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Motivation

• Our research group works on the modeling and simulation of various applications involving
moving or evolving geometries described by multiphysics problems.

• Most applications are tackled by specifically developed approaches (and codes) based on conven-
tional finite element methods.

• Reusing and extending the (in-house) codes requires a lot of time and implementation work.

Approach

• Develop one flexible framework to simulate different processes (2D/3D) that is easy to maintain
and extend.

• Use the eXtended finite element method and enhance the automated code generation approach of
FEniCS to consider multiphysics problems with moving/evolving boundaries and discontinuities.

Fig. 1: Material accum. process Fig. 2: Laser-welded joints

Fig. 3: Thermomechanical distortion in drilling

Mathematical background

Level set method
• A hold-all domain Ω is subdivided into Ndom

subdomains Ωi(t) by the zero level sets
Γi(t) of (continuous and scalar) functions
ϕi : Ω× [t0, tf ]→ R, i = 1, . . . , Ndom − 1.

• Maintaining algorithms like reinitialization
and mass correction techniques are included.

eXtended finite element method

Fig. 4: Ωi(t) and Ωi+1(t)
separated by Γi(t).

• For creating eXtended approximation spaces V XFEM
h , all Γi(t) are linearly

approximated by Γi,h(t) := {x ∈ Ω : Ilinϕi(x, t) = 0}.
• Use Heaviside functions to enrich conventional FEM spaces such as

V m
cg,h = {vh ∈ C0(Ω) : vh|S ∈ Pm(S), S ∈ Sh}, or

V m
dg,h = {vh ∈ L2(Ω) : vh|S ∈ Pm(S), S ∈ Sh}.

Fig. 5: Γi,h(t) and enriched
DOFs (P1 elements)

Fig. 6: Standard basis functions vj and enriched
basis functions Hvj for P1 elements

• Enriched functions uh ∈ V XFEM
h then have the representation

uh =
∑
j∈N

ujvj +

Ndom−1∑
i=1

(∑
k∈Ni

ui,kvi,k

)
= uh · vh, with

uh = [u1, . . . , uNB︸ ︷︷ ︸
std. coefficients

, u1,1, . . . , u1,|N1|︸ ︷︷ ︸
coefficients for Γ1,h

, . . . , uNenr,1, . . . , uNenr,|NNenr |︸ ︷︷ ︸
coefficients for ΓNenr,h

]T ,

vh = [ v1, . . . , vNB︸ ︷︷ ︸
std basis functions

, v1,1, . . . , v1,|N1|︸ ︷︷ ︸
add.basis functions for Γ1,h

, . . . , vNenr,1, . . . , vNenr,|NNenr |︸ ︷︷ ︸
add. basis functions for ΓNenr,h

]T .

• Boundary and interface conditions are imposed with Nitsche’s method.
Thereby, problems involving weak discontinuous features can also be con-
sidered by enforcing continuity across interfaces.

miXFEM (multiple interfaces XFEM) [1,2]

Fig. 7: Implementation design: Extended FFC and toolboxes for XFEM and level set.

• Implementation of a level set toolbox [3] (including maintaining and sta-
bilization techniques) to describe discontinuities and their evolution by
zero levels.

• Implementation of a flexible XFEM framework, partly based on the PUM

library [4], to use automated code generation for solving multiphysics prob-
lems involving discontinuities.

Academic example

Given R2 ⊃ Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ1 ∪ Γ2 with polygonal ∂Ω = ΓD ∪ ΓN and
sufficiently smooth data, find u ∈ V XFEM

h s.t. it solves the problem

ξu−∇ · (κ∇u) = f in Ω1 ∪ Ω2 ∪ Ω3

u = gD on ΓD

κ
∂u

∂~n
= gN on ΓN

Jκ∇uK · ~n1 = gΓ1 on Γ1

JuK = qΓ1 on Γ1

u|Ω2 = g2 on Γ2

u|Ω3 = g3 on Γ2

Fig. 8: Academic example.

Real world application: Laser-welded hybrid joints

Process is modeled by the heat equation with two discontinuities (material
and solid-liquid interface), similar to the academical problem defined above.

• Ω is separated into different materials by the (stationary) zero level of ϕ1

(illustrated in white).

• The evolution of the interface, defined the zero level of ϕ2 (illustrated in
yellow), is modeled by the Stefan problem.

Fig. 9: Time levels of laser welding process, without and with molten domain.

Real world application: Keyhole-based laser welding

Process is modeled by the heat equation with two discontinuities (keyhole
and solid-liquid interface).
• Keyhole geometry (zero level of ϕ1) is fixed but moves with prescribed

(welding) velocity.

• Interface (zero level of ϕ2) evolution is described by the Stefan problem.

Fig. 10: Keyhole-based welding process.
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