 und setzt $\partial_v f(x_0) := (f \circ c)'(0)$ (**Richtungsableitung** von f im Punkt x_0 in Richtung v.)

Ist $E = \mathbb{R}^n$, so nennt man die Richtungsableitungen in Richtung der kanonischen Einheitsvektoren partielle Ableitungen und schreibt $\partial_i f(x_0) := \frac{\partial f}{\partial x_i}(x_0) := \partial_{e_i} f(x_0)$

Bemerkung: Auch sonst wählt man bei Richtungsableitungen den Richtungsvektor v häufig als Einheitsvektor, also normiert auf Länge 1, ||v||=1.