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Time – dependent problems are formulated as abstract evolution
equations

u′(t) = −Au(t) + f (t) , t ≥ 0 , u(0) = u0 .

Here, A : X ⊃ D(A)→ X (unbounded) operator in Hilbert space X ,
f : R≥0 → X , and u0 ∈ D(A).
Note: A is independent of t ! Spaces:

C
(
R≥0,D(A)

)
=

{
u : R≥0 → D(A) : u continuous

}
,

C1(R≥0,X
)

=
{

u : R≥0 → X : u cont. F-differentiable
}
,

L1(R>0,X
)

=
{

u : R>0 → X : u meas. and Bochner integrable
}
,

W 1,1(R>0,X
)

=
{

u ∈ C(R≥0,X ) : u′ ∈ L1(R>0,X )
}
.

Analogously, Ck (R>0,Y ) and W k ,1
loc (R>0,X ) are defined for k ∈N.
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First homogeneous equation (f = 0):
Theorem (Hille - Yosida)
Let u0 ∈ D(A) and A maximal monotone; that is, (Av , v)X ≥ 0 for all
v ∈ X and A + I : D(A)→ X is surjective. Then there exists a unique
solution u ∈ C

(
R≥0,D(A)

)
∩C1(R≥0,X ) of

u′(t) = −Au(t) , t ≥ 0 , u(0) = u0 .

Furthermore, ‖u(t)‖X ≤ ‖u0‖X and ‖Au(t)‖X ≤ ‖Au0‖X for all t .
Idea of proof: (i) Approximate A by bounded Aε =

1
ε

[
I − (I + εA)−1]

(Yosida-approximation),

(ii) the solution for Aε is given by uε(t) =
∞
∑

n=0

(−t)n

n! An
ε u0 ,

(iii) let ε tend to zero.
Remark: A maximal monotone⇒ D(A) dense and A closed
Reference: H. Brezis: Functional Analysis, Sobolev Spaces and Partial
Differential Equations, Springer, 2011.
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Estimate ‖u(t)‖X ≤ ‖u0‖X implies that operators S(t) : u0 → u(t) have
bounded extensions S(t) : X → X with ‖S(t)‖L(X ) ≤ 1. Familly S(t)
forms continuous semigroup of contractions; that is,

S(t + s) = S(t)S(s) for all t , s ≥ 0,
‖S(t)‖L(X ) ≤ 1 for all t ≥ 0,

lim
t→0+

S(t) = I.

Now inhomogeneous equation:
Theorem Let A maximal monotone, u0 ∈ D(A), and f ∈ W 1,1

loc (R>0,X ).
There there exists a unique solution u ∈ C

(
R≥0,D(A)

)
∩C1(R≥0,X ) of

u′(t) = −Au(t) + f (t) , t ≥ 0 , u(0) = u0 ,

which is given by the variation-of-constant formula

u(t) = S(t)u0 +
∫ t

0
S(t − s) f (s) ds , t ≥ 0 .

If only u0 ∈ X and f ∈ L1
loc(R>0,X ) then this defines mild solution.
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Mild solution

u(t) = S(t)u0 +
∫ t

0
S(t − s) f (s) ds , t ≥ 0 ,

is weak solution; that is,
d
dt
(
u(t),ψ

)
X = −

(
u(t),A∗ψ

)
X +

(
f (t),ψ

)
X

for a.a. t ≥ 0 and ψ ∈ D(A∗) where A∗ : X ⊃ D(A∗)→ X denotes the
adjoint of A.

Stability:
u0 ∈ D(A), and f ∈ W 1,1

loc (R>0,X ), and u classical solution:

‖u′(t)‖X + ‖u(t)‖D(A) ≤ c
[
‖u0‖D(A) + ‖f‖W 1,1((0,t),X )

]
, t > 0 ,

u0 ∈ X and f ∈ L1
loc(R>0,X ), and u mild solution:

‖u(t)‖X ≤ c
[
‖u0‖X + ‖f‖L1((0,t),X )

]
, t > 0 .
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Theorem Let A be maximal monotone, f ∈ W k ,1
loc (R>0,X ) for some

k ∈N and

u0,` := (−A)`u0 +
`−1

∑
j=0

(−A)j f (`−1−j)(0) ∈ D(A) for ` = 0, . . . , k − 1 .

Then u ∈ Ck (R≥0,X ) ∩Ck−1(R≥0,D(A)
)

and

‖u(`)(t)‖X ≤ ‖u0,`‖X + ‖f (`)‖L1((0,t),X ) , t ≥ 0 , ` = 0, . . . , k ,

where u0,k := −Au0,k−1 + f (k−1)(0) ∈ X .



(B) Smoothness With Respect to Parameters
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How to model parameters? Define, for 0 < γ− < γ+,

B :=
{

B ∈ L(X ) :
B self adjoint ,
γ−‖v‖2

X ≤ (Bv , v)X ≤ γ+‖v‖2
X ∀v ∈ X

}
and consider evolution equation

Bu′(t) = −Au(t) + f (t) , t ≥ 0 , u(0) = u0 ,

Lemma If A maximal monotone and B ∈ B then A + B : D(A)→ X is
surjective.
Thus: B−1A is maximal monotone in X with respect to inner product
(u, v)B := (Bu, v)X .
Corollary Results of previous section hold for ‖ · ‖X replaced by
equivalent (uniformly in B) norm ‖ · ‖B.
Therefore, for fixed u0 ∈ D(A) and f ∈ W 1,1

loc (R>0,X ) and T > 0 the
nonlinear mapping (parameter-to-solution map) F : B 7→ u|[0,T ] is well
defined from B into C1([0,T ],X

)
∩C

(
[0,T ],D(A)

)
.
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Lemma Let A be maximal monotone, u0 ∈ D(A), B̂, B̂ + B ∈ B, and
f ∈ W 2,1

loc (R>0,X ) and v̂0 := B̂−1(Au0 − f (0)
)
∈ D(A). Let

û, ũ ∈ C1(R≥0,X ) ∩C
(
R≥0,D(A)

)
be the solutions of

B̂û′(t) + Aû(t) = f (t) and (B̂ + B)ũ′(t) + Aũ(t) = f (t)

for t > 0 and û(0) = ũ(0) = u0. Then there exists c, depending only on
A, γ+, γ−, v̂0, and f , such that for all T > 0:

‖û(t)− ũ(t)‖X + ‖û′(t)− ũ′(t)‖X ≤ c(1 + T ) ‖B‖L(X )

for 0 ≤ t ≤ T .
Theorem Let T > 0, f ∈ W 1,1

loc (R>0,X ), and u0 ∈ D(A). Then
F : B 7→ u|[0,T ] is continuous from B into C1([0,T ],X

)
.
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Theorem Let T > 0, f ∈ W 1,1
loc (R>0,X ), and u0 ∈ D(A). Then

F : B → C
(
[0,T ),X

)
is Fréchet differentiable at B̂ ∈ int(B) and

F ′(B̂)B = u|[0,T ] where u ∈ C(R≥0,X ) is the mild solution of

B̂u′(t) + Au(t) = −Bû′(t) , t ≥ 0 , u(0) = 0 .

Here, û ∈ C1(R≥0,X
)
∩C

(
R≥0,D(A)

)
is the (classical) solution of

B̂û′(t) + Aû(t) = f (t), t ≥ 0, û(0) = u0.

Remarks: Here, F : B → C
(
[0,T ),X

)
rather than

F : B → C1([0,T ],X
)
∩C

(
[0,T ],D(A)

)
!

Differentiability into the latter space needes stronger regularity
assumptions on u0 and f (order k = 2 in above theorem).
In applications, only F : B → L2([0,T ),X

)
or O ◦ F with (linear)

observation operator O : L2([0,T ),X
)
→ Z is considered.
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Remarks: Here, F : B → C
(
[0,T ),X

)
rather than

F : B → C1([0,T ],X
)
∩C

(
[0,T ],D(A)

)
!

Differentiability into the latter space needes stronger regularity
assumptions on u0 and f (order k = 2 in above theorem).
In applications, only F : B → L2([0,T ),X

)
or O ◦ F with (linear)

observation operator O : L2([0,T ),X
)
→ Z is considered.



(C) Local Ill-Posedness

10 April 2016 - On Inverse Wave Problems Part 1: Theory

KIT

Definition Equation F (x) = y is locally ill-posed at x̂ ∈ D(F ) satisfying
F (x̂) = y if in any neighborhood of x̂ there exists a sequence
{xk}k∈N ⊂ D(F ) such that

lim
k→∞

‖F (xk )− y‖Y = 0 , however ‖xk − x̂‖X 6→ 0 for k → ∞.

Note that local illposedness depends on choice of D(F ).
Theorem Let u0 ∈ D(A) and f ∈ W 1,1

loc (R>0,X ). Then F (B) = u is locally
ill-posed at any B̂ ∈ D(F ) satisfying F (B̂) = u if for any r ∈ (0,1] there
exists r̂ ∈ (0, r ) and a sequence of bounded, symmetric and monotone
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Thank you for your attention!


