Publications of Dr. Ivan Ovsyannikov

International peer-reviewed journals

[Ovs1] Gonchenko, V. S., Ovsyannikov, I. I. On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a "neutral'' saddle fixed point. J. Math. Sci. (N. Y.) 128 (2005), no. 2, p. 2774-2777.

[Ovs2] Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., Turaev, D. Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 11, p. 3493-3508.

[Ovs3] Gonchenko, S. V., Meiss, J. D., Ovsyannikov, I. I. Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation. Regul. Chaotic Dyn. 11 (2006), no. 2, p. 191-212.

[Ovs4] Gonchenko, S. V., Ovsyannikov, I. I., Turaev, D. On the effect of invisibility of stable periodic orbits at homoclinic bifurcations. Phys. D 241 (2012), no. 13, p. 1115-1122.

[Ovs5] Gonchenko, S. V., Gonchenko, A. S., Ovsyannikov, I. I., Turaev, D. V. Examples of Lorenz-like attractors in Hénon-like maps. Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 32-54.

[Ovs6] Gonchenko, S. V., Ovsyannikov, I. I. On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors. Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 71-83.

[Ovs7] Gonchenko, S. V., Ovsyannikov, I. I., Tatjer, J. C. Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points. Regul. Chaotic Dyn. 19 (2014), no. 4, p. 495-505.

[Ovs8] Gonchenko, S. V., Gordeeva, O. V., Lukyanov, V. I., Ovsyannikov, I. I. On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node. Regul. Chaotic Dyn. 19 (2014), no. 4, p. 461-473.

[Ovs9] I. I. Ovsyannikov, D. Turaev, S. Zelik, Bifurcation to Chaos in the complex Ginzburg-Landau equation with large third-order dispersion. Modeling and Analysis of Information Systems 22 (2015), p. 327-336.

Russian peer-reviewed journals (in Russian)

[Ovs10] Gonchenko S. V., Ovsyannikov I. I., On bifurcations of three-dimensional diffeomorphisms having a non-transverse heteroclinic cycle with saddle-foci, Nonlinear Dynamics, 6:1 (2010), p. 61-77.

[Ovs11] Ovsyannikov I. I. On the stability of the Chaplygin ball motion on a plane with an arbitrary friction law, Vestnik UdSU, 4 (2012), p. 140-145.

[Ovs12] Gonchenko S. V., Gordeeva O. V., Lukyanov V. I., Ovsyannikov I. I., On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency to a saddle-node fixed point, Vestnik NNSU, 2 (2014), p. 198-209.

Conference Proceedings (in Russian)

[Ovs13] Gonchenko V. S., Ovsyannikov I. I. Bifurcations of the closed invariant curve birth in the generalized Henon map (in Russian), Mathematics and Cybernetisc: Proceedings of the Scientific and Technical Conference of the VMK Dept. and the Inst. of Appl. Math. and Cyb., NNSU, 2003, November 28-29, p. 101-103.

Handbooks (in Russian)

[Ovs14] S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, I. I. Ovsyannikov, E. V. Zhuzhoma, Elements of the mathematical theory of the rigid body motion, Nizhny Novgorod State University, 2012, 56 pages.

Preprints

[Ovs15] I. I. Ovsyannikov, D. V. Turaev, Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model, https://arxiv.org/abs/1508.07565, submitted to Nonlinearity.

[Ovs16] M. Gonchenko, S. V. Gonchenko, I. Ovsyannikov, Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, https://arxiv.org/abs/1606.09011, submitted to Math. Model. Of Nat. Phenom.

[Ovs17] S. V. Gonchenko, I. I. Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors, https://arxiv.org/abs/1509.00264, accepted for publication in DCDS-A.

Publications in preparation

[Ovs18] I. I. Ovsyannikov. On the birth of discrete Lorenz attractors near degenerate heteroclinic cycles containing saddles.

[Ovs19] S. V. Gonchenko, V. I. Lukjanov, I. I. Ovsyannikov. Main bifurcations of dynamical systems. A handbook.

International peer-reviewed journals

[Ovs1] Gonchenko, V. S., Ovsyannikov, I. I. On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a "neutral'' saddle fixed point. J. Math. Sci. (N. Y.) 128 (2005), no. 2, p. 2774-2777.

[Ovs2] Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., Turaev, D. Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 11, p. 3493-3508.

[Ovs3] Gonchenko, S. V., Meiss, J. D., Ovsyannikov, I. I. Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation. Regul. Chaotic Dyn. 11 (2006), no. 2, p. 191-212.

[Ovs4] Gonchenko, S. V., Ovsyannikov, I. I., Turaev, D. On the effect of invisibility of stable periodic orbits at homoclinic bifurcations. Phys. D 241 (2012), no. 13, p. 1115-1122.

[Ovs5] Gonchenko, S. V., Gonchenko, A. S., Ovsyannikov, I. I., Turaev, D. V. Examples of Lorenz-like attractors in Hénon-like maps. Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 32-54.

[Ovs6] Gonchenko, S. V., Ovsyannikov, I. I. On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors. Math. Model. Nat. Phenom. 8 (2013), no. 5, p. 71-83.

[Ovs7] Gonchenko, S. V., Ovsyannikov, I. I., Tatjer, J. C. Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points. Regul. Chaotic Dyn. 19 (2014), no. 4, p. 495-505.

[Ovs8] Gonchenko, S. V., Gordeeva, O. V., Lukyanov, V. I., Ovsyannikov, I. I. On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node. Regul. Chaotic Dyn. 19 (2014), no. 4, p. 461-473.

[Ovs9] I. I. Ovsyannikov, D. Turaev, S. Zelik, Bifurcation to Chaos in the complex Ginzburg-Landau equation with large third-order dispersion. Modeling and Analysis of Information Systems 22 (2015), p. 327-336.

Russian peer-reviewed journals (in Russian)

[Ovs10] Gonchenko S. V., Ovsyannikov I. I., On bifurcations of three-dimensional diffeomorphisms having a non-transverse heteroclinic cycle with saddle-foci, Nonlinear Dynamics, 6:1 (2010), p. 61-77.

[Ovs11] Ovsyannikov I. I. On the stability of the Chaplygin ball motion on a plane with an arbitrary friction law, Vestnik UdSU, 4 (2012), p. 140-145.

[Ovs12] Gonchenko S. V., Gordeeva O. V., Lukyanov V. I., Ovsyannikov I. I., On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency to a saddle-node fixed point, Vestnik NNSU, 2 (2014), p. 198-209.

Conference Proceedings (in Russian)

[Ovs13] Gonchenko V. S., Ovsyannikov I. I. Bifurcations of the closed invariant curve birth in the generalized Henon map (in Russian), Mathematics and Cybernetisc: Proceedings of the Scientific and Technical Conference of the VMK Dept. and the Inst. of Appl. Math. and Cyb., NNSU, 2003, November 28-29, p. 101-103.

Handbooks (in Russian)

[Ovs14] S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, I. I. Ovsyannikov, E. V. Zhuzhoma, Elements of the mathematical theory of the rigid body motion, Nizhny Novgorod State University, 2012, 56 pages.

Preprints

[Ovs15] I. I. Ovsyannikov, D. V. Turaev, Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model, https://arxiv.org/abs/1508.07565, submitted to Nonlinearity.

[Ovs16] M. Gonchenko, S. V. Gonchenko, I. Ovsyannikov, Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, https://arxiv.org/abs/1606.09011, submitted to Math. Model. Of Nat. Phenom.

[Ovs17] S. V. Gonchenko, I. I. Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors, https://arxiv.org/abs/1509.00264, accepted for publication in DCDS-A.

Publications in preparation

[Ovs18] I. I. Ovsyannikov. On the birth of discrete Lorenz attractors near degenerate heteroclinic cycles containing saddles.

[Ovs19] S. V. Gonchenko, V. I. Lukjanov, I. I. Ovsyannikov. Main bifurcations of dynamical systems. A handbook.