

An XFEM toolbox for FEniCS

Mischa Jahn, Andreas Luttmann, Timo Klock

Introduction to miXFEM (multiple interfaces XFEM)

Universität Bremen

Idea: Automated code generation for problems with arbitrary discontinuities by using an extended FEniCS form compiler and a C++ library.

Design principle: Modular structure consisting of (independent) toolboxes.

- Implementation of a level set toolbox (including reinitialization and mass correction techniques) which can be used for describing a discontinuity.
- Implementation of a flexible XFEM framework, partly based on the PUM library [3], to solve stationary and instationary problems with strong and weak discontinuities.

miXFFC	miXFEM	Level set toolbox
Extension of the FFC for	C++ implementation	Toolbox for the solution of
automated code generation	providing methods for	the level set problem
for problems with	solving problems with	including reinit. and mass
discontinuities	discontinuities	corr. techniques

Stefan problem (model problem)

On $\Omega \subset \mathbb{R}^2$, define $u(\cdot, t_0)$ and $\varphi(\cdot, t_0)$ and consider the problem $\partial_t u - \nabla \cdot (\kappa \nabla u) = f \quad \text{in } \Omega^+(t) \cup \Omega^-(t), \ t \in (t_0, t_f),$ $\partial_t \varphi + \vec{V} \cdot \nabla \varphi = 0 \quad \text{in } \Omega \times [t_0, t_f],$

with $u(\cdot, t) = u_{\Gamma}$ on $\Gamma(t)$ and $[\![\kappa \nabla u \cdot \vec{n}]\!] = L \vec{V} \cdot \vec{n}$ on $\Gamma(t)$ and suitable (Dirichlet/Neumann) boundary conditions.

```
[...]
# Bilinear form and linear form for the heat equation with disc. coeff. k:
a0 = u * v * dx + deltat * k * dot(nabla_grad(v), nabla_grad(u)) * dx
a1 = - deltat('+') * k('+') * dot(grad(u('+')), n(phi('+'))) * v('+') * dc(0) \
     - deltat('+') * k('+') * dot(grad(v('+')), n(phi('+'))) * u('+') * dc(0) \
    + deltat('+') * lambda('+') * u('+') * v('+')
                                                             * dc(0)
a2 = deltat('+') * k('-') * dot(grad(u('-')), n(phi('+'))) * v('-') * dc(0) \
    + deltat('+') * k('-') * dot(grad(v('-')), n(phi('+'))) * u('-') * dc(0) \
    + deltat('+') * lambda('+') * u('-') * v('-')
                                                             * dc(0)
1....
L0 = v * u old * dx + deltat * f * v * dx
L1 = - deltat('+') * k('+') * dot(grad(v('+')), n(phi('+'))) * u_Gamma('+') * dc(0) \
    + deltat('+') * lambda('+') * u Gamma('+') * v('+')
                                                                   * dc(0)
      deltat('+') * k('-') * dot(grad(v('-')), n(phi('+'))) * u Gamma('-') * dc(0) \
L2 =
    + deltat('+') * lambda('+') * u Gamma('-') * v('-')
                                                                   * dc(0)
[...]
a = a0 + a1 + a2
L = L0 + L1 + L2
```

Fig. 1: Implementation design: Extended FFC and toolboxes for XFEM and level set.

Mathematical background

Level set toolbox [1]

- A discontinuity $\Gamma(t)$ is described by the zero level set of a (continuous and scalar) function $\varphi \colon \Omega \times [t_0, t_f] \to \mathbb{R}$, separating Ω into $\Omega(t) = \Omega^+(t) \cup \Omega^-(t) \cup \Gamma(t)$, cf. Fig. 2.
- Maintaining algorithms like reinitialization and mass correction techniques are included.

Fig. 2: $\Omega^+(t)$ and $\Omega^-(t)$ separated by $\Gamma(t)$.

eXtended finite elements [2]

A standard function space V_h^{FEM} with basis functions $v_i, i \in \mathcal{N}$, is (only) enriched strongly, weak discontinuities are handled by enforcing continuity with Nitsche's approach.

- The discrete approximation of $\Gamma(t)$, which is considered for enriching a function space V_h^{FEM} , is given by $\Gamma_h(t) := \{ \boldsymbol{x} \in \Omega_h \mid I_{\text{lin}} \varphi_h(\boldsymbol{x}, t) = 0 \}.$
- Enriched DOFs are $\tilde{\mathcal{N}} := \{i \in \mathcal{N} \mid \text{meas}_{d-1}(\Gamma_h \cap \text{supp}(v_i)) > 0, v_i \in V_h^{\text{FEM}}\}$ so that a function $u_h^{\text{XFEM}} \in V_h^{\text{XFEM}}$ reads

$$u_h^{\text{XFEM}} = \sum_{i \in \mathcal{N}} u_i v_i + \sum_{j \in \tilde{\mathcal{N}}} \tilde{u}_j H v_j,$$

where u_i are the coefficients and H denotes the Heaviside function.

Fig. 7: Parts of the corresponding UFL file using Nitsche's approach

Exemplary convergence plots for fixed Δt resp. h using \mathcal{P}_1 elements

- Scenario 1, the interface is a-priori known and prescribed, see Fig. 8.
- Scenario 2, the interface is unknown and part of the solution, see Fig. 9.

Fig. 8: Convergence plots scenario 1, interface is a-priori known

Fig. 3: Enriched DOFs \mathcal{N} for \mathcal{P}_1 elements

Fig. 4: Standard basis functions v_i and enriched basis functions Hv_i for \mathcal{P}_1 elements

• For intersected elements, a local mesh consisting of sub-elements is created and the quadrature rule is modified to consider each sub-element's contribution.

for time-dependent problems in 2D.

Fig. 5: Creating sub-elements of a cell in 2D.

• The L_2 -projection is used to interpolate an arbitrary function f onto V_h^{XFEM}

$$\int_{\Omega} (P_h^{\text{XFEM}} f) v dx = \int_{\Omega} f v dx, \quad \forall v \in V_h^{\text{XFEM}}.$$

Fig. 9: Convergence plots scenario 2, interface is part of the solution

Outlook: Keyhole-based laser welding (real world application)

On $\Omega \subset \mathbb{R}^3$ consider a welding process described by the heat equation with an a-priori given discontinuity (keyhole) as an internal boundary.

Acknowledgement

The authors gratefully acknowledge the financial support by the DFG (German Research Foundation) for the subproject A3 within the Collaborative Research Center SFB 747 "Mikrokaltumformen - Prozesse, Charakterisierung, Optimierung".

References

1 M. Jahn and T. Klock. A level set toolbox including reinitialization and mass correction algorithms for FEniCS. Technical Report 16-01, ZeTeM, Bremen, 2016.

