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experimental setup
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model hierarchy

e time harmonic Maxwell equations for electric field E:
curlcurlE — x?n°E = 0

 Helmholtz equation: If |x='Vn| < 1, the cartesian
components of E satisfy

Au+ k2rPu=0

Exact solution in half-space {(x,z) € R x R : z > 0} for
=1:

u(x,z) = (f;1efzv*’~2—\5’|2f2uo) (x), U :=u(-0)

F» := Fourier transform in R?



Fresnel approximation

e Fresnel approximation: \/r2—|[£|2 ~ k— |E‘ if|¢] < K

u(x, z) ~ e"* (]—" e o ]—“2u0> (x) =: e"?(D 2/ U0)(X)

The unitary operator D is called Fresnel transform.
By the Fourier convolution theorem

(D2 ti0)(X) = /R e Y uq(y)dy

e equivalent: Schrédinger approximation of Helmholtz eq.:
02 + K% = (—i0; + K)(i0; + r) ~ i0, + r leads to
Schrddinger equation

i0,0+ Axli =~ 0 for b(x,z):= e ""?u(x, z).



Fraunhofer approximation

Recall: u(x, z) ~ €"%(D,,, Up)(X) with

(P2re0)X) = [ e uoiy)ay

Fresnel number:

kb? .
Np = 57 b := diam(supp up)

If Nr < 1, the Fraunhofer approximation is valid:

ux,z) = %emﬁ%xlz [fzuo (;)} (x)

ux 2l = 5| [Fauo (5)] )|

2rz



Fraunhofer approximation

Recall: u(x, z) ~ €"%(D,,, Ug)(x) with

irly[?

(Do) = 05 [ @200 wofy)ay

Fresnel number:

kb?

=57 b := diam(supp up)
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If Ne < 1, the Fraunhofer approximation is valid:
ix

u(x,z) =~ EGMH%'XF [fzuo (;)} (x)
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basic phase retrieval problems
Reconstruct the field ug in the object plane from the measured
(squared) modulus |u(-, z)|? of the field in the detector plane
and a-priori information on ug!

e Typical a-priori information: supp up, ug > 0, |up| = 1
o |u(-, 2)|? is the photon density.

mathematical formulation:
o near field data: Given |Dup|?, find up!
o far field data (z — oo or ¢ — 0): Given | Fug|? find ug!

As F and D¢ are unitary, this is equivalent to finding the

missing phase, e.g. ‘%g'.

In@e sample i ﬂge pr@ave




from nto uy

Consider plane incident wave e'*?
Write u(x) = ii(x, z)e'~? with a slowly varying envelope i
Plug this into the Helmholtz equation Au + x2n?(x)u = 0:

;;+M+2ini+n(z(X)—1) G(x,z) = 0.

Fresnel approximation: Neglect -2 822
projection approximation: Neglect -2 622 and Ay

If supp(n—1) c {-L<z<0}and u(x,z) =1forz < —L,
then under the projection approximation

0
Ug(X) ~ exp ’g/ ("P(x,z)—1 dz|, xeR?
L N—

~2(n—1)) as |[n—1|«1



phase and absorption objects
Write contrastas n—1 = -0 +ig with 0 <4, 5 <« 1.

Up(x) ~ e n 2Lk —iB(x.2)) dz

e phase objects: § > [ (usual situation)
If 8 =0, then |ug| = 1 (below in the letter P).

e absorption objects: 5> ¢
If 6§ = 0, then ug is real-valued with ug > 0 (in letter A).

Nr =100.000 Ng = 1000 Ne =1

Al AP -

|Dcup| for different values of ( = §



propagation based phase contrast
tomography

e By rotating the sample in the beam we can obtain other
line integrals over n ~~ tomographic imaging

e Forward operator of phase contrast tomography in terms of
the Radon transform R:
F: L3(B) — L?(S' x R?)
. 2
(F(n))(0,%) = | (Dee™A=110) (x)|

e usual CT: (=0, i.e. D¢ = I.
Usually 2]7 In F is considered instead of F.
No information about Rn, only &n!
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@ uniqueness and stability results



uniqueness for 2D near field phase
retrieval

e Jonas & Louis 2004: Uniqueness of complex-valued u if
two diffraction patterns at different distances are given

e Nugent 2007: Counterexample for non-uniqueness with
one diffraction pattern

e Maretzke 2015: Uniqueness of complex-valued and
compactly supported u from one diffraction pattern

P. Jonas, A. Louis. Phase contrast tomography using holographic
measurements. Inverse Problems 20:75-102, 2004.

K. Nugent. X-ray noninterferometric phase imaging. A unified picture. JOSA A.
24:536-547, 2007.

S. Maretzke. A uniqueness result for propagation-based phase contrast imaging
from a single measurement. Inverse Problems 31:065003, 2015.



uniqueness for 2D near field phase
retrieval

e Jonas & Louis 2004: Uniqueness of complex-valued u if
two diffraction patterns at different distances are given

¢ Nugent 2007: Counterexample for non-uniqueness with
one diffraction pattern

e Maretzke 2015: Uniqueness of complex-valued and
compactly supported u from one diffraction pattern

both for full nonlinear and for linearized problem

arbitrarily small measurement region

implies uniqueness also for phase contrast tomography

proof based on complex analysis (theory of entire functions)

P. Jonas, A. Louis. Phase contrast tomography using holographic
measurements. Inverse Problems 20:75-102, 2004.

K. Nugent. X-ray noninterferometric phase imaging. A unified picture. JOSA A.
24:536-547, 2007.

S. Maretzke. A uniqueness result for propagation-based phase contrast imaging
from a single measurement. Inverse Problems 31:065003, 2015.



well-posedness

Weak object assumption: up = 1 + u with |u| < 1 such that

DU 2 = 1 + 2RDu + O]

::TNFU

Theorem

If the (complex-valued) contrast u vanishes outside of a fixed
bounded set Q, the linearized phase retrieval problem is well
posed.

In particular, noise amplification Ap;. := || T,g; || is finite.

o It follows that the nonlinear inverse problem is locally
well-posed.

¢ Global well-posedness is an open question.



bounds on noise amplification

Noise amplification determined by two factors:

. b sample size
“ Fresnell)znumber' z distance sample to detector
U K

Ng = 2= % wave number
2nz

® a-priori information.



bounds on noise amplification

Noise amplification determined by two factors:

. b sample size
Fresnel number: z distance sample to detector

Ng = PPr x wave number
2z

® a-priori information. We considered three cases:
e none: both phase and absorption constrast

ANF < C1 eXp(CNp)
e pure phase object: ®(u) =0
Ane < CoNks

e single material: ®(u) = pS(u) for some p € R\ {0}

Anp < C3v/ N
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projection methods

e Formulate problem as feasibility problem: Find u € An B
with
o A= {u: u satisfying a-priori information} (often convex),
eg. A={u:u>0}
e B={u: uexplains data}, e.g. B= {u: |Ful|®> = y}
(non-convex)
e [2-metric projection onto B:

. Fu
o =7 (v

o apply splitting methods to x4(u) + xs(u) = min!, e.g.
e backward-backward = alternating projections = error
reduction
¢ Douglas Rachford = hybrid input output (HIO)

J.R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., OSA
21:2758-2769, 1982.

H. Bauschke, P. Combettes, R. Luke. Phase retrieval, error reduction algorithm,
and Fienup variants: a view from convex optimization. J. Opt. Soc. Amer. A,
19:1334-1345, 2002.



projection methods: pros and cons

pros:
e easy to implement
e often efficient

cons:
e no provable convergence (only partial results)
e sometimes erratic convergence behaviour
o difficult to respect Poissonian data distribution



phase lift methods

Consider discrete problem to find u € C" such that
guf?=yjforj=1,...,m

Note: \aj‘u\z = tr(u*agaju) = tr(a;ajuu”)
Reformulation with new unknown U = uu* € C™":

minimize rank(U) overUe C™" U>0
st. tr((ga)U)=y, j=1,....m
convex relaxation:

minimize tr(U) over Ue C™" U>0
st. tr((ga)U)=y, j=1,....m

E. Candés, T. Strohmer, V. Voroninski. PhaseLift: exact and stable signal
recovery from magnitude measurements via convex programming. Comm. Pure
Appl. Math. 66:1241-1274, 2013.



phase lift methods: pros and cons

pros:
e reformulation as a convex minimization problem
e mathematically elegant

cons:

e The number of unknowns of an already large problem is
squared.

e only applicable to inverse problems, which are linear up to
missing phase information

e little flexibility in incorporating a-priori information on
unknown and experimental setup



iterative regularization methods

e Formulate inverse problem as an operator equation
F(u) = y with an operator F mapping the unknown u to
the data y.

e Apply a Newton-type method
U1 € argmin g [S(F(u) + F'Tuid(u — ug), y°) + axR(u)]

where
e y° is observed noisy data (often Poisson distributed)
e S is a data fidelity term, e.g. negative log-likelihood
e R is a penalty term incorporating a-priori information on u
e «y are regularization parameters, ax — 0
Minimization problems in each Newton step typically
convex, so e.g. the Chambolle-Pock algorithm is
applicable.



iterative regularization: pros and cons

pros:
e great flexibility to incorporate a-priori knowledge

¢ on solution (hard constraints as well as smoothness or
sparsity)

¢ on data distribution (e.g. via Poisson log-likelihood)

e precise physical model or experimental setup

e more accurate reconstructions
cons:
e only local convergence
e often numerically more expensive than projection methods



exact far field data and photon counts

100

200

100 200 100 200
Expected total number of photon counts = 108



simulated phase object and
reconstruction

100

200




expected error in terms of #(photons)

t | quadratic KL

108 5858 532
104 50.7  39.2
105 315 293
108 166  13.8
107 9.46 877
108 [  9.21 7.38




reconstruction of a cell from
holographic experimental data in the
Fresnel regime

phase reconstr., final it. data reconstruction, final it. observed data

e =N

<

experimental data published in:

K. Giewekemeyer, S.P. Kriiger, S. Kalbfleisch, M. Bartels, C. Beta, T. Salditt.
X-ray propagation microscopy of biological cells using waveguides as a
quasipoint source. Phys. Rev. A 83:023804. 2011



phase contrast tomography

Straightforward approach: Solve a standard phase retrieval
problem for each angle 6 and then invert the Radon
transform.

disadvanage: Range of Radon transform has a nontrivial
orthogonal complement (Helgason-Ludwig conditions) ~~
standard phase retrieval problems unnecessarily unstable.

All-at-once approach more accurate.
Inversion by Newton-Kaczmarz method.



3D reconstructions from tomographic
experimental data

F_1

tomo

(by IRNM)

S. Maretzke, M. Krenkel, M. Bartels, T. Salditt, T. Hohage. Regularized Newton
methods for x-ray phase contrast and general imaging problems. Optics Express
24:6490-6506, 2016.



3d reconstruction of a living cell

-1
FPCT
(Newton-

Kaczmarz)

Misaligned holograms Sharp 3D-image (D. radiodurans) + alignment



Outline

O conclusions



conclusions

uniqueness for nonlinear near field phase retrieval
problems with compactly supported objects

well-posedness of linearized problems
explicit stabilty bounds in terms of the Fresnel number
all-at-once approach for numerical reconstructions

Thank you for your attention!
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