	nalysi I. Hort		SS07,	A	ufgak	enbl	att 3			
Name(n)									Gruppennummer	
					Pi	unkte				
1a	1b	1c	2a	2b	3a	3b	4	Summe	% bearbeitet	

Bitte heften Sie dieses Blatt vor Ihre Lösungen.

Wir benutzen die folgende Definition des Begriffs "Häufungspunkt": Ist M ein topologischer Raum und $L \subseteq M$, so heißt ein Punkt $x \in M$ Häufungspunkt von L, wenn jede offene Umgebung U von x (mindestens) einen Punkt von L enthält, der von x verschieden ist.

Man setzt
$$\overline{L} := \bigcap_{\substack{A \supset L \\ A \text{ abgeschlossen}}} A$$
 und nennt diese Menge die *abgeschlossene Hülle* von L .

Als Durchschnitt abgeschlossener Mengen ist \overline{L} natürlich selbst abgeschlossen und nach Definition die kleinste abgeschlossene Menge, in der L enthalten ist.

- **1.** Sei M ein topologischer Raum und $L \subseteq M$.
- a) Man zeige $\overline{L} = \{x \in M \mid x \in L \text{ oder } x \text{ ist Häufungspunkt von } L\}$.
- b) Sind $L, K \subset M$, so ist $\overline{L \cup K} = \overline{L} \cup \overline{K}$
- c) Sind $L, K \subseteq M$, so ist $\overline{L \cap K} \subseteq \overline{L} \cap \overline{K}$. Wieso gilt die umgekehrte Inklusion i.a. nicht?
- **2.** a),b) Sei $f: M \to N$ eine Abbildung zwischen topologischen Räumen. Man zeige: f ist genau dann stetig, wenn für alle Teilmengen $L \subset M$ gilt: $f(\overline{L}) \subset \overline{f(L)}$.
- **3.** Sei *M* ein topologischer Raum.
- a) Man zeige: Ist $L \subseteq M$ zusammenhängend, so auch \overline{L} .
- b) $f: M \to \mathbb{R}$ sei stetig und $f(M) \subset \mathbb{Z}$. Man zeige: $\{x \in M \mid f(x) = 77\}$ ist zshgd.
- **4.** Sei $\varphi: M \to N$ eine stetige Abbildung zwischen topologischen Räumen, $\rho: M \to K$, $\sigma: N \to L$, $\psi: K \to L$ seien Abbildungen, für die gilt $\psi \circ \rho = \sigma \circ \varphi$, d.h. das Diagramm $M \to \infty$ $\rho \to \infty$ kommutiert. $\rho \to \infty$

Man versehe man die Mengen K,L mit den durch ρ , σ induzierten Finaltopologien, und zeige, daß dann ψ stetig ist.

Hinweis: die Aufgabe ist relativ einfach.