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Motivation
e Our project within the Collaborative Re-
search Center 747 investigates i.a. a mater- Jaserbea
1al accumulation process based on rod-end
elt see Fig. 1. _d '
melting, ig :
e This processes can be modeled by PDEs : !
(Stefan problem, Navier-Stokes) and simu- o7 BI/;S

lated using FEM [3]. The model includes

time-dependent discontinuities. Fig. 1: Material accum. process

The Levelset method: Review

e The zero level set of a signed distance function
p: Qx|tg,tr] — R (continuous, scalar) represents [

a time dependent discontinuity [6], separating Q || <9
into Q(¢t) = QT () UQ(t) UT'(¢), cf. Fig. 2

e The level set problem is given by: Find p(z,t) €
CH(Q, [to, tf]), s.t.
V¢ + U - VQO =0

p(,t0) = @o(7)

Q*(t)
(p >0)

in $2 X [to,tf],
: Fig.  2:
ndh 0% T and
p(z,t) = pp(x,t) on I, (t) X [to,tr]. separated by I'(%).

Weak formulation: With V, p = {v € L*(Q) : u - Vv € L*(Q) A v|gq, =

@p } the weak formulation of the level set problem is given by: For ¢ € [ty, t ]
find p(-,t) € Vup s.t. p(-,tg) = po and

(o1, V)2 + (U - V,v)p2 =0,

Subdomains

0~ (t)

Vo € L*(Q).
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LevelSetCalculatorUtils
Utility class with
dimension-independent
functions

Levelset Toolbox (C++)

LevelSetEquationXD
Form resp. header files
containing problem
specific data (1).

Fig. 5: Implementation structure: Form (header) files, object classes and utility functions.

Example 1 Using the Levelset Toolbox in FEniCS

...] // Initialization etc.

// Creating and extending the parameters structure: Since all methods are

// hidden within the object class, the reinitialization frequency, the volume

// correction method etc. are added and defined within the parameters structure.
dolfin: :Parameters parameters; parameters.add("foo", foo);

// Creating an object of type LevelSetCalculatorXD

LevelSetCalculatorXD lc(mesh, u(x,t), ¢nr(top), parameters);

// Update LevelSetCalculatorXD lc object based on the specified parameters.
lc.updatelLevelSetFunction();

)]

The Levelset method: Numerical aspects

Discretization: Using standard Lagrangian function spaces and the
6 —scheme, the tully discretized and stabilized problem is given by

n—+1 n
Z (SOh At b (‘99"n+1 + (1 - 9)902’) , Up + 05U - Vvh) =0 (1)
L2(S)

SeSy,

Interface representation [2]: 5
- “h

e [, is given by the linear inter- S

polation of ¢, on a regularly

refined mesh. S e L
e # refinements depends on the | — I

polynomial degree k of the L

basis functions. An example

for k = 2 is shown in Fig. 3. Fig. 3: Construction of I'y, on &y, /9

Reinitialization [2,5]:
e During the evolution of ¢, in time, i.a
the signed distance property get lost.

® 1st neighbor DOFs

M 2st neighbor DOFs

e A reinitialization ¢, of ¢y, is required
with I'y, &= T, and ||V@y|| = 1

e The Fast Marching Method of [2] is
used as reinitialization technique. It
consists of an initialization and an it-
eration phase, ct. Fig. 4.

Fig. 4: Construction of I'y, on &y, /9

Volume correction [1]:

e the level set method is (on a discrete level) not volume conserving

e volume correction methods take advantage of the signed distance property,
shifting oy, by €5 € R, S € §,/2, the roots of the non-linear equation

Zs(es) 1 = Vi s(Ih (1) = Vis(Top™ () +€s) =0, S € Sppp (2)

e the corrected function is given by 15 = [pr¥ 41, with ¢y, interpolating
the values €g.

Results

e Example 2D [4]: On Q = [0,1]?%, consider ¢q for a disk with r = 0.15
centered at (0.5,0.75) for t € |0, 2|. The velocity field u(t, z,y) is given by

S Pele

Fig. 7: 2D Results at (¢t = 2) with 2 x 32 x 32 = 2048
Fig. 6: Sketch 2D Example:  elements (form left to right): reinit., reinit. and

— smz(wx) sin(27y) COS(ﬂ't/tf)
sin(2mz) sin®(7y) cos(mt /t

Ref. ¢y, at t = {0,0.5,1,1.5}. global vol. corr, reinit. and local vol. corr., (red),
It is pp(t = 0) = pr(t = 2). reference solution in black.
_-g-_gg :::t: :::::: and gl. vol. corr. At V=1 0 =05
~ « = 2D with reinit. and loc. vol. corr. 29/10 | 3.25¢ —2 | 6.10e — 3
5=1710 | 1.86e — 2 | L.5de — 3
5=2/10 | 1.0le — 2 | 3.87¢ — 4
2=3710 | 5.36¢ — 3 | 9.68¢ — 5
274/10 | 2.7Tle — 3 | 2.42¢e — 5
5=5710 | 1.32¢ — 3 | 5.99¢ — 6

Tab. 1: Lo-error for different time
discretization schemes on a mesh

consisting of 2 x 10 x 10 = 200
elements.

Fig. 8: Rel. volume error in Lo: Comparison of dif-
ferent maintaining methods on different mesh sizes.

e Example 3D [4]: On Q = [0, 1]%, consider ¢y for a sphere, centered at (0.35,
0.35, 0.35) with r = 0.15 for ¢ € [0, 2]. The velocity field is given by

2 sin?(7x) sin(27y) sin(272) cos(wt /t ;)

— Sin(27rx) Sin2(7ry) Sin(27rz) cos(mt/ty)

— sin(27z) sin(27y) sin®(7z) cos(7t /[t ¢)

00

Fig. 9: 3D Results at (t = 2): Reference solution and numerical solution for mesh sizes
6 x 24 x 24, 6 x 44 X 44 and 6 X 64 x 64 using reinitialization and local volume correction.

/U/(t, x? y? ) —
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