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Motivation

• Our project within the Collaborative Re-
search Center 747 investigates i.a. a mater-
ial accumulation process based on rod-end
melting, see Fig. 1.

• This processes can be modeled by PDEs
(Stefan problem, Navier-Stokes) and simu-
lated using FEM [3]. The model includes
time-dependent discontinuities. Fig. 1: Material accum. process

The Levelset method: Review

• The zero level set of a signed distance function
ϕ : Ω×[t0, tf ] → R (continuous, scalar) represents
a time dependent discontinuity [6], separating Ω
into Ω(t) = Ω+(t) ∪ Ω−(t) ∪ Γ(t), cf. Fig. 2.

• The level set problem is given by: Find ϕ(x, t) ∈
C1(Ω, [t0, tf ]), s.t.

ϕt + �u · ∇ϕ = 0 in Ω× [t0, tf ],

ϕ(x, t0) = ϕ0(x) in Ω,

ϕ(x, t) = ϕD(x, t) on ∂Ωin(t)× [t0, tf ].

Fig. 2: Subdomains
Ω+(t) and Ω−(t)
separated by Γ(t).

Weak formulation: With Vu,D = {v ∈ L2(Ω) : u · ∇v ∈ L2(Ω) ∧ v|∂Ωin
=

ϕD} the weak formulation of the level set problem is given by: For t ∈ [t0, tf ]
find ϕ(·, t) ∈ Vu,D s.t. ϕ(·, t0) = ϕ0 and

(ϕt, v)L2 + (�u · ∇ϕ, v)L2 = 0, ∀v ∈ L2(Ω).

The Levelset method: Numerical aspects

Discretization: Using standard Lagrangian function spaces and the
θ−scheme, the fully discretized and stabilized problem is given by
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Interface representation [2]:
• Γh is given by the linear inter-
polation of ϕh on a regularly
refined mesh.

• # refinements depends on the
polynomial degree k of the
basis functions. An example
for k = 2 is shown in Fig. 3. Fig. 3: Construction of Γh on Sh/2

Reinitialization [2,5]:
• During the evolution of ϕh in time, i.a
the signed distance property get lost.

• A reinitialization ϕ̂h of ϕh is required
with Γ̂h ≈ Γh and ||∇ϕ̂h|| ≈ 1.

• The Fast Marching Method of [2] is
used as reinitialization technique. It
consists of an initialization and an it-
eration phase, cf. Fig. 4.

Fig. 4: Construction of Γh on Sh/2

Volume correction [1]:

• the level set method is (on a discrete level) not volume conserving

• volume correction methods take advantage of the signed distance property,
shifting ϕh by �S ∈ R, S ∈ Sh/2, the roots of the non-linear equation
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• the corrected function is given by Iϕc
h := Iϕnew

h +ψh, with ψh interpolating
the values �S.

Levelset Toolbox (C++)

Fig. 5: Implementation structure: Form (header) files, object classes and utility functions.

Example 1 Using the Levelset Toolbox in FEniCS

[...] // Initialization etc.
// Creating and extending the parameters structure: Since all methods are
// hidden within the object class, the reinitialization frequency, the volume
// correction method etc. are added and defined within the parameters structure.
dolfin::Parameters parameters; parameters.add("foo", foo);

// Creating an object of type LevelSetCalculatorXD

LevelSetCalculatorXD lc(mesh, �u(x, t), ϕh(t0), parameters);

// Update LevelSetCalculatorXD lc object based on the specified parameters.
lc.updateLevelSetFunction();
[...]

Results

• Example 2D [4]: On Ω = [0, 1]2, consider ϕ0 for a disk with r = 0.15
centered at (0.5, 0.75) for t ∈ [0, 2]. The velocity field u(t, x, y) is given by

Fig. 6: Sketch 2D Example:
Ref. ϕh at t = {0, 0.5, 1, 1.5}.
It is ϕh(t = 0) = ϕh(t = 2).

u =

�
− sin2(πx) sin(2πy) cos(πt/tf )
sin(2πx) sin2(πy) cos(πt/tf )

�

.

Fig. 7: 2D Results at (t = 2) with 2×32×32 = 2048
elements (form left to right): reinit., reinit. and
global vol. corr, reinit. and local vol. corr., (red),
reference solution in black.

Fig. 8: Rel. volume error in L2: Comparison of dif-
ferent maintaining methods on different mesh sizes.

Δt θ = 1 θ = 0.5
20/10 3.25e− 2 6.10e− 3
2−1/10 1.86e− 2 1.54e− 3
2−2/10 1.01e− 2 3.87e− 4
2−3/10 5.36e− 3 9.68e− 5
2−4/10 2.71e− 3 2.42e− 5
2−5/10 1.32e− 3 5.99e− 6

Tab. 1: L2-error for different time
discretization schemes on a mesh
consisting of 2 × 10 × 10 = 200
elements.

• Example 3D [4]: On Ω = [0, 1]3, consider ϕ0 for a sphere, centered at (0.35,
0.35, 0.35) with r = 0.15 for t ∈ [0, 2]. The velocity field is given by

u(t, x, y, z) =




2 sin2(πx) sin(2πy) sin(2πz) cos(πt/tf )
− sin(2πx) sin2(πy) sin(2πz) cos(πt/tf )
− sin(2πx) sin(2πy) sin2(πz) cos(πt/tf )





Fig. 9: 3D Results at (t = 2): Reference solution and numerical solution for mesh sizes
6×24×24, 6×44×44 and 6×64×64 using reinitialization and local volume correction.
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