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Plan of Talk ﬂ(“.

(A) Evolution Equations
(B) Smoothness With Respect to Parameters
(C) Local lll-Posedness

Reference: A. Kirsch, A. Rieder: Inverse Problems for Abstract Evolution
Equations With Applications in Electrodynamics and Elasticity. Submitted
to Inverse Problems.
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(A) Evolution Equations ﬂ(".

Time — dependent problems are formulated as abstract evolution
equations

u'(t) = —Au(t) + f(t), t>0, u(0) = up.

Here, A: X D D(A) — X (unbounded) operator in Hilbert space X,
f: IREO — X,and ug € D(A)

Note: Ais independent of !
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(A) Evolution Equations ﬂ(“.

Time — dependent problems are formulated as abstract evolution
equations

u'(t) = —Au(t) + f(t), t>0, u(0) = up.

Here, A: X D D(A) — X (unbounded) operator in Hilbert space X,
f: IREO — X,and ug € D(A)

Note: Ais independent of ! Spaces:

C(R>0,D(A)) = {u:Rso— D(A): ucontinuous},
C'(Rs0, X) = {u:Rso— X:ucont. F-differentiable}
L"(Rwg,X) = {u:Rsg— X:umeas. and Bochner integrable}
W' (Rog, X) = {u€ C(Rsq,X): U €L (Rug, X)}.

Analogously, CK(R~q, Y) and Wk (R~q, X) are defined for k € IN.

loc
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First homogeneous equation (f = 0):

Theorem (Hille - Yosida)

Let up € D(A) and A maximal monotone; that is, (Av, v)x > 0 for all
ve Xand A+ 1: D(A) — X is surjective. Then there exists a unique
solution u € C(Rxp, D(A)) N C' (Rxo, X) of

u(t) = —Au(t), t>0, u(0) = up.

Furthermore, ||u(t)||x < |[ug||x and ||Au(t)||x < ||Augl/x for all t.
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First homogeneous equation (f = 0):

Theorem (Hille - Yosida)

Let up € D(A) and A maximal monotone; that is, (Av, v)x > 0 for all
ve Xand A+ 1: D(A) — X is surjective. Then there exists a unique
solution u € C(Rxp, D(A)) N C' (Rxo, X) of

u(t) = —Au(t), t>0, u(0) = up.

Furthermore, ||u(t)||x < |[ug||x and ||Au(t)||x < ||Augl/x for all t.

Idea of proof: (i) Approximate A by bounded A; = % [I —(I+ eA)—1]
(Yosida-approximation),
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First homogeneous equation (f = 0):

Theorem (Hille - Yosida)

Let up € D(A) and A maximal monotone; that is, (Av, v)x > 0 for all
ve Xand A+ 1: D(A) — X is surjective. Then there exists a unique
solution u € C(Rxp, D(A)) N C' (Rxo, X) of

u(t) = —Au(t), t>0, u(0) = up.

Furthermore, ||u(t)||x < |[ug||x and ||Au(t)||x < ||Augl/x for all t.

Idea of proof: (i) Approximate A by bounded A; = % [I —(I+ eA)—1]
(Yosida-approximation),

(i) the solution for A is given by u.(t) = Y (_nt!)nAQuo,

n=0
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First homogeneous equation (f = 0):

Theorem (Hille - Yosida)

Let up € D(A) and A maximal monotone; that is, (Av, v)x > 0 for all
ve Xand A+ 1: D(A) — X is surjective. Then there exists a unique
solution u € C(Rxp, D(A)) N C' (Rxo, X) of
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Furthermore, ||u(t)||x < |[ug||x and ||Au(t)||x < ||Augl/x for all t.

Idea of proof: (i) Approximate A by bounded A; = % [I —(I+ eA)—1]
(Yosida-approximation),

(i) the solution for A, is given by u.(t) = 20 (_nt!)nAQuo,
n=
(iii) let & tend to zero. |
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First homogeneous equation (f = 0):

Theorem (Hille - Yosida)

Let up € D(A) and A maximal monotone; that is, (Av, v)x > 0 for all
ve Xand A+ 1: D(A) — X is surjective. Then there exists a unique
solution u € C(Rxp, D(A)) N C' (Rxo, X) of

u(t) = —Au(t), t>0, u(0) = up.

Furthermore, ||u(t)||x < |[ug||x and ||Au(t)||x < ||Augl/x for all t.

Idea of proof: (i) Approximate A by bounded A; = % [I —(I+ eA)—1]
(Yosida-approximation),

(i) the solution for A, is given by u.(t) = 20 (‘,,?”Aguo,
n=
(iii) let & tend to zero. |

Remark: A maximal monotone = D(A) dense and A closed

Reference: H. Brezis: Functional Analysis, Sobolev Spaces and Partial
Differential Equations, Springer, 2011.
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Estimate ||u(t)||x < ||uo||x implies that operators S(t) : ug — u(t) have
bounded extensions S(t) : X — X with || S(t)|| z(x) < 1. Familly S()
forms continuous semigroup of contractions; that is,
m S(t+s)=S(t)S(s) forallt,s >0,
w [[S(t)|[gx) < 1forallt >0,
m lim S(t)=1.

t—0+
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Estimate ||u(t)||x < ||uo||x implies that operators S(t) : ug — u(t) have
bounded extensions S(t) : X — X with || S(t)|| z(x) < 1. Familly S()
forms continuous semigroup of contractions; that is,
m S(t+s)=S(t)S(s) forallt,s >0,
w [[S(t)|[gx) < 1forallt >0,
m lim S(t) =

t—0+
Now inhomogeneous equation:
Theorem Let A maximal monotone, ug € D(A), and f € W,LJ (R=, X).
There there exists a unique solution u € C(IR>q, D(A)) N C'(Rxg, X) of

u(t) = —Au(t) + f(t), t>0, u(0) = up,

which is given by the variation-of-constant formula
t
u(t) = S(tup + / S(t—s)f(s)ds, t>0.
0

Ifonly up € X and f € L! (R~g, X) then this defines mild solution.

loc
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Mild solution
u(t) = S(t)up + /OtS(t—s)f(s)ds, t>0,
is weak solution; that is,
d
GUO.9) = —(uD.Ap) + (1(0),9)4

fora.a. t > 0 and y € D(A*) where A*: X D D(A*) — X denotes the
adjoint of A.
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Mild solution
t
u(t) = S(Hup + /0 S(t—s)f(s)ds, t>0,

is weak solution; that is,

d *

a(u(t)ﬂ/’)x = —(u(t), A 1/’))( + (f(t)vlp)x
fora.a. t > 0 and y € D(A*) where A*: X D D(A*) — X denotes the
adjoint of A.
Stability:

up € D(A), and f € W1 (R0, X), and u classical solution:

Id' D)llx + [lu®)lpay < clllvollpeay + I1fllwiionx]. t>0,

5 April2016 - On Inverse Wave Problems Part 1: Theory



AT

Mild solution
t
u(t) = S(Hup + /0 S(t—s)f(s)ds, t>0,

is weak solution; that is,

d *

a(u(t)ﬂ/’)x = —(u(t), A 1/’)x + (f(t)vlp)x
fora.a. t > 0 and y € D(A*) where A*: X D D(A*) — X denotes the
adjoint of A.
Stability:

up € D(A), and f € W1 (R0, X), and u classical solution:

Id' D)llx + [lu®)lpay < clllvollpeay + I1fllwiionx]. t>0,

Up € X and f € L} (R-0, X), and u mild solution:

lu®lx < clluollx + Il o,0.x] t>0.
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Regularity

Theorem Let A be maximal monotone, f € W5 (IR~q, X) for some
k € N and

Then u € CK(R>p, X) N CK~"(R>o, D(A)) and
I Olx < luollx + 1 onx). =0, £=0,... kK

where ug x := —Aug x_1 + F*1(0) € X.
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(B) Smoothness With Respect to Parameters
How to model parameters? Define, for 0 < y_ < 74,

B self adjoint, }

B = {BecL(X):
{ X0 VI8 < (Bu.vix < 1e vl vv e X

and consider evolution equation
BU(t) = —Au(t) + f(t), t>0,  u(0)=up,
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(B) Smoothness With Respect to Parameters ﬂ(“.
How to model parameters? Define, for 0 < y_ < 74,

B self adjoint, }
B = {Be L(X):
{ X0 VI8 < (Bu.vix < 1e vl vv e X
and consider evolution equation
BuU'(t) = —Au(t) + f(t), t>0, u(0) = up,

Lemma If A maximal monotone and B € Bthen A+ B: D(A) — X is
surjective.
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(B) Smoothness With Respect to Parameters
How to model parameters? Define, for 0 < y_ < 74,

B self adjoint, }
B :=<{BeL(X):
{ X0 VI8 < (Bu.vix < 1e vl vv e X

and consider evolution equation

BuU'(t) = —Au(t) + f(t), t>0, u(0) = up,
Lemma If A maximal monotone and B € Bthen A+ B: D(A) — Xis
surjective.
Thus: B~1Ais maximal monotone in X with respect to inner product
(u,v)g:= (Bu,v)x.
Corollary Results of previous section hold for || - || x replaced by
equivalent (uniformly in B) norm || - || .
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(B) Smoothness With Respect to Parameters
How to model parameters? Define, for 0 < y_ < 74,

B self adjoint, }

B = {BecL(X):
{ X0 VI8 < (Bu.vix < 1e vl vv e X

and consider evolution equation

BuU'(t) = —Au(t) + f(t), t>0, u(0) = up,
Lemma If A maximal monotone and B € Bthen A+ B: D(A) — Xis
surjective.
Thus: B~1Ais maximal monotone in X with respect to inner product
(u,v)g:= (Bu,v)x.
Corollary Results of previous section hold for || - || x replaced by
equivalent (uniformly in B) norm || - || .
Therefore, for fixed up € D(A) and f € W, (R~q, X) and T > 0 the

loc
nonlinear mapping (parameter-to-solution map) F : B +— uy[oﬂ is well

defined from B into C'([0, T], X) N C([0, T], D(A)).
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Continuity ﬂ(“.

Lemma Let A be maximal monotone, uy € D(A), B,B+ B € B, and
fe WE!(R-o, X) and 0y := B~"(Aug — £(0)) € D(A). Let
0,0 € C'(Rx0, X) N C(R>0, D(A)) be the solutions of

Bi/ (t)+ Au(t) = f(t) and (B+ B)i/(t) + Au(t) = (1)
fort > 0and &(0) = 4(0) = up.
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Lemma Let A be maximal monotone, uy € D(A), B,B+ B € B, and
fe W21 (Roo, X) and ¥ := B~ (Aug — £(0)) € D(A). Let

loc

0,0 € C'(Rx0, X) N C(R>0, D(A)) be the solutions of

Continuity

Bi/ (t)+ Au(t) = f(t) and (B+ B)i/(t) + Au(t) = (1)

for t > 0and &(0) = U(0) = uy. Then there exists ¢, depending only on
A, v+, 7—, W, and f, such that for all T > 0:

lo(t) = a(®)|x + [[&'(1) = &' (D)]lx < e(1+T)[1Bllgx)

forO0<t<T.
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Lemma Let A be maximal monotone, uy € D(A), B,B+ B € B, and
fe W21 (Roo, X) and ¥ := B~ (Aug — £(0)) € D(A). Let

loc

0,0 € C'(Rx0, X) N C(R>0, D(A)) be the solutions of

Continuity

Bi/ (t)+ Au(t) = f(t) and (B+ B)i/(t) + Au(t) = (1)

for t > 0and &(0) = U(0) = uy. Then there exists ¢, depending only on
A, v+, 7—, W, and f, such that for all T > 0:

lo(t) = a(®)|x + [[&'(1) = &' (D)]lx < e(1+T)[1Bllgx)

forO0<t<T.
TheoremLet T >0, f € W,L; (R-0.,X), and ug € D(A). Then

F : B+ u| g 7] is continuous from B into C' ([0, T], X).
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Differentiability
Theorem Let T > 0, f € W (R-¢, X), and ug € D(A). Then

F:B— C([0, T), X) is Fréchet differentiable at B € int(B) and
F'(B)B =|jp, 1) where T € C(Rx, X) is the mild solution of

BU'(t) + Au(t) = —BU/(t), t>0, T0)=0.

Here, & € C'(R>g, X) N C(Rxo, D(A ) is the (classical) solution of
>0, =

BU/(t) + Au(t) = f(1), t 5?)
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Differentiability
Theorem Let T > 0, f € W (R-¢, X), and ug € D(A). Then

F:B— C([0, T), X) is Fréchet differentiable at B € int(B) and
F'(B)B =|jp, 1) where T € C(Rx, X) is the mild solution of

BU'(t) + Au(t) = —BU/(t), t>0, T0)=0.

Here, o € C'(R>9, X) N C(R ) is the (classical) solution of
>0,

>0
Bi/ (t) + Au(t) = f(t), t a(o )
Remarks: Here, 7 : B — C([0, T), X) rather than
F:B— CY([0,T],X)nC([0, T, D(A))!
Differentiability into the latter space needes stronger regularity
assumptions on uy and f (order k = 2 in above theorem).
In applications, only F : B — LZ([O, T),X) or O o F with (linear)
observation operator O : L2([0, T), X) — Z is considered.
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(C) Local lll-Posedness ﬂ(“.
Definition Equation F(x) = y is locally ill-posed at X € D(F) satisfying
F (%) = y if in any neighborhood of X there exists a sequence

{Xk }kemw C D(F) such that

klim I|IF(xx) — ylly = 0, however || xx — X||x # 0 for k — co.
—00

Note that local illposedness depends on choice of D(F).

April2016 - On Inverse Wave Problems Part 1: Theory



10

(C) Local lll-Posedness ﬂ(“.
Definition Equation F(x) = y is locally ill-posed at X € D(F) satisfying
F (%) = y if in any neighborhood of X there exists a sequence

{Xk }kemw C D(F) such that

klim I|IF(xx) — ylly = 0, however || xx — X||x # 0 for k — co.
—00

Note that local illposedness depends on choice of D(F).
Theorem Let up € D(A) and f € W1 (R-, X). Then F(B) = uis locally

loc
ill-posed at any B € D(F) satisfying F(B) = u if for any r € (0, 1] there
exists # € (0, r) and a sequence of bounded, symmetric and monotone
operators Ex : X — X with B+ Ex € D(F) and ? < ||E| < rfor all
k € N and limy_,, Exv =0 forall v € X.
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(C) Local lll-Posedness ﬂ(“.
Definition Equation F(x) = y is locally ill-posed at X € D(F) satisfying
F (%) = y if in any neighborhood of X there exists a sequence

{Xk }kemw C D(F) such that

klim I|IF(xx) — ylly = 0, however || xx — X||x # 0 for k — co.
—00

Note that local illposedness depends on choice of D(F).
Theorem Let up € D(A) and f € W1 (R-, X). Then F(B) = uis locally

loc
ill-posed at any B € D(F) satisfying F(B) = u if for any r € (0, 1] there
exists # € (0, r) and a sequence of bounded, symmetric and monotone
operators Ex : X — X with B+ Ex € D(F) and ? < ||E| < rfor all
k € N and limy_,, Exv =0 forall v € X.
In the applications (see next talk by the other Andreas) X = L?(Q) and
B e D(F) < (Bv)(x) = p(x)v(x) a.e. for p € L*(Q2). Then one can
take (Exv)(x) = r xk, (x)v(x) a.e. with Ky = {x € Q: |x — z| < 1/k}
for some z € Q.
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Thank you for your attention!
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