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The setting
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inversionforward

Symes, The seismic reflection inverse problem, Inverse Problems 25, 123008 (2009)



The direct problem: elastic wave equation
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D ⊂ R
3 bounded Lipschitz domain (or an exterior of such a domain).

σ : [0,∞)×D → R
3×3
sym stress tensor, v : [0,∞)×D → R

3 velocity field

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε(v(t, x)) in [0,∞)×D,

̺(x)∂tv(t, x) = divx σ(t, x) + f(t, x) in [0,∞)×D,

where ̺ : D → R mass density, f : [0,∞)×D → R
3 volume force,

C(m, ℓ)ε = 2m ε+ ℓ trace(ε)I, ε ∈ R
3×3
sym , m, ℓ ∈ R Hook’s law

µ(x), λ(x) Lamé parameters

ε(v) := 1
2

[
(∇xv)

⊤ +∇xv
]

(linearized) strain

◮ Initial and boundary conditions will be specified below.



Elastic wave equation (continued)
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C : D(C) ⊂ R
2 → Aut(R3×3

sym)

D(C) =
{
(m, ℓ)⊤ ∈ R

2 : c−1 ≤ 2m+ 3ℓ ≤ c, c−1 ≤ m ≤ c
}

C̃(m, ℓ) := C(m, ℓ)−1 = C

(
1

4m
,−

ℓ

2m(3ℓ+ 2m)

)

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε(v(t, x))

⇐⇒ C̃
(
µ(x), λ(x)

)
∂tσ(t, x) = ε(v(t, x))



Wave equation as abstract evolution equation

7 / 23 c©Andreas Rieder – On Inverse Wave Problems, Part 2: Applications Inverse Problems for PDEs, Bremen 2016

◮ P :=
{
(µ, λ, ̺)⊤ ∈ L∞(D)3 : c−1 ≤ ̺, µ ≤ c, c−1 ≤ 2µ+ 3λ ≤ c a.e.

}

◮ X = L2(D,R3×3
sym)× L2(D,R3) with inner product

(
(σ,v)⊤, (ψ,w)⊤

)
X

:=

∫

D

(
σ : ψ + v ·w

)
dx

For fixed (µ, λ, ̺)⊤ ∈ P we define B ∈ L(X) by

B

(
σ

v

)
:=

(
C̃
(
µ, λ

)
0

0 ̺ I

)(
σ

v

)

which is self-adjoint and uniformly positive definite.



Wave equation as abstract evolution equation (cont’d)
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Now, the elastic wave equation may be written as

B ∂t

(
σ

v

)
+A

(
σ

v

)
=

(
0

f

)
,

(
σ(0, ·)
v(0, ·)

)
=

(
σ0

v0

)
,

with A : D(A) ⊂ X → X,

A := −

(
0 ε

divx 0

)
,

where

D(A) =
{
(σ,v)⊤ ∈ H

(
div, D,R3×3

sym

)
×H1

∂DD
(D,R3) : σn = 0 on ∂DN

}
,

∂D = ∂DD ∪̇ ∂DN , vol2(∂DD) > 0.

Lemma A is maximal monotone (−A dissipative and R(I +A) = X).



Existence, uniqueness, regularity
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◮ mild/weak solution exists in C
(
[0,∞), X

)
for

f ∈ L1
(
(0,∞), L2(D,R3)

)
and (σ0,v0)

⊤ ∈ X.

◮ classical solution exists in C
(
[0,∞),D(A)

)
∩ C1

(
[0,∞), X

)
for

f ∈ W 1,1
(
(0,∞), L2(D,R3)

)
and (σ0,v0)

⊤ ∈ D(A).

◮ classical solution exists in C1
(
[0,∞),D(A)

)
∩ C2

(
[0,∞), X

)
for

f ∈ W 2,1
(
(0,∞), L2(D,R3)

)
, (σ0,v0)

⊤ ∈ D(A),

̺−1
[
divσ0 + f(0)

]
∈ H1

∂DD
(D,R3), C(µ, λ)ε(v0) ∈ H(div, D,R3×3

sym),

C(µ, λ)ε(v0)n = 0 on ∂DN .



The inverse problem of seismic imaging
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Let (σ0,v0)
⊤ ∈ D(A) and f ∈ W 1,1

(
[0, T ], L2(D,R3)

)
for T > 0.

Then, the parameter-to-solution map

Φ: P ⊂ L∞(D)3 → C
(
[0, T ], X

)
, (µ, λ, ̺)⊤ 7→ (σ,v)⊤

is well defined.

Let R : C([0, T ], X) → R
N be a (continuous) measurement operator.

Given w ∈ R
N find (µ, λ, ̺)⊤ ∈ P such that

RΦ(µ, λ, ̺) = w.

Solving above problem is called full waveform inversion in seismic imag-

ing.



Full waveform inversion is locally ill-posed
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Theorem The equation

Φ(µ, λ, ̺) = (σ,v)⊤

is locally ill-posed at any interior point of P.

Proof: We factorize

Φ = F ◦ V

where

F : B ⊂ L(X) → C
(
[0, T ], X

)
, B 7→ (σ,v)⊤,

and

V : P ⊂ L∞(D)3 → B, (µ, λ, ̺)⊤ 7→

(
C̃(µ, λ) 0

0 ̺I

)
.

Note that F is the mapping considered in the abstract theory.



Full waveform inversion is locally ill-posed (cont’d)
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Define sequences

µk := µ+ r1ek, λk := λ+ r2ek, ̺k := ̺+ r3ek

where ri ∈ [0, r], r > 0 sufficiently small, r1 + r2 + r3 > 0, and

ek := χB1/k(ξ) for one fixed ξ ∈ D.

We have that

{(µk, λk, ̺k)}k ∈ Br(µ, λ, ̺) but (µk, λk, ̺k) 6→ (µ, λ, ̺).

It remains to show

Φ(µk, λk, ̺k) → Φ(µ, λ, ̺).



Full waveform inversion is locally ill-posed (cont’d)
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Define Ek ∈ L(X) by

Ek := V (µk, λk, ̺k)− V (µ, λ, ̺) =

(
C̃(µk, λk)− C̃(µ, λ) 0

0 r3ekI

)

and show that

◮ Ek is monotone, symmetric, bounded,

◮ limk→∞ ‖Ek(
σ

v
)‖X = 0 for all (σ,v)⊤ ∈ X, and

◮ r̂ . ‖Ek‖L(X) . r for all k where 0 < r̂ < r.

As

Φ(µk, λk, ̺k) = F
(
V (µ, λ, ̺) + Ek

)
→ F

(
V (µ, λ, ̺)

)
= Φ(µ, λ, ̺)

the claimed local ill-posedness follows. X



Fréchet derivative of the forward map
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Theorem The parameter-to-solution map

Φ: P ⊂ L∞(D)3 → C
(
[0, T ], X

)

is Fréchet differentiable at (µ, λ, ̺)⊤. In fact,

Φ′(µ, λ, ̺)



h1
h2
h3


 =

(
σ

v

)

where (σ,v)⊤ ∈ C
(
[0, T ], X

)
is the mild solution of

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε(v(t, x)) + C

(
h1(x), h2(x)

)
ε(v(t, x)),

̺(x)∂tv(t, x) = divσ(t, x)− h3(x)∂tv(t, x),

in [0, T ]×D with σ(0) = 0, v(0) = 0. Here, v = Φ(µ, λ, ̺)2.



Fréchet derivative of the forward map (continued)
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Proof: As Φ = F ◦ V we have that

Φ′(µ, λ, ̺) = F ′
(
V (µ, λ, ̺)

)
V ′(µ, λ, ̺).

The assertion follows from

V ′(µ, λ, ̺)



h1
h2
h3


 =

(
C̃ ′(µ, λ) 0

0 I

)

h1
h2
h3




=

(
−C̃(µ, λ)C(h1, h2)C̃(µ, λ) 0

0 h3I

)

and the abstract result applied to F . X



Second order wave equation
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ρ(x)∂ttv(t, x) = div
[
C
(
µ(x), λ(x)

)
ε
(
v(t, x)

)]
+ g(t, x)

with v(0, ·) = v0, ∂tv(0, ·) = v1 in D, and

v = 0 on [0, T ]× ∂DD, C(µ, λ)ε(v)n = 0 on [0, T ]× ∂DN .

Set

σ(t, x) := C
(
µ(x), λ(x)

) ∫ t

0
ε
(
v(s, x)

)
ds.

Then, (σ,v) solves

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε
(
v(t, x)

)
,

ρ(x) ∂tv(t, x) = divσ(t, x) +

∫ t

0
g(s, x) ds+ ρ(x)v1(x)

with v(0, ·) = v0, σ(0, ·) = 0 in D, and

v = 0 on [0, T ]× ∂DD, σn = 0 on [0, T ]× ∂DN .



Second order wave equation (continued)
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Conclusion

◮ Our results carry over to the second order wave equation.

◮ Thus, we regain and extend results of

LECHLEITER/SLASCHE 2015 and BOEHM/ULBRICH 2015

on the Fréchet differentiability of the parameter-to-solution map.



Inverse electromagnetic scattering
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The Maxwell system
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E = E(t,x) and H = H(t,x) electric and magnetic fields, resp.

(
εI 0
0 µI

)

︸ ︷︷ ︸
= B

∂t

(
E

H

)
= −

(
σI −curlx

curlx 0

)

︸ ︷︷ ︸
= A

(
E

H

)
+

(
−Je

Jm

)

︸ ︷︷ ︸
= f

in (0, T )×D

with bc: n×E = 0 on (0, T )× ∂D

ic: E(0, ·) = e0, H(0, ·) = h0

where Je/m = Je/m(t, x) current/magnetic density

ε = ε(x) permittivity

µ = µ(x) permeability

σ = σ(x) conductivity



Abstract settings
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◮ P :=
{
(ε, µ)⊤ ∈ L∞(D)2 : c−1 ≤ ε, µ ≤ c a.e.

}

◮ X = L2(D,R3)× L2(D,R3)

If (ε, µ)⊤ ∈ P then B ∈ L(X) is self-adjoint and uniformly pos. definite.

◮ σ ∈ L∞(D), σ ≥ 0

◮ D(A) = H0(curl, D)×H(curl, D)

Lemma A : D(A) ⊂ X → X is maximal monotone.



Electromagnetic scattering operator
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Let (e0,h0)
⊤ ∈ D(A) and (Je,Jm)⊤ ∈ W 1,1

(
[0, T ], X

)
for T > 0.

Then, the parameter-to-solution map is well defined:

Φ: P ⊂ L∞(D)2 → C
(
[0, T ], X

)
, (ε, µ)⊤ 7→ (E,H)⊤.

We factorize again

Φ = F ◦ V

where

F : B ⊂ L(X) → C
(
[0, T ], X

)
, B 7→ (E,H)⊤,

and

V : P ⊂ L∞(D)2 → B, (ε, µ)⊤ 7→

(
εI 0
0 µI

)
.

Conclusion: Fréchet-differentiability and local ill-posedness hold for in-

verse electromagnetic scattering as well.



Summary

Seismic Tomography

Inverse electromag-
netic scattering

⊲ Summary

22 / 23 c©Andreas Rieder – On Inverse Wave Problems, Part 2: Applications Inverse Problems for PDEs, Bremen 2016



Things to remember
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Bu′(t) +Au(t) = f(t), t ≥ 0, u(0) = u0

B ∈ L(X) pos. self-adjoint; A : D(A) ⊂ X → X maximal monotone;

X Hilbert space

F : B 7→ u

We have investigated the

◮ Fréchet-differentiability of F ,

◮ Local ill-posedness of F (·) = u,

and applied our abstract findings to

◮ the elastic wave equation (seismic tomography),

◮ Maxwell’s system (inverse electromagnetic scattering).
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