Topologie, SS2015 M. Hortmann

Satz: Endliche abgeschlossene Intervalle in R sind kompakt.

Beweis:

Seien a, $b \in \mathbb{R}$, a < b, $(U_i)_{i \in I}$ eine offene Überdeckung von [a,b].

Es ist zu zeigen: diese Überdeckung besitzt eine endliche Teilüberdeckung (ETÜ).

Definiere dazu $M := \{x \in [a,b] \mid [a,x] \text{ besitzt eine ETÜ} \}$ Weil $a \in M$ gilt $M \neq \emptyset$. Zu zeigen ist: $b \in M$.

Sei c:=sup M. Offenbar ist $c \in [a, b]$.

Zunächst soll gezeigt werden, daß $c \in M$.

Für c=a ist die Aussage $c \in M$ trivial.

Ist dagegen a < c, so gibt es jedenfalls ein $i_0 \in I$ mit $c \in U_{i_0} = : U$. Also gibt es ein $\epsilon > 0$ so daß $]c - \epsilon$, $c + \epsilon [\subseteq U$. Ist jetzt $d \in]c - \epsilon$, c [, so kann d nicht obere Schranke von M sein, denn c ist die kleinste obere Schranke. Es gibt also Elemente von M, die größer als d sind; andererseits sind alle Element von M kleinergleich c. Das heißt, daß es im Intervall]d, $c] \subseteq U$ ein Element $x \in M$ gibt. Es ist $[a,c] = [a,x] \cup]d$, c], d.h. zu der ETÜ von [a,x] kommt womöglich noch U hinzu um eine ETÜ von [a,c] zu bilden.

Ähnlich zeigen wir jetzt, daß c < b nicht möglich ist, so daß sich c = b und damit $b \in M$ ergibt: Annahme also: c < b.

Wieder haben wir $c \in U$ für eine Menge U aus der gegebenen Überdeckung von [a,b]. Damit gibt es auch wieder ein $\epsilon > 0$ so daß $[c,c+\epsilon[\subset U\cap[a,b]]$. Weil, wie eben gezeigt, [a,c] eine ETÜ besitzt, gilt dasselbe auch für $[a,c+\epsilon/2]=[a,c]\cup[c,c+\epsilon/2]$, denn zu einer ETÜ von [a,c] läßt sich ggf. die Menge U hinzunehmen. Damit wäre aber $c+\epsilon/2\in M$, im Widerspruch zur Konstruktion von c.