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The direct problem: elastic wave equation @ &5 et

D c R? bounded Lipschitz domain (or an exterior of such a domain).

o:[0,00) x D — Rgyqyy stresstensor,  v: [0,00) x D — R3 velocity field

o (t,x) = C(p(x), MNz))e(v(t, x)) in [0,00) X D,
o(x)oyv(t,x) = div, o(t,x) + f(t, ) in [0,00) x D,
where o: D — R mass density, f: [0,00) x D — R? volume force,
C(m,l)e = 2me + Ltrace(e)l, €€ Rg;}g,, m,{ € R Hook’s law
u(z), A(xz) Lamé parameters

e(v) == 3[(Vyv) " + V,v] (linearized) strain

» Initial and boundary conditions will be specified below.
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Elastic wave equation (continued) e e s

C: D(C) C R? — Aut(Rgyy)

D(C) = {(m,ﬁ)T ceR?:ct<2m+3¢<c, ¢! gmgc}

~ —1 __ 1 ¢
C(m,l) :=C(m,l)"" =C (R’ - 2m(30+ 2m)>

o (t,x) = C(p(x), Nz))e(v(t, x))

—  C(u(x),MNz))owo(t,z) = e(v(t, x))
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Wave equation as abstract evolution equation ﬂ(".

> P= {(,u,)\, o) € L®(D)P:c ' <pou<ec, c P <2u+31<c a.e.}

» X = L*(D,Rgy) x L*(D,R3) with inner product

T N = o v-w)dz
((O',V) , (0, w) )X .—/D( P + )d

For fixed (i, A\, 0)' € P we define B € £(X) by

2 (0= (7% 7))

which is self-adjoint and uniformly positive definite.

7/23 @©Andreas Rieder — On Inverse Wave Problems, Part 2: Applications Inverse Problems for PDEs, Bremen 2016



IT

Wave equation as abstract evolution equation (contd) 5.0

Now, the elastic wave equation may be written as

pa(3)+4(2)=(2) (7o) - (2)

with A: D(A) C X — X,
0 €
A= (divx O)’

D(A) = {(a,v)T € H(div, D,R¥3) x Hjp_ (D, R%) : om = 0 on 6’DN},

0D = 0Dp U(?DN, VOlQ(aDD) > 0.

Lemma A is maximal monotone (—A dissipative and R(1 + A) = X).
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Existence, uniqueness, regularity o i s

» mild/weak solution exists in €([0,c0), X) for

feL'((0,00), L(D,R?) and (o9,vo)' € X.

» classical solution exists in C([0, c0), D(A)) N €*(]0,00), X) for

f e W ((0,00), L*(D,R%)) and (0, vo)' € D(A).

» classical solution exists in C*([0,00), D(A)) N €%([0,00), X) for
f € W*((0,00),L*(D,R%)), (a0,vo)' € D(A),
o '[diveo + £(0)] € Hjp, (D,R?), C(p,Ne(vo) € H(div, D,R3%3),

sym
C’(,u, )\)é(Vo)Il =0ondDy.
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The inverse problem of seismic imaging ﬂ(".

Let (00, vo)' € D(A) and £ € Wi ([0, T], L*(D,R?)) for T > 0.

Then, the parameter-to-solution map
®: P C L>®(D)* - e([0,7],X), (X0 (o,v)'
Is well defined.
Let R: C([0,T], X) — RY be a (continuous) measurement operator.
Given w € RY find (u, A, 0)' € P such that
R®(pu, N\, 0) = w.

Solving above problem is called full waveform inversion in seismic imag-
Ing.
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Full waveform inversion is locally ill-posed @ &5 ettt

Theorem The equation

(I)<:uv A, Q) — (07 V)T

IS locally ill-posed at any interior point of P.

Proof: We factorize
b=FoV

where
F:BcCL(X)—€(0,7],X), B (o,v),

and

XﬂTCDWDf%B,(m&mTH(a%M &).

Note that F' is the mapping considered in the abstract theory.
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Full waveform inversion is locally ill-posed (cont’d)
Define sequences
Pk i= [+ T1€g, Ak = A+ ey, Ok 1= 0 + Tr3eg
where r; € [0, 7], r > 0 sufficiently small, r; + ro + r3 > 0, and
€k 1= XB, (€ for one fixed &£ € D.
We have that

{ (s Ay 01) Jie € B, Ay 0)  but  (pg, Ak, o) 7 (1, A, 0)-

It remains to show
(I)(:uka )‘ka Qk) — (I)(/'Lv )\7 Q)
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Full waveform inversion is locally ill-posed (cont'd) A“(IT

Define Ej, € £(X) by

By =V (g, Ay 0k) — V(p, A, 0) = (C('uk’ )\k)o_ Ol M) "“321J)
and show that
» FE; is monotone, symmetric, bounded,
> limy_o || EL(2)]|x =0 forall (o, v)' € X, and
> 7 S| Ekllgxy Sroforall & where 0 <7 <.

As

(I)(:uka Ak Qk) — F(V(:ua A, Q) + Ek) — F(V(:uv A, Q)) — (I)(:uv A, Q)

the claimed local ill-posedness follows. v
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Fréchet derivative of the forward map e e e

Theorem The parameter-to-solution map
®: P C L¥(D)* — ¢([0,T], X)
is Fréchet differentiable at (i, A, o) '. In fact,

]
' (1, X, 0) [ ho| = (—)
h3

where (7,v)' € €([0,77], X) is the mild solution of

oo (t,x) = C(,Lb(x), )\(a:))s(V(t, T)) + C’(hl(x), hg(x))s(v(t, T)),
o(x)ov(t,x) =dive(t,x) — hy(x)dv(t, x),

in [0, 7] x D with &(0) =0, v(0) =0. Here, v=®(u, A, 0)2.
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Fréchet derivative of the forward map (continued) e s M

Proof: As ® = F' o VV we have that

' (11, A, 0) = F'(V(1, A, 0) V' (1, X, 0).

The assertion follows from

e ) e
C'"(u. \) 0
V(A 0) [he| = ( (g’ ) I) ho
| h3 | | h3 |

_ (_6(M7 )‘)C(hla h2)6(ua )‘) 0 )
0 hsl

and the abstract result appliedto F'. v
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Second order wave equation e i

p(x)0uv(t,x) = div|C(pu(z), Nz))e(v(t, z))]| + g(t, x)

with  v(0,-) = vg, 9v(0,-) =vyin D, and
v=0 on|0,7] x 0Dp, C(u,Ne(v)n=00n[0,T] x 0Dy.

Set t
o(t,x):= C(,Lb(x),)\(a:))/o e(v(s,z))ds.

Then, (o,v) solves
oo(t,r) = C(,u(a:), )\(x))e(v(t, :U)),
p(x)ov(t,x) =dive(t,z) + /0 g(s,x)ds + p(x)vi(x)

with  v(0,-) = vy, o(0,-) =0in D, and
v=0 on|[0,7] x 0Dp, on=00n[0,7T] x 0Dy

16/ 23 @©Andreas Rieder — On Inverse Wave Problems, Part 2: Applications Inverse Problems for PDEs, Bremen 2016



Second order wave equation (continued) ﬂ(".

Conclusion

» Our results carry over to the second order wave equation.

» Thus, we regain and extend results of
LECHLEITER/SLASCHE 2015 and BOEHM/ULBRICH 2015
on the Fréchet differentiability of the parameter-to-solution map.
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The Maxwell system A“(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

E = E(t,x) and H = H(¢, x) electric and magnetic fields, resp.

(0 uf) 8t<H>__(Cuﬂw 0 >(H>+(Jm) (0.1 %D

\ . J/

_ B _A _

with bc: n x E=0o0n (0,7) x 9D
ic: E(0,-) =ep, H(0,-) = hg

where J.,,, = J./n(t, ) current/magnetic density

e =¢e(x) permittivity
= p(x) permeability
o=o(x) conductivity
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Abstract settings A“(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

> P:={(e,pu) €L®(D)?:c'<e,pu<cae.}
» X = [2(D,R3) x L2(D,R?)

If (e,p)" € P then B € £(X) is self-adjoint and uniformly pos. definite.

» 0 € L®(D), 0 >0

» D(A) = Hy(curl, D) x H(curl, D)

Lemma A: D(A) C X — X is maximal monotone.
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Electromagnetic scattering operator e i et

Let (eg,ho)' € D(A) and (J.,J,)" € WhHi([0,T],X) for T > 0.

Then, the parameter-to-solution map is well defined:
O: P C L¥D)?* - C([0,7],X), (e,0)" = (E,H).

We factorize again
d=FoV

where
F:BcCL(X)—€(0,T],X), Br (E,HT,

and

) 00 2 T 8[ 0
V:PCL*®(D)" =B, (epn) |—>(O M[)'

Conclusion: Fréchet-differentiability and local ill-posedness hold for in-
verse electromagnetic scattering as well.
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Things to remember A“(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Bu'(t) + Au(t) = f(t), t >0, u(0) = ug

B € L(X) pos. self-adjoint; A: D(A) C X — X maximal monotone;
X Hilbert space

F: B—u

We have investigated the

» Fréchet-differentiability of F,
» Local ill-posedness of F'(:) = u,

and applied our abstract findings to

» the elastic wave equation (seismic tomography),

» Maxwell’s system (inverse electromagnetic scattering).
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