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Motivation

e Our research group works on the modeling and simulation of various applications involving

moving or evolving geometries described by multiphysics problems.

e Most applications are tackled by specifically developed approaches (and codes) based on conven-

tional finite element methods.

e Reusing and extending the (in-house) codes requires a lot of time and implementation work.

Approach

e Develop one flexible framework to simulate different processes (2D/3D) that is easy to maintain

and extend.

e Use the eXtended finite element method and enhance the automated code generation approach of
FEniCS to consider multiphysics problems with moving/evolving boundaries and discontinuities.
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Fig. 1: Material accum. process Fig. 2: Laser-welded joints

Fig. 3: Thermomechanical distortion in drilling

Mathematical background

Level set method
e A hold-all domain €2 is subdivided into Ngom
subdomains €;(t) by the zero level sets
[;(t) of (continuous and scalar) functions r;
(o7 Q x [to,tf] —>R,Z= 1,
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e Maintaining algorithms like reinitialization Q
and mass correction techniques are included.  pig 4. Q,(t) and Qi4(t)
separated by T';(t).

eXtended finite element method
e For creating eXtended approximation spaces VXFEM “all T';(¢) are linearly
approximated by I'; ,(t) := {x € Q : Iinpi(x,t) = 0}.
e Use Heaviside functions to enrich conventional FEM spaces such as
Veen = {vn € C%Q) : vp|ls € P™(S), S €Sy}, or
Vign = {vn € L*(Q) : vp|s € P™(S), S € Sh}
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Fig. 5: T';,(t) and enriched Fig. 6: Standard basis functions v; and enriched
DOFs (P! elements) basis functions Hv; for P! elements

e Enriched functions uy € V;*FEM then have the representation
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e Boundary and interface conditions are imposed with Nitsche’s method.
Thereby, problems involving weak discontinuous features can also be con-
sidered by enforcing continuity across interfaces.

Academic example

Given R2 D Q = Q UQy U Q3 UT; UL, with polygonal 9Q = I'p U 'y and
sufficiently smooth data, find u € V;**M s 4. it solves the problem

u—V-(kVu)=f inQUQUQ
U= gp on I'p
ou
h— — on I’
i~ N :
[kVu] -7y = gr, on I'y
[[U]] =qr, on Fl
ule, = g2 on I'y Fig. 8: Academic example.
u’QS = g3 on Fg

Real world application: Laser-welded hybrid joints
Process is modeled by the heat equation with two discontinuities (material
and solid-liquid interface), similar to the academical problem defined above.

e () is separated into different materials by the (stationary) zero level of ¢,
(illustrated in white).

e The evolution of the interface, defined the zero level of s (illustrated in
yellow), is modeled by the Stefan problem.

Fig. 9: Time levels of laser welding process, without and with molten domain.

miXFEM (multiple interfaces XFEM) [1,2]
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Fig. 7: Implementation design: Extended FFC and toolboxes for XFEM and level set.

e Implementation of a level set toolbox [3] (including maintaining and sta-
bilization techniques) to describe discontinuities and their evolution by
zero levels.

e Implementation of a flexible XFEM framework, partly based on the PUM
library [4], to use automated code generation for solving multiphysics prob-
lems involving discontinuities.

Real world application: Keyhole-based laser welding

Process is modeled by the heat equation with two discontinuities (keyhole

and solid-liquid interface).

e Keyhole geometry (zero level of o) is fixed but moves with prescribed
(welding) velocity.

e Interface (zero level of ¢y) evolution is described by the Stefan problem.

Fig. 10: Keyhole-based welding process.
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