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Abstract

In 1998, V. Liskevich and Y. Semenov proved sharp Gaussian upper bounds for
Schrödinger semigroups on R3 with potentials satisfying a global Kato class condi-
tion. Using similar basic ideas we show sharp Gaussian upper bounds for Schrödinger
semigroups on the half-line, also assuming a suitable global Kato class condition. Our
proof strategy includes a new technique of weighted ultracontractivity estimates.
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1 Introduction

In this paper we show a kernel estimate for the C0-semigroup generated by the Schrödinger
operator ∆ + V on (0,∞) for potentials V satisfying the integral condition given by (1.1)
below. This integral condition amounts to a global Kato class condition with respect to
the Dirichlet Laplacian on (0,∞); see Remark 4.6.

Throughout the paper let K ∈ {R,C} and d ∈ N. Let Ω ⊆ Rd be open, and let T be the
C0-semigroup on L2(Ω) generated by the Dirichlet Laplacian on Ω, i.e., by the operator
∆D defined by

dom(∆D) := {u ∈ H1
0 (Ω) ; ∆u ∈ L2(Ω)}

∆Du := ∆u.

Our main result is as follows.

Theorem 1.1. Let d = 1 and Ω = (0,∞). Let V : (0,∞)→ R be measurable, and assume
that there exists α ∈ (0, 1) such that∫ ∞

0

x|V (x)| dx 6 α. (1.1)
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Then V is T -admissible, for every t > 0 the operator TV (t) has an integral kernel kVt ∈
L∞((0,∞)× (0,∞)), and there exists c > 0 such that

0 6 kVt (x, y) 6 c

(
1 ∧

(
xy

t

(
1 +

(x− y)2

4t

)3α/4
))

t−1/2e−(x−y)2/4t (1.2)

for all t > 0 and a.e. x, y ∈ (0,∞).

Recall that kVt being an integral kernel of the operator TV (t) means that TV (t)f(x) =∫∞
0
kVt (x, y)f(y) dy for all f ∈ L2(0,∞) and a.e. x ∈ (0,∞). In Theorem 4.10 we will show

that in the case V 6 0 the integral condition (1.1) for some α <∞ is in fact necessary for
the validity of the kernel estimate (1.2).

For V = 0 the kernel k0
t satisfies

1

2

(
1 ∧ xy

t

)
(4πt)−1/2e−(x−y)2/4t 6 k0

t (x, y) 6
(

1 ∧ xy
t

)
(4πt)−1/2e−(x−y)2/4t,

see (3.2). The term 1 ∧ xy
t

describes the boundary behaviour: it is ‘small’ if x and y
are ‘close’ to the boundary {0} of (0,∞) (where the meaning of ‘close’ depends on t).
Observe that the Gaussian upper bound (1.2) is ‘almost sharp’; in particular, the factor 4
in the exponential term e−(x−y)2/4t is the same as in k0

t . In comparison with k0
t , the major

difference is the polynomial correction factor
(
1 + (x − y)2/4t

)
3α/4 for the term xy

t
. It is

an open question whether this term can be avoided.

In the general context of ultracontractive self-adjoint C0-semigroups on metric measure
spaces with the doubling property it is known that a Davies-Gaffney estimate implies the
kernel estimate

kt(x, y) 6 cµ
(
B(x,

√
t)
)−1/2

µ
(
B(y,

√
t)
)−1/2

(
1 +

ρ(x, y)2

4t

)(D−1)/2

e−ρ(x,y)2/4t,

where µ is the measure, ρ the metric and D the dimension defined via the polynomial
volume growth that holds because of the doubling property; see [Sik04, Remark 3 after
Theorem 5]. (Note that in [Sik04, p. 651, line -2] the exponent should read D− 1 and not
(D−1)/2.) In our context, the above result would lead to a kernel estimate similar to (1.2),
but with the (larger!) exponent 1 instead of 3α/4 in the polynomial correction factor since
we will be working with the measure x2 dx on (0,∞), for which one obtains D = 3. (We
refer to [Mol75] for an example showing that in general the exponent (D− 1)/2 is sharp.)

We point out that the 1 in the boundary term 1 ∧ xy
t

goes without a correction factor.
To that effect, the estimate (1.2) in Theorem 1.1 is in the spirit of [LiSe98, Cor. 1], one
of the few results on kernel estimates that do not include a polynomial correction factor
either. There is vast literature on kernel estimates including a polynomial correction
factor; see for instance [DaPa89] and [Ouh06]. In [Ouh06] it was shown that in many
circumstances, Gaussian upper bounds “automatically” improve to sharp bounds with a
polynomial correction factor.
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In the remainder of this introduction we explain the major steps in the proof of Theo-
rem 1.1. We will first show a kernel estimate for Schrödinger semigroups on an arbitrary
open set Ω ⊆ Rd under the assumption that the potential V satisfies the form smallness
condition ∫

Ω

|V ||u|2 dx 6 α〈−∆Du, u〉 = α‖∇u‖2
2 (u ∈ dom(∆D)) (1.3)

for some α ∈ (0, 1) and that the Schrödinger semigroup TV satisfies a suitable exponentially
weighted L1-estimate; see Theorem 2.11. More precisely, we show the kernel estimate

0 6 kVt (x, y) 6 ct−d/2e−|x−y|
2/4t (t > 0, a.e. x, y ∈ Ω). (1.4)

Note that there is no restriction on the dimension d in this kernel estimate. It will be
proved by means of weighted ultracontractivity estimates and the well-known Davies trick
(see [Dav87]); in Subsection 2.3 we develop new techniques that allow us to avoid the use
of (weighted) sesquilinear forms that is common in this context.

In Section 3 we consider the special case in which Ω is the positive half-space, i.e.,

Ω = Ω0 :=

{
(0,∞) if d = 1,

(0,∞)× Rd−1 if d > 2.

In Subsection 3.1 we prove exponentially weighted L1- and ultracontractivity estimates
for the heat semigroup T with suitable weights. They will be needed later in that section,
where we show a second kernel estimate for the Schrödinger semigroup TV ,

0 6 kVt (x, y) 6 cx1y1t
−(d/2+1)

(
1 +
|x− y|2

4t

)α(d+2)/4

e−|x−y|
2/4t (1.5)

for all t > 0 and a.e. x, y ∈ Ω0, again using the technique of weighted ultracontractivity
estimates and Davies trick. This kernel estimate will be proved under condition (1.3) and
the assumption that TV satisfies suitable weighted L1-estimates; see Theorem 3.4.

Taking the minimum of (1.4) and (1.5) yields the kernel estimate

0 6 kVt (x, y) 6 c

(
1 ∧

(
x1y1

t

(
1 +
|x− y|2

4t

)α(d+2)/4
))

t−d/2e−|x−y|
2/4t (1.6)

for all t > 0 and a.e. x, y ∈ Ω0, see Corollary 3.6. In the case d = 1, (1.6) is exactly
the kernel estimate stated in Theorem 1.1 above. Therefore, for the proof of Theorem 1.1
it remains to show that (1.1) implies the assumptions indicated above for the validity of
(1.4) and (1.5); this will be done in Section 4.

The basic idea for the proof of (1.4) is similar as in [LiSe98]. There the case of
Schrödinger semigroups on Ω = R3 is treated, based on the following main observation: for
every ξ ∈ R3 the Green kernel Gξ of the resolvent (|ξ|2−∆D)−1 of the Dirichlet Laplacian
satisfies the weighted estimate eξ·xGξ(x, y)e−ξ·y 6 limξ→0Gξ(x, y), for all x, y ∈ R3. In
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our case Ω = (0,∞) ⊆ R1 an analogous weighted estimate is valid, as we will show in
Subsection 4.2.

Notation. For x, y ∈ [−∞,∞] we denote by x ∧ y and x ∨ y the minimum and the
maximum of x and y, respectively. Similarly, if A is a set and f, g : A → [−∞,∞], then
f ∧g and f ∨g is the pointwise minimum and maximum of f and g, respectively. Moreover
we write [f > g] := {x ∈ A ; f(x) > g(x)}; the sets [f 6 g], [f > g] and [f = g] are
defined in a similar way.

We write C+ := {z ∈ C ; Re z > 0} for the right complex half-plane.

If X, Y are two Banach spaces, then we denote by L(X, Y ) the space of all bounded
linear operators from X to Y . In the case X = Y we simply write L(X) := L(X,X).

Now let (Ω,A, µ) be a measure space. We write 1A for the indicator function of a set
A ∈ A. For a measurable function ρ : Ω → [0,∞) we denote by ρµ the measure that has
density ρ with respect to µ. If p ∈ [1,∞) and V : Ω→ K is measurable, then we denote by
V the associated multiplication operator on Lp(µ) as well. Furthermore, if p, q, r ∈ [1,∞]
and A : Lp(µ)→ Lp(µ) is linear, then we write

‖A‖q→r := ‖A‖Lq(µ)→Lr(µ) := sup
{
‖Af‖r ; f ∈ Lp ∩ Lq(µ), ‖f‖q 6 1

}
(∈ [0,∞]).

More generally, if ρ1, ρ2 : Ω→ (0,∞) are measurable, we also write

‖ρ−1
1 Aρ1‖Lq(ρ2µ)→Lr(ρ2µ)

:= sup
{
‖ρ−1

1 Aρ1f‖Lr(ρ2µ) ; f ∈ Lq(ρ2µ), ‖f‖Lq(ρ2µ) 6 1, ρ1f ∈ Lp(µ)
}
.

In the case ρ2 = 1 we simply write ‖ρ−1
1 Aρ1‖q→r := ‖ρ−1

1 Aρ1‖Lq(µ)→Lr(µ).

Finally, let H be a Hilbert space. Then we denote the scalar product of x, y in H by
〈x, y〉H . We also write 〈x, y〉 if it is obvious from the context that this is the scalar product
on H.

2 Kernel estimates for Schrödinger semigroups via

weighted ultracontractivity estimates

The ultimate goal of this section is the proof of the kernel estimate (1.4). To achieve this
goal, we will show that the Schrödinger semigroup TV provided with exponential weights
is ultracontractive and then use the well-known Davies trick. The main tool to prove
this ultracontractivity will be given in Subsection 2.3, where we show more generally for
a positive self-adjoint C0-semigroup T on an arbitrary measure space and a suitable T -
admissible potential V that a weighted ultracontractivity estimate for T implies a similar
estimate for the perturbed C0-semigroup TV ; see Theorem 2.7. The kernel estimate (1.4)
will then be proved in Subsection 2.4. In Subsection 2.1 we first recall some important
properties of admissible potentials. Subsection 2.2 provides an interpolation inequality for
positive C0-semigroups, which we will prove using logarithmically convex funtions. It will
be important for the proof of the perturbation results in Subsection 2.3.
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2.1 Admissibility of real-valued measurable potentials

The purpose of this subsection is to recall the notion of admissibility for real-valued mea-
surable potentials, which was introduced in [Voi86, Sec. 2]. For this let (Ω, µ) be a measure
space, p ∈ [1,∞) and T a positive C0-semigroup on Lp(µ) with generator A.

For V ∈ L∞(µ), the C0-semigroup generated by A − V is denoted by TV . If V,W ∈
L∞(µ), V > W , then 0 6 TV (t) 6 TW (t) for all t > 0 (see [Voi86, Rem. 2.1(a)]); in
particular, TV is positive.

If now V : Ω→ [0,∞) is measurable, then we have

0 6 TV ∧(n+1)(t) 6 TV ∧n(t) (t > 0)

and, therefore, TV (t) := s-limn→∞ TV ∧n(t) exists for all t > 0 by dominated convergence.
The function V is called T -admissible if TV : [0,∞) → L(Lp(µ)) thus defined is a C0-
semigroup.

Similarly, a measurable function V : Ω → (−∞, 0] is called T -admissible if TV (t) :=
s-limn→∞ TV ∨(−n)(t) exists for all t > 0 and TV : [0,∞)→ L(Lp(µ)) is a C0-semigroup.

More generally, a measurable function V : Ω→ R is called T -admissible if V + and −V −
are T -admissible. In this case TV (t) := s-limn→∞ T(V ∧n)∨(−n)(t) exists and TV : [0,∞) →
L(Lp(µ)) thus defined is a C0-semigroup; see [Voi88, Thm. 2.6]. (Note that for V ∈ L∞(µ)
(resp. V > 0, V 6 0) the two definitions of TV given above coincide.)

The following basic properties of admissible potentials will be used througout without
further notice. Let V : Ω → R be T -admissible. Then TV is positive because T(V ∧n)∨(−n)

is positive for all n ∈ N. If W : Ω → R is T -admissible and W 6 V , then TV (t) 6 TW (t)
for all t > 0; see [Voi88, Remark 2.7]. Finally, if p = 2 and T is self-adjoint, then
TV is self-adjoint. Indeed, A − (V ∧ n) ∨ (−n) is self-adjoint for all n ∈ N, and thus
TV (t) = s-limn→∞ TV ∧n(t) is self-adjoint for all t > 0.

Note that for p ∈ [1,∞) and a measurable function m : Ω → (0,∞), the mapping
Lp(m

pµ) 3 f 7→ mf ∈ Lp(µ) is an isometric lattice isomorphism. Thus, if T is a positive
C0-semigroup on Lp(µ), then we can define a positive C0-semigroup Tm on Lp(m

pµ) by

Tm(t)f := m−1T (t)mf (t > 0, f ∈ Lp(mpµ)).

In the next lemma we characterize Tm-admissibility of a potential V by means of the
C0-semigroup T .

Lemma 2.1. Let p ∈ [1,∞), and let T be a positive C0-semigroup on Lp(µ) with gener-
ator A. Let m : Ω → (0,∞) and V : Ω → R be measurable. Then V is Tm-admissible if
and only if V is T -admissible. Moreover, in this case one has (Tm)V = (TV )m.

Proof. Observe that the generator Am of Tm is given by

dom(Am) := {f ∈ Lp(mpµ) ; mf ∈ dom(A)},
Amf := m−1Amf (f ∈ dom(Am)).
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For W ∈ L∞(µ) = L∞(mpµ) it is straightforward to show that Am + W = (A + W )m

and hence (Tm)W = (TW )m. From this identity and the definition of admissibility one
easily infers that ±V ± is T -admissible if and only if ±V ± is Tm-admissible, using that
Lp(m

pµ) 3 f 7→ ρf ∈ Lp(µ) is an isometry. This proves the first assertion. The second
assertion then follows from the identity (Tm)(V ∧n)∨(−n) = (T(V ∧n)∨(−n))

m.

To conclude this subsection, we show that in the case p = 2, a potential V is T -
admissible if it is form small with respect to the generator of T .

Proposition 2.2. Let T be a positive C0-semigroup on L2(µ) and A its generator. Let
V : Ω→ R be measurable, and assume that∫

Ω

|V ||u|2 dµ 6 Re〈−Au, u〉 (u ∈ dom(A)). (2.1)

Then V is T -admissible. Moreover, TV is contractive.

Proof. For every n ∈ N, (2.1) implies that

Re
〈(
A+ (V ± ∧ n)

)
u, u
〉
6 Re〈Au, u〉+

∫
Ω

|V ||u|2 dµ 6 0 (u ∈ dom(A)),

so A + (V ± ∧ n) is dissipative. It follows that T−(V ±∧n) is contractive for all n ∈ N, so
[Voi88, Prop. 2.2] shows that −V ± is T -admissible. By [Voi88, Prop. 3.3(b)] it follows that
V + and hence also V is T -admissible. The contractivity of TV follows from TV 6 T−V −
since T−(V −∧n) is contractive for all n ∈ N.

2.2 Logarithmically convex functions

Throughout let (Ω, µ) be a measure space. The aim of this subsection is to prove the
following interpolation inequality.

Theorem 2.3. Let p ∈ (1,∞), let T be a positive C0-semigroup on Lp(µ), and let V : Ω→
R be T -admissible. Let t > 0, p0, p1, q0, q1 ∈ [1,∞], and assume that ‖TjV (t)‖pj→qj < ∞
for j = 0, 1. Let θ ∈ (0, 1), and define pθ, qθ ∈ [1,∞] by

1

pθ
=

1− θ
p0

+
θ

p1

,
1

qθ
=

1− θ
q0

+
θ

q1

. (2.2)

Then
‖TθV (t)‖pθ→qθ 6 ‖T (t)‖1−θ

p0→q0‖TV (t)‖θp1→q1 .

For bounded potentials V this inequality is well-known and can be proved by means
of the Stein interpolation theorem. The problem is that the inequality does not easily
carry over from bounded to admissible potentials since one only has strong convergence
TVn(t)→ TV (t), which does not imply convergence of the operator norms. To remedy this
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problem we introduce the notion of logarithmic convexity that is motivated by [Haa07].
Our presentation largely follows [Vog10, Sec. 2.3].

Let X be an ordered vector space, i.e., X is a (real or complex) vector space endowed
with a proper convex cone X+ of positive elements, where X+ being proper means that
X+ ∩ (−X+) = {0}. Let I ⊆ R be an interval. We say that a function f : I → X is
logarithmically convex if

f((1− θ)t0 + θt1) 6 (1− θ)r−θf(t0) + θr1−θf(t1) (r > 0) (2.3)

for all t0, t1 ∈ I and all θ ∈ (0, 1). By choosing t0 = t1 and r 6= 1 (so that (1 − θ)r−θ +
θr1−θ > 1) we see that a logarithmically convex function f takes its values in X+.

The next lemma implies in particular that f : I → R is logarithmically convex if and
only if f > 0 and ln ◦f is convex, where we use the convention ln 0 := −∞. Thus, the
assertion of Theorem 2.3 is that [0, 1] 3 θ 7→ ‖TθV (t)‖pθ→qθ ∈ R is logarithmically convex.

Lemma 2.4. Let M(µ) be the ordered vector space of all scalar-valued measurable func-
tions on Ω, where functions are identified if they coincide a.e., and M(µ)+ = {f ∈M(µ) ;
f > 0 a.e.}.

(a) A function f : I →M(µ)+ is logarithmically convex if and only if

f((1− θ)t0 + θt1) 6 f(t0)1−θf(t1)θ

a.e. for all t0, t1 ∈ I and all θ ∈ (0, 1).

(b) If f, g : I →M(µ)+ are logarithmically convex, then t 7→ f(t)g(t) is logarithmically
convex as well.

Proof. (a) follows from Young’s inequality: For a, b > 0 and θ ∈ (0, 1) we have

a1−θbθ =
(
r−θa

)1−θ(
r1−θb

)θ
6 (1− θ)r−θa+ θr1−θb (r > 0)

and
a1−θbθ = inf

{
(1− θ)r−θa+ θr1−θb ; 0 < r ∈ Q

}
.

(b) is an immediate consequence of part (a).

The next result, though being elementary, is the basis of the proof of Theorem 2.3. We
assume that Lp(µ) and L(Lp(µ)) are endowed with their natural orderings; in particular,
L(Lp(µ))+ consists of the positive operators on Lp(µ). Let 〈·, ·〉p,p′ denote the natural
bilinear map associated with the the dual pairing 〈Lp(µ), Lp′(µ)〉.

Proposition 2.5. Let p ∈ [1,∞), f : I → Lp(µ) and S : I → L(Lp(µ)). Then

(a) f is logarithmically convex if and only if t 7→ 〈f(t), g〉p,p′ is logarithmically convex
for all g ∈ Lp′(µ)+;

(b) S is logarithmically convex if and only if t 7→ S(t)h is logarithmically convex for all
h ∈ Lp(µ)+.
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Proof. (a) is immediate from the following fact: A function h ∈ Lp(µ) is in Lp(µ)+ if and
only if 〈h, g〉p,p′ > 0 for all g ∈ Lp′(µ)+.

(b) is clear.

Clearly, if f : I → X is logarithmically convex and B : X → X is a positive operator,
then B ◦ f is logarithmically convex. In the case X = Lp(µ) we can prove the following
more general result.

Lemma 2.6. Let p ∈ (1,∞), and let f : I → Lp(µ), g : I → Lp′(µ) and S : I → L(Lp(µ))
be logarithmically convex. Then

(a) I 3 t 7→ 〈f(t), g(t)〉p,p′ ∈ R is logarithmically convex.

(b) I 3 t 7→ S(t)f(t) ∈ Lp(µ) is logarithmically convex.

(c) I 3 t 7→ 〈S(t)f(t), g(t)〉p,p′ ∈ R is logarithmically convex.

Proof. (a) follows from Lemma 2.4(b) and the positivity of the linear operator L1(µ) 3
f 7→

∫
f dµ ∈ R.

(b) It follows from Proposition 2.5 that I 3 t 7→ S(t)′ ∈ L(Lp′(µ)) is logarithmically
convex. Therefore, by part (a), I 3 t 7→ 〈S(t)f(t), h〉p,p′ = 〈f(t), S(t)′h〉p,p′ ∈ R is
logarithmically convex, for all h ∈ Lp′(µ)+, and the assertion follows by Proposition 2.5(a).

(c) follows immediately from parts (a) and (b).

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Fix t > 0. For n ∈ N let Vn := (V ∧ n) ∨ (−n). It follows
from [Voi88, top of p. 121] and Proposition 2.5 that [0, 1] 3 θ 7→ TθVn(t) ∈ L(Lp(µ))
is logarithmically convex. Therefore, [0, 1] 3 θ 7→ TθV (t) = s-limn→∞ TθVn(t) =: S(θ) ∈
L(Lp(µ)) is logarithmically convex. (Note that θV is T -admissible for all θ ∈ [0, 1],
by [Voi88, Prop. 2.3].)

To prove the theorem we now show that [0, 1] 3 θ 7→ ‖S(θ)‖pθ→qθ ∈ R is logarithmically
convex for any logarithmically convex function S : [0, 1]→ L(Lp(µ)) with ‖S(j)‖pj→qj <∞
for j = 0, 1. Let ϕ, ψ ∈ S(µ)+, where S(µ) denotes the vector space of simple functions
on (Ω, µ). Define f : [0, 1] → Lp(µ) by f(θ) := ϕ1/pθ1[ϕ 6=0] and g : [0, 1] → Lp′(µ) by
g(θ) := ψ1/q′θ1[ψ 6=0]. (The indicator functions are only needed for the cases pθ = ∞,
q′θ =∞, respectively.) Then f, g are logarithmically convex, so Lemma 2.6(c) implies that

[0, 1] 3 θ 7→ 〈S(θ)f(θ), g(θ)〉p,p′ ∈ R

is logarithmically convex. It easily follows that

[0, 1] 3 θ 7→ sup
ϕ,ψ∈M

〈S(θ)ϕ1/pθ1[ϕ6=0], ψ
1/q′θ1[ψ 6=0]〉p,p′ ∈ R

is logarithmically convex as well, where M := {ϕ ∈ S(µ)+ ; ‖ϕ‖1 6 1}.
To complete the proof, it remains to observe that for q, r ∈ [1,∞] and a positive

operator B ∈ L(Lp(µ)) one has

‖B‖q→r = sup
ϕ,ψ∈M

〈Bϕ1/q1[ϕ6=0], ψ
1/r′1[ψ 6=0]〉p,p′ .
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To see this identity, note that for q < ∞ the set {ϕ1/q1[ϕ6=0] ; ϕ ∈ M} = {h ∈ S(µ)+ ;
‖h‖q 6 1} is dense in {h ∈ Lp(µ)+ ; ‖h‖q 6 1}. If q = ∞ then {ϕ1/∞1[ϕ6=0] ; ϕ ∈ M} =
{1A ; A measurable, µ(A) < ∞}, and for all h ∈ Lp(µ)+ with ‖h‖∞ 6 1 there exists an
increasing sequence (An) of measurable sets of finite measure such that h 6 limn→∞ 1An .
Moreover

‖Bf‖r = sup
ψ∈M
〈Bf, ψ1/r′1[ψ 6=0]〉p,p′ (f ∈ Lp(µ)+),

where in the case r = ∞ we use the fact that the set [Bf 6= 0] is σ-finite; note that for
r = 1 the above equality reads ‖Bf‖1 = sup{

∫
A
Bf dµ ; A measurable, µ(A) <∞}.

2.3 Weighted ultracontractivity estimates for perturbed C0-semi-
groups on L2

In this subsection let K = C, and let (Ω, µ) be a measure space. The main result is the
next theorem; we state and prove it in greater generality than actually needed for showing
Theorem 1.1.

Note that, for a positive C0-semigroup T on L2(µ) and measurable V : Ω → R, the
potential V is T -admissible if pV is T -admissible for some p > 1, by [Voi88, Prop. 2.3].

Theorem 2.7. Let ρ : Ω → (0,∞) be measurable, and let T be a positive self-adjoint
C0-semigroup on L2(µ) satisfying

‖ρ−αT (t)ρα‖1→∞ 6 ct−νeα
2t, ‖ρ−αT (t)ρα‖2→2 6 eα

2t (t > 0, α ∈ R)

for some c, ν > 0. Let V : Ω→ R be measurable, and assume that there exist p > 1, M > 1
and r > 1 such that pV is T -admissible, ‖TpV (t)‖2→2 6 1,

‖ρ−αTV (t)ρα‖1→1 6Meα
2t, ‖ρ−αTV (t)ρα‖∞→∞ 6Merα

2t (t > 0, α > 0).

Then there exists c̃ > 0 such that

‖ρ−αTV (t)ρα‖1→∞ 6 c̃t−ν
(
1 + (r − 1)α2t

)ν/2p
eα

2t (t > 0, α ∈ R).

We first show an extrapolation result that extends [Cou90, Lemme 1], for semigroups
that are not necessarily self-adjoint; in the proof of Theorem 2.7 it will be applied to the
semigroup t 7→ e−α

2tρ−αTV (t)ρα.

Proposition 2.8. Let T be a one-parameter semigroup on L2(µ). Assume that there exist
1 6 p < q 6∞, c, ν > 0, M > 1 and ω > 0 such that

‖T (t)‖1→1 6M, ‖T (t)‖∞→∞ 6Meωt, ‖T (t)‖p→q 6 ct−ν( 1
p− 1

q ) (t > 0).

Then T is ultracontractive,

‖T (t)‖1→∞ 6 c̃t−ν(1 + ωt)ν/q (t > 0),

with a constant c̃ > 0 depending only on p, q, c, ν and M .
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Proof. (i) In the first step we show that

‖T (t)‖1→q 6 c0t
−ν/q′ (t > 0), (2.4)

with c0 = 2αν/q
′
cαM , α = 1

q′
1

1
p− 1

q
. (Actually this is the first step in the proof of the

extrapolation result [Cou90, Lemme 1], except that there no explicit constant c0 is given.
Since it will be crucial for us that c0 depends only on p, q, c, ν and M , we present the
extrapolation argument in full detail.)

Fix f ∈ L1 ∩ L∞(µ), ‖f‖1 6 1 and t0 > 0. Since by assumption ‖T (t)‖p→q 6 ct−ν( 1
p− 1

q )

for all t > 0, there exists c̃0 > 0 (depending on f and t0!) such that

‖T (t)f‖q 6 c̃0t
−ν/q′ (0 < t 6 t0);

we choose the minimal constant c̃0 making this estimate valid. Let θ ∈ [0, 1] be such that
1−θ

1
+ θ

q
= 1

p
, i.e. 1

p′
= θ

q′
. Then by Hölder’s inequality

‖T (t/2)f‖p 6 ‖T (t/2)f‖1−θ
1 ‖T (t/2)f‖θq 6M1−θc̃θ0(t/2)−θν/q

′

and thus

‖T (t)f‖q 6 ‖T (t/2)‖p→q‖T (t/2)f‖p
6 c(t/2)−ν( 1

p− 1
q ) ·M1−θc̃θ0(t/2)−ν/p

′
= cM1−θc̃θ0 2ν/q

′
t−ν/q

′

for all 0 < t 6 t0. By the choice of c̃0 it follows that c̃0 6 cM1−θc̃θ0 2ν/q
′

and hence
c̃1−θ

0 6 cM1−θ2ν/q
′
. Thus (2.4) is valid with c0 = 2αν/q

′
cαM , α = 1

1−θ = 1
q′

1
1
p− 1

q
as asserted.

(ii) The one-parameter semigroup S on L2(µ) defined by S(t) := e−ωtT (t)∗ satisfies

‖S(t)‖1→1 6 M and ‖S(t)‖q′→p′ 6 ct−ν( 1
p− 1

q ) for all t > 0. Applying step (i) to S (and
noting 1

p
− 1

q
= 1

q′
− 1

p′
) we obtain

‖T (t)‖p→∞ = ‖T (t)∗‖1→p′ 6 c1t
−ν/peωt (t > 0),

with c1 = 2βν/pcβM , β = 1
p

1
1
p− 1

q
. By the Riesz-Thorin interpolation theorem we infer that

‖T (t)‖q→∞ 6 ‖T (t)‖p/qp→∞‖T (t)‖1−p/q
∞→∞ 6 c2t

−ν/qeωt (t > 0), (2.5)

with c2 = c
p/q
1 M1−p/q. Combining (2.4) and (2.5) we conclude that

‖T (t)‖1→∞ 6 ‖T ((1− ε)t)‖1→q‖T (εt)‖q→∞ 6 c0((1− ε)t)−ν/q′ · c2(εt)−ν/qeωεt

for all t > 0, ε ∈ (0, 1). For ε := 1/(2 + ωt) (6 1/2) we obtain

‖T (t)‖1→∞ 6 c02ν/q
′
t−ν · c2(2 + ωt)ν/qe (t > 0),

and the asserted ultracontractivity estimate follows, with c̃ = 2νec0c2.
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In the proof of Theorem 2.7 we will use the following result to show an L2-bound for
the operators ρ−αTpV (t)ρα.

Proposition 2.9. Let ρ : Ω → (0,∞) be measurable, and let T be a positive self-adjoint
C0-semigroup on L2(µ) satisfying

‖ρ−αT (t)ρα‖2→2 6Meα
2t+ωt (t > 0, α ∈ R)

for some M > 1, ω ∈ R. Let V : Ω → R be T -admissible, and assume that TV is
contractive. Then

‖ρ−αTV (t)ρα‖2→2 6 eα
2t (t > 0, α ∈ R).

Proof. Let n ∈ N and Vn := V ∨ (−n); then the assumption implies that

‖ρ−αTVn(t)ρα‖2→2 6Meα
2t+(n+ω)t (t > 0, α ∈ R).

Moreover, TVn is contractive because TVn 6 TV , and TVn is self-adjoint. Thus TVn is an
analytic semigroup of angle π

2
, ‖TVn(z)‖ 6 1 for all z ∈ C+. Now [Vog19, Prop. 2.3]

yields the estimate ‖ρ−αTVn(t)ρα‖2→2 6 eα
2t for all t > 0 (independent of n !), and letting

n→∞ we obtain the assertion.

The next result deals with strong continuity and admissibility for weighted semigroups.

Proposition 2.10. Let ρ : Ω→ (0,∞) be measurable, and let T be a positive C0-semigroup
on L2(µ) satisfying

‖ρ−1T (t)ρ‖2→2 6Meωt (t > 0) (2.6)

for some M > 1, ω ∈ R.

Then ρ−1T (t)ρ extends to a bounded operator T ρ(t) on L2(µ), for all t > 0, and the
family (T ρ(t))t>0 thus defined is a C0-semigroup on L2(µ). Moreover, if V : Ω → R is
bounded from below and T -admissible, then V is T ρ-admissible, (T ρ)V = (TV )ρ.

Proof. For t > 0 the operator ρ−1T (t)ρ is defined on the dense subspace dom(ρ) = {f ∈
L2(µ) ; ρf ∈ L2(µ)} and extends by continuity to a bounded operator T ρ(t) on L2(µ),
by (2.6). It is easy to see that T ρ is a semigroup; we show that it is strongly contin-
uous, arguing as in [Voi92, proof of Prop. 1]. If f ∈ dom(ρ) and g ∈ dom(ρ−1), then
t 7→ 〈T ρ(t)f, g〉 (= 〈T (t)ρf, ρ−1g〉) is continuous. The bound (2.6) implies that the conti-
nuity carries over to all f, g ∈ L2(µ). Thus, T ρ is weakly continuous and hence strongly
continuous; see [EnNa00, Thm. I.5.8].

For bounded V the identity (T ρ)V = (TV )ρ follows from the Trotter product formula
stated in [EnNa00, Exercise III.5.11]. In the case of unbounded V > 0 we infer that

(T ρ)V (t) = s-lim
n→∞

(T ρ)V ∧n(t) = s-lim
n→∞

(TV ∧n)ρ(t) = (TV )ρ(t) (t > 0);

then as above, the strong continuity of TV implies that (TV )ρ (and hence (T ρ)V ) is strongly
continuous, so V is T ρ-admissible. The assertion in the general case follows similarly.
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Now we can turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. By Proposition 2.9, the assumed estimates ‖TpV (t)‖2→2 6 1 and
‖ρ−αT (t)ρα‖2→2 6 eα

2t (t > 0, α ∈ R) imply that

‖ρ−αTpV (t)ρα‖2→2 6 eα
2t (t > 0, α ∈ R). (2.7)

Now fix α > 0. Let n ∈ N and Vn := V ∨ (−n). Applying Proposition 2.10 with ρα in
place of ρ, we see that

Tρ,α(t) := e−α
2tρ−αT (t)ρα (t > 0)

defines a C0-semigroup Tρ,α on L2(µ). Moreover, for s ∈ {1, p} the potential sVn is Tρ,α-
admissible, and (Tρ,α)sVn(t) = e−α

2tρ−αTsVn(t)ρα on dom(ρα) for all t > 0.

Let q := 2p and observe that

1

q′
=

1/p′

1
+

1/p

2
,

1

q
=

1/p′

∞
+

1/p

2
.

Note that ‖(Tρ,α)(t)‖1→∞ 6 ct−ν by assumption. The inequalities TpVn(t) 6 TpV (t)
and (2.7) imply that ‖(Tρ,α)pVn(t)‖2→2 6 1. Thus, using Theorem 2.3 we obtain

‖(Tρ,α)Vn(t)‖q′→q 6 ‖(Tρ,α)(t)‖1/p′

1→∞‖(Tρ,α)pVn(t)‖1/p
2→2 6 c1/p′t−ν/p

′
(t > 0).

Moreover, since TVn 6 TV , the assumptions imply

‖(Tρ,α)Vn(t)‖1→1 6M, ‖(Tρ,α)Vn(t)‖∞→∞ 6Me(r−1)α2t (t > 0).

Thus, applying Proposition 2.8 to the semigroup (Tρ,α)Vn we obtain

‖e−α2tρ−αTVn(t)ρα‖1→∞ 6 c̃t−ν
(
1 + (r − 1)α2t

)ν/2p
(t > 0),

with a constant c̃ > 0 depending only on p, c, ν and M . Now the assertion follows by
taking the limit n→∞.

2.4 Kernel estimates for Schrödinger semigroups with exponen-
tially weighted L1-bounds

In this subsection we show the kernel estimate (1.4). Throughout let Ω ⊆ Rd be open, ∆D

the Dirichlet Laplacian on Ω and T the generated C0-semigroup on L2(Ω). It is well-known
that T is dominated by the free heat semigroup TRd on L2(Rd), i.e., T (t)(1Ωf) 6 TRd(t)f
for all t > 0 and all 0 6 f ∈ L2(Rd); see, e.g., [Ouh05, Prop. 4.23]. For ξ ∈ Rd let
ρξ : Ω → (0,∞) be defined by ρξ(x) := eξ·x (x ∈ Ω). Let V : Ω → R be measurable and
assume that there exists α ∈ (0, 1) such that∫

Ω

|V ||u|2 dx 6 α〈−∆Du, u〉 (u ∈ dom(∆D)); (2.8)
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note that then V is T -admissible by Proposition 2.2.

Further, let ξ ∈ Rd, and for t > 0 let kt be the integral kernel of T (t). Then the integral
kernel kξ,t of ρξT (t)ρ−1

ξ is given by kξ,t(x, y) = eξ·(x−y)kt(x, y), and since T is dominated
by the free heat semigroup, we obtain

kξ,t(x, y) 6 (4πt)−d/2eξ·(x−y)−|x−y|2/4t = (4πt)−d/2e|ξ|
2t−|x−y−2tξ|2/4t (x, y ∈ Ω). (2.9)

It easily follows that

‖ρξT (t)ρ−1
ξ ‖p→p 6 e|ξ|

2t
(
t > 0, p ∈ [1,∞]

)
. (2.10)

Now we can prove the kernel estimate (1.4).

Theorem 2.11. Let (2.8) be true, and assume that there exists M > 1 such that

‖ρξTV (t)ρ−1
ξ ‖1→1 6Me|ξ|

2t (t > 0, ξ ∈ Rd).

Then for every t > 0 the operator TV (t) has an integral kernel kVt ∈ L∞(Ω×Ω) such that

0 6 kVt (x, y) 6 ct−d/2e−|x−y|
2/4t (a.e. x, y ∈ Ω)

for some c > 0 independent of t.

Proof. Without loss of generality let K = C.

It follows from (2.9) that

‖ρξT (t)ρ−1
ξ ‖1→∞ 6 (4πt)−d/2e|ξ|

2t (t > 0, ξ ∈ Rd);

Expressed differently,

‖ρ−βξ T (t)ρβξ ‖1→∞ 6 (4πt)−d/2eβ
2t (t > 0, β ∈ R)

for all ξ ∈ Rd with |ξ| = 1. Moreover, by (2.10) we have

‖ρ−βξ T (t)ρβξ ‖2→2 6 eβ
2t (t > 0, β ∈ R)

for all ξ ∈ Rd with |ξ| = 1.

Let p := 1/α (> 1). Then, by (2.8) and Proposition 2.2, the potential pV is T -admissible
and TpV is contractive. Since

‖ρ−βξ TV (t)ρβξ ‖1→1 6Meβ
2t (t > 0, β ∈ R)

for all ξ ∈ Rd with |ξ| = 1 by hypothesis and thus also

‖ρ−βξ TV (t)ρβξ ‖∞→∞ 6Meβ
2t (t > 0, β ∈ R)
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by duality and the self-adjointness of TV , we can now apply Theorem 2.7 (with r = 1) and
conclude that there exists c > 0 such that

‖ρ−βξ TV (t)ρβξ ‖1→∞ 6 ct−d/2eβ
2t (t > 0, β ∈ R)

for all ξ ∈ Rd with |ξ| = 1, i.e., ‖ρξTV (t)ρ−1
ξ ‖1→∞ 6 ct−d/2e|ξ|

2t for all t > 0 and all ξ ∈ Rd.
Hence, the Dunford-Pettis theorem implies that for every t > 0 the operator TV (t) has an
integral kernel kVt ∈ L∞(Ω× Ω) such that

0 6 kVt (x, y) 6 ct−d/2e−ξ·(x−y)e|ξ|
2t (a.e. x, y ∈ Ω)

for all ξ ∈ Rd. The assertion now follows from the well-known Davies trick by putting
ξ = (x− y)/2t.

3 Kernel estimates for Schrödinger semigroups: the

boundary term

In this section we prove the kernel estimate (1.5). We apply Theorem 2.7 to a weighted
Schrödinger semigroup on the positive half-space provided with the weighted measure
x2

1 dx and then use Davies trick. In order to be able to apply Theorem 2.7, we need to
show an exponentially weighted ultracontractivity estimate for this semigroup, which is
topic of Subsection 3.2. The kernel estimate (1.5) is also shown in Subsection 3.2.

3.1 L1-contractivity and ultracontractivity of the heat semigroup
on the positive half-space with weight x1

In this subsection let

Ω0 :=

{
(0,∞) if d = 1,

(0,∞)× Rd−1 if d > 2.

Let T be the C0-semigroup on L2(Ω0) generated by the Dirichlet Laplacian on Ω0, and
let m : Ω0 → (0,∞) be defined by m(x) := x1 (x ∈ Ω0). As in Lemma 2.1 we define the
unitarily transformed semigroup Tm on L2(Ω0,m

2λd) by Tm(t)f := m−1T (t)mf , where
λd is the Lebesgue measure on Ω0. We show that the semigroup Tm satisfies exponentially
weighted L1- and ultracontractivity estimates on (Ω0,m

2λd). Later, in Section 4, we will
use these estimates to show corresponding estimates for the perturbed semigroup (Tm)V ,
in dimension d = 1.

We will use the fact that for every t > 0 the operator T (t) has the integral kernel
kt : Ω0 × Ω0 → (0,∞) defined by

kt(x, y) := (4πt)−d/2(e−|x−y|
2/4t − e−|Sx−y|2/4t) (x, y ∈ Ω0),
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where S : Ω0 → Rd is defined by Sx := (−x1, x2, . . . , xd). This can be seen by a reflection
principle. Observe that

kt(x, y) = (4πt)−d/2e−|x−y|
2/4t
(
1− e−x1y1/t

)
(x, y ∈ Ω0). (3.1)

Thus, by the elementary inequality 1
2
(1 ∧ r) 6 1− e−r 6 1 ∧ r (r > 0), we have

1
2

(
1 ∧ x1y1

t

)
(4πt)−d/2e−|x−y|

2/4t 6 kt(x, y) 6
(
1 ∧ x1y1

t

)
(4πt)−d/2e−|x−y|

2/4t (3.2)

for all x, y ∈ Ω0.

To show that Tm satisfies exponentially weighted L1-estimates, we will use the following
properties of the kernel kt.

Lemma 3.1. (a) Let t > 0 and y ∈ Ω0. Then∫
Ω0

x1

y1

kt(x, y) dx = 1.

(b) Let t > 0, y ∈ Ω0 and ξ ∈ Rd. Then∫
Ω0

x1

y1

eξ·(x−y)kt(x, y) dx 6 2d/2+1e2|ξ|2t.

Moreover, if ξ1 6 0, then ∫
Ω0

x1

y1

eξ·(x−y)kt(x, y) dx 6 e|ξ|
2t.

Proof. (a) Note that in the case d > 1 we have∫
Ω0

x1

y1

kt(x, y) dx

=

∫ ∞
0

x1

y1

(4πt)−1/2e−(x1−y1)2/4t
(
1− e−x1y1/t

) ∫
Rd−1

(4πt)−(d−1)/2e−|x̂−ŷ|
2/4t dx̂ dx1

=

∫ ∞
0

x1

y1

(4πt)−1/2e−(x1−y1)2/4t
(
1− e−x1y1/t

)
dx1

for all t > 0 and all y = (y1, ŷ) ∈ (0,∞)× Rd−1 = Ω0. Hence, we may assume that d = 1.

Now let t, y ∈ (0,∞). Then∫ ∞
0

x

y
kt(x, y) dx = (4πt)−1/2y−1

(∫ ∞
0

xe−(x−y)2/4t dx−
∫ ∞

0

xe−(−x−y)2/4t dx

)
.

Since

−
∫ ∞

0

xe−(−x−y)2/4t dx =

∫ 0

−∞
xe−(x−y)2/4t dx,
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we conclude that∫ ∞
0

x

y
kt(x, y) dx = (4πt)−1/2y−1

∫ ∞
−∞

xe−(x−y)2/4t dx = (4πt)−1/2y−1

∫ ∞
−∞

(z + y)e−z
2/4t dz

= (4πt)−1/2

∫ ∞
−∞

e−z
2/4t dz = 1.

(b) We observe that the Peter-Paul inequality (i.e. ab 6 1
2
(γa2 + γ−1b2) for all a, b ∈ R,

γ > 0) implies

ξ · (x− y) 6 2|ξ|2t+
1

8
|x− y|2 (x ∈ Ω0).

Moreover, since the function [0,∞) 3 r 7→ 1 − e−r ∈ [0,∞) is concave and takes the
value 0 for r = 0, we have that

1− e−r > 1

2
(1− e−2r) (r > 0).

Using these inequalities we estimate

(4πt)−d/2
∫

Ω0

x1

y1

eξ·(x−y)e−|x−y|
2/4t(1− e−x1y1/t) dx

6 2d/2(8πt)−d/2e2|ξ|2t
∫

Ω0

x1

y1

e−|x−y|
2/8t 2(1− e−x1y1/2t) dx

= 2d/2+1e2|ξ|2t
∫

Ω0

x1

y1

k2t(x, y) dx.

This completes the proof of the first assertion of (b), by part (a).

For the proof of the second assertion we put

G(ξ) := (4πt)−d/2
∫

Ω0

x1

y1

e−|x−y|
2/4t+ξ·(x−y)−|ξ|2t(1− e−x1y1/t) dx (ξ ∈ Rd);

we have to show that G(ξ) 6 1 if ξ1 6 0. Let F : Rd → [0,∞) be defined by F (x) :=
(4πt)−d/2 x1

y1
(1− e−x1y1/t) if x ∈ Ω0 and F (x) := 0 if x ∈ R \ Ω0. Then, using the identity

− 1

4t
|x− y|2 + ξ · (x− y)− |ξ|2t = − 1

4t
|x− y − 2ξt|2 (3.3)

and a change of variables, we can rewrite G(ξ) as

G(ξ) =

∫
Ω0

F (x)e−|x−y−2ξt|2/4t dx =

∫
Rd
F (z + y + 2ξt)e−|z|

2/4t dz (ξ ∈ Rd).

Therefore, since F is monotone increasing in the x1-variable and F (x) = F (x1, 0, . . . , 0)
for all x ∈ Rd, G : Rd → [0,∞) is increasing in the ξ1-variable and G(ξ) = G(ξ1, 0, . . . , 0)
for all ξ ∈ Rd, which in turn implies that G(ξ) 6 G(0) for all ξ ∈ Rd, ξ1 6 0. Now
G(0) =

∫
Ω0

x1
y1
kt(x, y) dx = 1 by part (a), so we conclude that the asserted estimate

G(ξ) 6 1 holds for ξ1 6 0.
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Now we turn to the proof of the exponentially weighted L1- and ultracontractivity
estimates for Tm.

Proposition 3.2. (a) Let ξ ∈ Rd and t > 0. Then

‖m−1ρξT (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6 2d/2+1e2|ξ|2t.

Moreover, if ξ1 6 0, then

‖m−1ρξT (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6 e|ξ|

2t.

(b) Let ξ ∈ Rd and t > 0. Then

‖m−1ρξT (t)ρ−1
ξ m‖L1(m2λd)→L∞(m2λd) 6 (4π)−d/2t−(d/2+1)e|ξ|

2t.

Proof. (a) For t = 0 there is nothing to show, so we assume that t > 0. Then kt is the
integral kernel of T (t); hence for f ∈ L1(m2λd) with ρ−1

ξ mf ∈ L2(Ω0) we obtain

‖m−1ρξT (t)ρ−1
ξ mf‖L1(m2λd) 6

∫
Ω0

∫
Ω0

x−1
1 eξ·xkt(x, y)e−ξ·yy1|f(y)| dy d(m2λd)(x)

=

∫
Ω0

∫
Ω0

x1

y1

eξ·(x−y)kt(x, y) dx f(y) d(m2λd)(y). (3.4)

Consequently, the assertions of (a) follow from Lemma 3.1(b).

(b) Let f ∈ L1(m2λd) be such that ρ−1
ξ mf ∈ L2(Ω0). Then we estimate, using (3.2) for

the first and (3.3) for the second inequality,

|m−1ρξT (t)ρ−1
ξ mf(x)| 6

∫
Ω0

1

x1y1

· x1y1

t
(4πt)−d/2eξ·(x−y)e−|x−y|

2/4t|f(y)| d(m2λd)(y)

6 (4π)−d/2t−(d/2+1)e|ξ|
2t‖f‖L1(m2λd) (a.e. x ∈ Ω0).

Remark 3.3. Note that Proposition 3.2(a) with ξ = 0 implies that Tm is L1-contractive.
Actually, it follows from the identity (3.4) and Lemma 3.1(a) that Tm is even stochastic,
i.e. ‖Tm(t)f‖L1(m2λd) = ‖f‖L1(m2λd) for all f ∈ L1 ∩ L2(m2λd)+.

3.2 Kernel estimates for Schrödinger semigroups with weighted
L1-bounds on the positive half-space

Throughout this subsection let Ω0, m and ρξ be defined as in Subsection 3.1, and let
T be the C0-semigroup on L2(Ω0) generated by the Dirichlet Laplacian ∆D on Ω0. Let
V : Ω→ R be measurable, and assume that V satisfies the form smallness condition (2.8)
for some α ∈ (0, 1), with Ω = Ω0. We will now show the kernel estimate (1.5) and then
derive the kernel estimate (1.6).
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Theorem 3.4. Let (2.8) be true, and assume that there exists M > 1 such that

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6Me2|ξ|2t (t > 0, ξ ∈ Rd, ξ1 > 0),

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6Me|ξ|

2t (t > 0, ξ ∈ Rd, ξ1 6 0).

Then for every t > 0 the operator TV (t) has an integral kernel kVt ∈ L∞(Ω×Ω) such that
there exists c > 0 independent of t with

0 6 kVt (x, y) 6 cx1y1t
−(d/2+1)

(
1 +
|x− y|2

4t

)α(d+2)/4

e−|x−y|
2/4t

for a.e. x, y ∈ Ω0.

For the proof of Theorem 3.4 we define the unitarily transformed semigroup TmV on
L2(Ω0,m

2λd) by TmV (t)f := m−1TV (t)mf (t > 0, f ∈ L2(m2λd)). By Lemma 2.1, TmV is
a C0-semigroup and V is Tm-admissible with (Tm)V = TmV . (Recall from Proposition 2.2
that V is T -admissible.)

Proof of Theorem 3.4. Without loss of generality let K = C.

Let ξ ∈ Rd, |ξ| = 1. By Proposition 3.2(b) we have

‖ρ−βξ Tm(t)ρβξ ‖L1(m2λd)→L∞(m2λd) 6 (4π)−d/2t−(d/2+1)eβ
2t (t > 0, β ∈ R).

From (2.10) we deduce that

‖ρ−βξ Tm(t)ρβξ ‖L2(m2λd)→L2(m2λd) 6 eβ
2t (t > 0, β ∈ R)

since L2(m2λ) 3 f 7→ mf ∈ L2(0,∞) is an isometric isomorphism. Moreover, the hy-
potheses imply that

‖ρ−βξ (Tm)V (t)ρβξ ‖L1(m2λd)→L1(m2λd) 6Meβ
2t (t > 0, β > 0)

if ξ1 > 0, and

‖ρ−βξ (Tm)V (t)ρβξ ‖L1(m2λd)→L1(m2λd) 6Me2β2t (t > 0, β > 0)

if ξ1 6 0; by duality and self-adjointness of (Tm)V the latter is equivalent to

‖ρ−βξ (Tm)V (t)ρβξ ‖L∞(m2λd)→L∞(m2λd) 6Me2β2t (t > 0, β > 0)

for ξ1 > 0.

Let p := 1/α (> 1). Then pV is Tm-admissible and (Tm)pV is contractive, by Propo-
sition 2.2 and Lemma 2.1. Hence, Theorem 2.7 implies that there exists c > 0 such
that

‖ρ−βξ TmV (t)ρβξ ‖L1(m2λd)→L∞(m2λd) 6 ct−(d/2+1)(1 + β2t)(d/2+1)/2peβ
2t (t > 0, β ∈ R),
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for all x ∈ Rd, ξ1 > 0, |ξ| = 1, i.e.,

‖ρξTmV (t)ρ−1
ξ ‖L1(m2λd)→L∞(m2λd) 6 ct−(d/2+1)(1 + |ξ|2t)α(d+2)/4e|ξ|

2t (t > 0, ξ ∈ Rd).

Thus, by the Dunford-Pettis theorem one concludes that for every t > 0 the operator
(Tm)V (t) has an integral kernel kV,mt ∈ L∞(Ω0 × Ω0) such that

0 6 kV,mt (x, y) 6 ct−(d/2+1)(1 + |ξ|2t)α(d+2)/4e|ξ|
2t (a.e. x, y ∈ Ω0) (3.5)

for all ξ ∈ Rd. Now one easily shows that

kVt (x, y) := x1k
V,m
t (x, y)y1 (x, y ∈ Ω0)

defines an integral kernel kVt of TV (t), and with (3.5) and Davies trick one sees that this
integral kernel satisfies the asserted kernel estimate.

Remark 3.5. If one could show that

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6Me|ξ|

2t (t > 0) (3.6)

also holds for ξ1 > 0, then with the same proof as above one could infer that kVt (x, y) 6
cx1y1t

−(d/2+1)e−|x−y|
2/4t for some c > 0. Thus one would obtain a kernel estimate better

than (1.5), without the polynomial correction factor
(
1 + (x − y)2/4t

)
α(d+2)/4. Unfortu-

nately, if ξ1 > 0, then one can show that (3.6) already fails for V = 0 (cf. the proof of
Lemma 3.1(b)).

As a direct consequence of Theorems 2.11 and 3.4 we now obtain the kernel esti-
mate (1.6).

Corollary 3.6. Let (2.8) be true, and assume that there exists M > 1 such that

‖ρξTV (t)ρ−1
ξ ‖L1(Ω0)→L1(Ω0) 6Me|ξ|

2t (t > 0, ξ ∈ Rd),

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6Me2|ξ|2t (t > 0, ξ ∈ Rd, ξ1 > 0),

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λd)→L1(m2λd) 6Me|ξ|

2t (t > 0, ξ ∈ Rd, ξ1 6 0).

Then for every t > 0 the operator TV (t) has an integral kernel kVt ∈ L∞(Ω0 × Ω0), and
there exists c > 0 independent of t such that

0 6 kVt (x, y) 6 c

(
1 ∧

(
x1y1

t

(
1 +
|x− y|2

4t

)α(d+2)/4
))

t−d/2e−|x−y|
2/4t

for a.e. x, y ∈ Ω0.
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4 L1-estimates for weighted Schrödinger semigroups

on the positive real axis

In this section we prove Theorem 1.1 by showing that the Schrödinger semigroup TV
on L2(0,∞) satisfies the three weighted L1-estimates assumed in Corollary 3.6 if the
potential V satisfies the integral condition (1.1). The basic tool for the proof of the three
L1-estimates will be given in Subsection 4.1. In Subsection 4.2 we show a kernel estimate
for the resolvents of the Dirichlet Laplacian on (0,∞). This kernel estimate is used in
Subsection 4.3 to show that the operator norm ‖V (λ − A)−1‖1→1 is small, where A is
the Dirichlet Laplacian provided with the weights that are needed for the application of
Corollary 3.6; the smallness of the operator norm will enable us to apply the results of
Subsection 4.1 to infer the three weighted L1-estimates indicated above.

4.1 L1-estimates for perturbed C0-semigroups

The basis for our L1-estimates is the following general result for absorption semigroups
on L1.

Proposition 4.1. Let (Ω, µ) be a measure space. Let T be a positive C0-semigroup on
L1(µ) with generator A, and let M > 1, ω ∈ R be such that

‖T (t)‖1→1 6Meωt (t > 0).

Let V : Ω→ R be measurable, and assume that there exist λ > ω, α ∈ (0, 1) such that

‖V (λ− A)−1‖1→1 6 α. (4.1)

Then V is T -admissible,

‖TV (t)‖1→1 6
M

1− α
eλt (t > 0).

Proof. By rescaling we can assume without loss of generality that ω = 0. For n ∈ N let
Vn := (V ∧ n) ∨ (−n) (∈ L∞(µ)).

(i) In the first step we show that

‖e−λtTVn(t)‖1→1 6
M

1− α
(t > 0, n ∈ N). (4.2)

For this, fix n ∈ N and note that ‖Vn(λ − A)−1‖1→1 6 α by hypothesis. Since L1(µ) 3
f 7→

∫
Ω
|Vn|f dµ ∈ K is a continuous linear functional, we have∫ ∞

0

‖Vne−λtT (t)f‖1 dt =

∥∥∥∥Vn ∫ ∞
0

e−λtT (t)f dt

∥∥∥∥
1

= ‖Vn(λ− A)−1f‖1 6 α‖f‖1
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for all 0 6 f ∈ L1(µ), so by the positivity of T it follows that∫ ∞
0

‖Vne−λtT (t)f‖1 dt 6 α‖f‖1 (f ∈ L1(µ)).

Thus, [Voi77, Thm. 1(c)] (applied with B = −Vn) implies (4.2).

(ii) Since (4.1) holds with −V − and −V + in place of V , we conclude from step (i)
and [Voi88, Prop. 2.2] that −V − and −V + are T -admissible. By [Voi88, Prop. 3.3(b)] the
latter implies that also V + is T -admissible, so that V is T -admissible. Now the asserted
estimate follows from (4.2) since TVn(t)→ TV (t) strongly for all t > 0.

We will apply the above proposition in the form of the next result on absorption semi-
groups on L2.

Corollary 4.2. Let (Ω, µ) be a measure space. Let T be a positive C0-semigroup on L2(µ)
with generator A, and assume that there exist M > 1, ω ∈ R such that

‖T (t)‖1→1 6Meωt, ‖T (t)‖2→2 6Meωt.

for all t > 0. Let V : Ω → R be T -admissible, and assume that there exist a sequence
(λk)k∈N in (ω,∞) converging to ω and α ∈ (0, 1) such that

‖V (λk − A)−1‖1→1 6 α (k ∈ N). (4.3)

Then

‖TV (t)‖1→1 6
M

1− α
eωt (t > 0).

Proof. For every t > 0 the operator T (t)|L1∩L2(µ) extends to a bounded operator T1(t) on
L1(µ) with ‖T1(t)‖1→1 6Meωt, and the mapping T1 : [0,∞)→ L(L1(µ)) thus defined is a
positive C0-semigroup by [Voi92, Thm. 7]. Since (4.3) holds for Vn := (V ∧ n) ∨ (−n) in
place of V , it follows from Proposition 4.1 that

‖(T1)Vn(t)‖1→1 6
M

1− α
eλkt (t > 0, k ∈ N)

for all n ∈ N. Letting k →∞ we obtain

‖(T1)Vn(t)‖1→1 6
M

1− α
eωt (t > 0, n ∈ N).

Since (T1)Vn(t)|L1∩L2(µ) = TVn(t)|L1∩L2(µ) for all n ∈ N by [Voi86, Prop. 3.1(a)], the assertion
follows by letting n→∞ in the last inequality.

The final result of this subsection, a version of [Voi86, Proposition 4.6], will be needed
for the proof of Theorem 4.10, a kind of converse to Theorem 1.1. It is more or less known;
we include a proof for the reader’s convenience.
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Proposition 4.3. Let (Ω, µ) be a measure space. Let T be a positive C0-semigroup
on L1(µ), and let V : Ω → (−∞, 0] be measurable. Assume T is stochastic, that V is
T -admissible and that M := supt>0 ‖TV (t)‖1→1 < ∞. Then V satisfies the global Kato
class condition ∫ ∞

0

‖V T (t)f‖1 dt 6 (M − 1)‖f‖1 (f ∈ L1(µ)).

Proof. Since T is a positive semigroup, it suffices to show the estimate for f ∈ L1(µ)+.
Let t > 0, n ∈ N and Vn := V ∨ (−n). By Duhamel’s formula we have

TV (t)f > TVn(t)f = T (t)f −
∫ t

0

T (t− s)VnTVn(s)f ds.

Since Vn 6 0 and T is stochastic, it follows that

‖TV (t)f‖1 − ‖f‖1 >
∫ t

0

‖VnTVn(s)f‖1 ds >
∫ t

0

‖VnT (s)f‖1 ds.

Letting n→∞ and t→∞ we obtain
∫∞

0
‖V T (s)f‖1 ds 6 (M − 1)‖f‖1.

The above argument even shows that
∫∞

0
‖V TV (t)f‖1 dt 6 (M − 1)‖f‖1, but we will

not need this stronger estimate.

4.2 Integral kernel for the resolvents of the Dirichlet Laplacian
on the positive real axis

In this subsection let ∆D be the Dirichlet Laplacian on (0,∞) and T the generated C0-
semigroup on L2(0,∞). We show that for λ > 0 the integral kernel of the resolvent
(λ−∆D)−1 is given by the Green function Gλ : (0,∞)× (0,∞)→ (0,∞),

Gλ(x, y) :=
1

2
√
λ
e−
√
λ|x−y|

(
1− e−2

√
λ(x∧y)

)
.

First note that (λ−∆D)−1 =
∫∞

0
e−λtT (t) dt (strong integral), and recall from (3.1) that

for every t > 0 the operator T (t) has the integral kernel kt : (0,∞) × (0,∞) → (0,∞)
defined by

kt(x, y) := (4πt)−1/2e−|x−y|
2/4t
(
1− e−xy/t

)
(x, y ∈ (0,∞)); (4.4)

thus,

(λ−∆D)−1f(x) =

∫ ∞
0

∫ ∞
0

e−λtkt(x, y) dtf(y) dy (a.e. x ∈ (0,∞))

for all f ∈ L2(0,∞) and all λ > 0. To conclude that Gλ is the integral kernel of (λ−∆D)−1,
we now show that (0,∞) 3 λ 7→ Gλ(x, y) ∈ (0,∞) is the Laplace transform of the function
(0,∞) 3 t 7→ kt(x, y) ∈ (0,∞), for every (x, y) ∈ (0,∞)× (0,∞).
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Lemma 4.4. Let λ, x, y ∈ (0,∞). Then

Gλ(x, y) =

∫ ∞
0

e−λtkt(x, y) dt.

Proof. We observe that∫ ∞
0

e−λtkt(x, y) dt =

∫ ∞
0

e−λt(4πt)−1/2e−(x−y)2/4t
(
1− e−xy/t

)
dt (4.5)

=
1

2
√
π

(∫ ∞
0

t−1/2e−(x−y)2/4t−λt dt−
∫ ∞

0

t−1/2e−(x+y)2/4t−λt dt

)
.

To compute the two integrals in the right hand side, let r > 0, G(t) := −
∫∞
t
e−s

2
ds

(t ∈ R) and

F (t) := er
√
λG

(√
λt+

r

2
√
t

)
+ e−r

√
λG

(√
λt− r

2
√
t

)
(t > 0).

Using G′(t) = e−t
2

(t ∈ R), one easily verifies that

F ′(t) =
√
λ t−1/2e−r

2/4t−λt (t > 0).

Moreover, since G(t)→ 0 as t→∞ and G(t)→ −
√
π as t→ −∞, we have

F (t)→ 0 (t→∞), F (t)→ −
√
π e−r

√
λ (t→ 0+).

Hence, ∫ ∞
0

t−1/2e−r
2/4t−λt dt =

1√
λ

(
lim
t→∞

F (t)− lim
t→0

F (t)
)

=

√
π

λ
e−r
√
λ.

Note that this identity also holds for r = 0. Using (4.5), we conclude that∫ ∞
0

e−λtkt(x, y) dt =
1

2
√
π
·
√
π

λ

(
e−
√
λ|x−y| − e−

√
λ(x+y)

)
=

1

2
√
λ
e−
√
λ|x−y|

(
1− e−

√
λ(x+y−|x−y|)

)
=

1

2
√
λ
e−
√
λ|x−y|

(
1− e−2

√
λ(x∧y)

)
= Gλ(x, y).

Using the elementary inequality 1 − e−r 6 r (r > 0) we obtain the following estimate
for the Green function Gλ that will be crucial in the next subsection:

Gλ(x, y) 6 (x ∧ y)e−
√
λ|x−y| (

λ > 0, x, y ∈ (0,∞)
)
. (4.6)
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4.3 L1-estimates for weighted Schrödinger semigroups on (0,∞)

Let again ∆D be the Dirichlet Laplacian on (0,∞) and T the generated C0-semigroup on
L2(0,∞). Let V : (0,∞)→ R be measurable and assume that there exists α ∈ (0, 1) such
that ∫ ∞

0

x|V (x)| dx 6 α. (4.7)

Our first goal is to show L1-estimates for the Schrödinger semigroup TV with exponential
weights ρξ : (0,∞) → (0,∞) defined by ρξ(x) := eξ·x (x > 0), for all ξ ∈ R. We achieve
this by first showing that (4.7) implies an estimate of the form (4.3) (see Proposition 4.5(a)
below) and then applying Corollary 4.2 to the semigroup T ξ defined as follows, for ξ ∈ R:
due to (2.10), ρξT (t)ρ−1

ξ extends to a bounded operator T ξ(t) on L2(0,∞) for all t > 0,

and by Proposition 2.10 the family (T ξ(t))t>0 thus defined is a (positive) C0-semigroup on
L2(0,∞). We denote by ∆D,ξ the generator of T ξ.

The second goal is to prove L1-estimates for TV with exponential weight ρξ and weight
m : (0,∞) → (0,∞) defined by m(x) := x (x > 0) on the measure space ((0,∞),m2λ).
We will show this in a manner similar to the first goal from above, working with the
unitarily transformed semigroup T ξ,m on L2(Ω0,m

2λ) defined by

T ξ,m(t)f := m−1T ξ(t)mf (t > 0, f ∈ L2(m2λ)).

Note that T ξ,m is a positive C0-semigroup satisfying

‖T ξ,m(t)‖L2(m2λ)→L2(m2λ) 6 eξ
2t (t > 0) (4.8)

since L2(m2λ) 3 f 7→ mf ∈ L2(0,∞) is an isometric lattice isomorphism and T ξ is positive
and satisfies (2.10). We denote by ∆m

D,ξ the generator of T ξ,m.

Proposition 4.5. Let (4.7) be true, and let ξ ∈ R. Then

(a) ‖V (µ−∆D,ξ)
−1‖1→1 6 α for all µ > ξ2, and

(b) ‖V (µ−∆m
D,ξ)

−1‖L1(mλ2)→L1(mλ2) 6 α for all µ > ξ2.

Proof. We assume without loss of generality that V ∈ L∞(0,∞). (This can be done since
Vn := |V | ∧ n ∈ L∞(0,∞) satisfies (4.7) for every n ∈ N and, if the assertions of (a)
and (b) hold with Vn in place of V , then they also hold for V by monotone convergence.)

(a) Let D := {L1 ∩L2(0,∞) ; ρ−1
ξ f ∈ L2(0,∞)}, and let f ∈ D. Then (µ−∆D,ξ)

−1f =

ρξ(µ − ∆D)−1ρ−1
ξ f since (µ − ∆D,ξ)

−1 is the Laplace transform of T ξ. Thus, using the
estimate (4.6) for the integral kernel Gµ of (µ − ∆D)−1 and the assumption (4.7), we
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estimate

‖V (µ−∆D,ξ)
−1f‖1 =

∫ ∞
0

|V ρξ(µ−∆D)−1ρ−1
ξ f |(x) dx

=

∫ ∞
0

|V (x)|eξx
∫ ∞

0

Gµ(x, y)e−ξy|f(y)| dy dx

6
∫ ∞

0

|f(y)|
∫ ∞

0

eξ(x−y)e−
√
µ|x−y|(x ∧ y)|V (x)| dx dy

6
∫ ∞

0

|f(y)|
∫ ∞

0

x|V (x)| dx dy 6 α‖f‖1 .

Now the assertion of (a) follows since D is dense in L1 ∩ L2(0,∞).

(b) Let D := {L1 ∩L2(m2λ) ; ρ−1
ξ f ∈ L2(m2λ)}, and let f ∈ D. Then (µ−∆m

D,ξ)
−1f =

m−1ρξ(µ−∆D)−1ρ−1
ξ mf , and similarly as in the proof of (a) we estimate

‖V (µ−∆m
D,ξ)

−1f‖L1(m2λ) =

∫ ∞
0

|V m−1ρξ(µ−∆D)−1ρ−1
ξ mf |(x) d(m2λ)(x)

=

∫ ∞
0

|V (x)|1
x
eξx
∫ ∞

0

Gµ(x, y)e−ξyy|f(y)| dy d(m2λ)(x)

6
∫ ∞

0

|f(y)|
∫ ∞

0

x

y
eξ(x−y)e−

√
µ|x−y|(x ∧ y)|V (x)| dx d(m2λ)(y)

6
∫ ∞

0

|f(y)|
∫ ∞

0

x|V (x)| dx d(m2λ)(y) 6 α‖f‖L1(m2λ) .

Now the assertion of (b) follows since D is dense in L1 ∩ L2(mλ2).

Remark 4.6. The assertions of Proposition 4.5 have a kind of converse: below we will
show that∫ ∞

0

x|V (x)| dx = lim
µ→0+

‖V (µ−∆D)−1‖1→1 = lim
µ→0+

‖V (µ−∆m
D )−1‖L1(m2λ)→L1(m2λ);

since limµ→0+ ‖V (µ − ∆D)−1f‖1 =
∫∞

0
‖V T (t)f‖1 dt for all f ∈ L1 ∩ L2(0,∞)+ (cf. the

proof of Proposition 4.1), it then follows that (4.7) is equivalent to the global Kato class
condition ∫ ∞

0

‖V T (t)f‖1 dt 6 α‖f‖1 (f ∈ L1 ∩ L2(0,∞)).

In the same way one sees that (4.7) is true if and only if∫ ∞
0

‖V Tm(t)f‖L1(m2λ) dt 6 α‖f‖L1(m2λ) (f ∈ L1 ∩ L2(m2λ)).

Remarkably, (4.7) is thus equivalent to both an unweighted and a weighted global Kato
class condition on V .
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The inequality limµ→0+ ‖V (µ−∆D)−1‖1→1 6
∫∞

0
x|V (x)| dx holds by Proposition 4.5(a).

For the converse inequality first observe thatGµ(x, y) ↑ x∧y as µ ↓ 0, for all x, y > 0. Thus,
by the monotone convergence theorem and a computation as in the proof of Proposition 4.5
one sees that

lim
µ→0+

‖V (µ−∆D)−1f‖1 =

∫ ∞
0

f(y)

∫ ∞
0

(x ∧ y)|V (x)| dx dy > ‖f‖1

∫ ∞
0

(x ∧ n)|V (x)| dx

for all f ∈ L1 ∩ L2(0,∞)+ with spt f ⊆ (n,∞). Letting n → ∞ one obtains the desired
converse inequality.

Noting that x
y
Gµ(x, y) ↑ x2

y
∧x as µ ↓ 0 one shows the second equality

∫∞
0
x|V (x)| dx =

limµ→0+ ‖V (µ−∆m
D )−1‖L1(mλ2)→L1(mλ2) in a similar way, now using f with spt f ⊆ (0, 1/n).

Using Proposition 4.5(a) with ξ = 0, we now show that (4.7) implies the form smallness
condition (2.8).

Proposition 4.7. Let (4.7) be true. Then∫ ∞
0

|V ||u|2 dx 6 α〈−∆Du, u〉 (u ∈ dom(∆D)). (4.9)

Proof. As in the proof of Proposition 4.5 we assume without loss of generality that V ∈
L∞(0,∞).

Let p ∈ (1, 1/α). Then ‖−p|V |(λ−∆D)−1‖1→1 6 pα for all λ > 0 by Proposition 4.5(a).
Therefore, since T is contractive and L1-contractive,

‖T−p|V |(t)‖1→1 6
1

1− pα
(t > 0)

by Corollary 4.2. Using duality and the self-adjointness of T−p|V |, we also get the estimate

‖T−p|V |(t)‖∞→∞ 6
1

1− pα
(t > 0).

The Riesz-Thorin interpolation theorem now implies that ‖T−p|V |(t)‖2→2 6 1/(1− pα) for
all t > 0. Thus −(∆D + p|V |) is accretive, i.e.,∫ ∞

0

p|V ||u|2 dx 6 〈−∆Du, u〉 (u ∈ dom(∆D)).

Letting p→ 1/α we obtain the asserted estimate (4.9).

Now we are ready to prove the L1-estimates mentioned in the beginning of this sec-
tion. We start with the exponentially weighted L1-estimate for Schrödinger semigroups
on (0,∞). Note that V is T -admissible by Proposition 4.7 and Proposition 2.2.

Proposition 4.8. Let (4.7) be true. Let ξ ∈ R. Then

‖ρξTV (t)ρ−1
ξ ‖L1(0,∞)→L1(0,∞) 6

1

1− α
eξ

2t (t > 0).
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Proof. Recall the definition of T ξ from the first paragraph of the present subsection.
By (2.10) we have ‖T ξ(t)‖1→1 6 eξ

2t and ‖T ξ(t)‖2→2 6 eξ
2t for all t > 0. Now fix

n ∈ N and let Vn := (V ∧ n) ∨ (−n) ∈ L∞(0,∞). Then

(T ξ)Vn(t)f = ρξTVn(t)ρ−1
ξ f (t > 0, f ∈ dom(ρ−1

ξ )) (4.10)

by Proposition 2.10. Moreover, we have ‖Vn(λ−∆D,ξ)
−1‖1→1 6 α for all λ > ξ2, by

Proposition 4.5(a). Hence, Corollary 4.2 implies that

‖(T ξ)Vn(t)‖1→1 6
1

1− α
eξ

2t (t > 0).

Now the assertion follows because of (4.10) and the fact that TVn(t)→ TV (t) strongly for
all t > 0.

The next proposition deals with the exponentially weighted L1-estimates for Schrödinger
semigroups on ((0,∞),m2λ).

Proposition 4.9. Let (4.7) be true. Let ξ ∈ R. Then

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λ)→L1(m2λ) 6

2
√

2

1− α
e2ξ2t (t > 0).

Moreover, if ξ 6 0, then

‖m−1ρξTV (t)ρ−1
ξ m‖L1(m2λ)→L1(m2λ) 6

1

1− α
eξ

2t (t > 0).

Proof. Let T ξ,m be defined as in the paragraph preceding Proposition 4.5, and recall (4.8).
Moreover, note that Proposition 3.2 yields

‖T ξ,m(t)‖L1(m2λ)→L1(m2λ) 6 c
3/2
ξ ecξξ

2t (t > 0),

where cξ := 2 if ξ > 0 and cξ := 1 if ξ 6 0. Now one completes the proof by the same
argumentation as in the proof of Proposition 4.8, using part (b) of Proposition 4.5 instead
of part (a).

With the above weighted L1-estimates at hand we can finally prove our main result.

Proof of Theorem 1.1. It follows from Propositions 4.7 and 2.2 that V satisfies the form
smallness condition (2.8) and hence is T -admissible. Now Propositions 4.8 and 4.9 show
that Corollary 3.6 is applicable, and this gives the desired kernel estimate.

To conclude, we prove a kind of converse to Theorem 1.1, for negative potentials.

Theorem 4.10. Let V be T -admissible, and assume that V 6 0. Further, assume that
for every t > 0 the operator TV (t) has an integral kernel kVt ∈ L∞((0,∞) × (0,∞)) such
that (1.2) holds for some c > 0 independent of t. Then∫ ∞

0

x|V (x)| dx <∞. (4.11)
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Proof. For t > 0 let kt : (0,∞)× (0,∞)→ (0,∞) be the integral kernel of T (t); see (4.4).
One easily sees that(

1 +
(x− y)2

4t

)3α/4

6Me(x−y)2/8t (t, x, y > 0)

for some M > 1, so it follows from (1.2) and (3.2) that

kVt (x, y) 6 cM
(

1 ∧ xy
t

)
t−1/2e−(x−y)2/8t 6 4

√
2 cMk2t(x, y) (a.e. x, y ∈ (0,∞))

for all t > 0. With C := (4
√

2 cM) ∨ 1 we deduce that TV (t) 6 CT (2t) and hence
(Tm)V (t) = (TV )m(t) 6 CTm(2t) for all t > 0. This together with the L1-stochasticity of
Tm (see Remark 3.3) implies that

sup
t>0
‖(Tm)V (t)‖L1(m2λ)→L1(m2λ) 6 C. (4.12)

Now Tm(t)|L1∩L2(m2λ) extends to a stochastic operator Tm1 (t) on L1(m2λ), and the
mapping Tm1 : [0,∞) → L(L1(m2λ)) thus defined is a positive C0-semigroup by [Voi92,
Thm. 7]. Further observe that, due to (4.12), we can apply [Voi86, Prop. 3.1(a)] and
obtain the Tm1 -admissibility of V and the identity (Tm1 )V (t)f = (Tm)V (t)f for all f ∈
L1 ∩ L2(m2λ). Therefore, Proposition 4.3 implies that V satisfies the global Kato class
condition ∫ ∞

0

‖V Tm1 (t)f‖1 dt 6 (C − 1)‖f‖1 (f ∈ L1(m2λ)).

The asserted inequality (4.11) now follows from Remark 4.6.
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