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Introduction to miXFEM (multiple interfaces XFEM)

Idea: Automated code generation for problems with arbitrary discontinuities
by using an extended FEniCS form compiler and a C++ library.

Design principle:Modular structure consisting of (independent) toolboxes.

• Implementation of a level set toolbox (including reinitialization and mass
correction techniques) which can be used for describing a discontinuity.

• Implementation of a flexible XFEM framework, partly based on the PUM

library [3], to solve stationary and instationary problems with strong and
weak discontinuities.

Fig. 1: Implementation design: Extended FFC and toolboxes for XFEM and level set.

Mathematical background

Level set toolbox [1]
• A discontinuity Γ(t) is described by the zero
level set of a (continuous and scalar) func-
tion ϕ : Ω × [t0, tf ] → R , separating Ω into
Ω(t) = Ω+(t) ∪ Ω−(t) ∪ Γ(t), cf. Fig. 2.

• Maintaining algorithms like reinitialization
and mass correction techniques are included.

eXtended finite elements [2]

Fig. 2: Ω+(t) and Ω−(t)
separated by Γ(t).

A standard function space V FEM
h with basis functions vi, i ∈ N , is (only)

enriched strongly, weak discontinuities are handled by enforcing continuity
with Nitsche’s approach.

• The discrete approximation of Γ(t), which is considered for enriching a
function space V FEM

h , is given by Γh(t) := {x ∈ Ωh | Ilinϕh(x, t) = 0}.
• Enriched DOFs are Ñ := {i ∈ N |measd−1(Γh∩supp(vi)) > 0, vi ∈ V FEM

h }
so that a function uXFEM

h ∈ V XFEM
h reads

uXFEM
h =

�

i∈N
uivi +

�

j∈Ñ

ũjHvj,

where ui are the coefficients and H denotes the Heaviside function.

Fig. 3: Enriched DOFs Ñ
for P1 elements

Fig. 4: Standard basis functions vi and enriched
basis functions Hvi for P1 elements

• For intersected elements, a local mesh consisting of sub-elements is cre-
ated and the quadrature rule is modified to consider each sub-element’s
contribution.

Fig. 5: Creating sub-elements of a cell
in 2D.

Fig. 6: Creating sub-elements of a cell
for time-dependent problems in 2D.

• The L2-projection is used to interpolate an arbitrary function f onto
V XFEM
h �

Ω

(PXFEM
h f)vdx =

�

Ω

fvdx, ∀v ∈ V XFEM
h .

Stefan problem (model problem)

On Ω ⊂ R2, define u(·, t0) and ϕ(·, t0) and consider the problem

∂tu−∇ · (κ∇u) = f in Ω+(t) ∪ Ω−(t), t ∈ (t0, tf ),

∂tϕ+ �V ·∇ϕ = 0 in Ω× [t0, tf ],

with u(·, t) = uΓ on Γ(t) and [[κ∇u · �n]] = L�V · �n on Γ(t)

and suitable (Dirichlet/Neumann) boundary conditions.

Fig. 7: Parts of the corresponding UFL file using Nitsche’s approach

Exemplary convergence plots for fixed Δt resp. h using P1 elements

• Scenario 1, the interface is a-priori known and prescribed, see Fig. 8.

• Scenario 2, the interface is unknown and part of the solution, see Fig. 9.

Fig. 8: Convergence plots scenario 1, interface is a-priori known

Fig. 9: Convergence plots scenario 2, interface is part of the solution

Outlook: Keyhole-based laser welding (real world application)

On Ω ⊂ R3 consider a welding process described by the heat equation with
an a-priori given discontinuity (keyhole) as an internal boundary.
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