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Abstract— In this paper the notion of quasi-input-to-state
dynamical stability (quasi-ISDS) for reduced-order observer
design is introduced. It combines the main advantage of ISDS
over input-to-state stability (ISS), namely the memory fading
effect, with reduced-order observers to obtain quantitative
information about the state estimate error. As a second topic, in-
terconnections of nonlinear systems are investigated and quasi-
ISS reduced-order observers for the subsystems are designed
when there exist suitable error Lyapunov functions. As an
application of this concept, we prove that quantized output
feedback stabilization for each subsystem and the overall system
is achievable, when the systems possess a quasi-ISS reduced-
order observer and a state feedback law that yields ISS for
each subsystem and therefor the overall system with respect to
measurement errors.

I. INTRODUCTION

The notion of quasi-input-to-state stability (quasi-ISS)
for observers was introduced in [19]. There, a quasi-ISS
reduced-order observer for nonlinear dynamical systems was
designed and quantized output feedback stabilization was
investigated. The design of observers and the problem of
output-feedback stabilization was investigated for example
in [13], [14], [12].

In [7] and [6] the property input-to-state dynamical stabil-
ity (ISDS) was investigated, which is equivalent to the ISS
property and has some advantages over ISS. One of these
advantages is the so-called memory fading effect. Fading
memory estimates were first studied in [17] and further
studied for example in [9].

It is known for ISS (ISDS) systems that the influence of the
"older" signals on the current state is essentially smaller then
the influence of the recent ones. However the ISS estimation
of trajectories does not take this into account. The advantage
of the ISDS estimation is that it takes this dissipative property
into account. In particular, if the input tends to zero, then the
ISDS estimate will tend to zero, whereas the ISS estimate
depends on the supremum norm of the input.

In this paper the approaches of reduced-order observers
and the ISDS property are combined, which results in the
introduction of quasi-ISDS reduced-order observers, which
have the advantage that the recent disturbance of the mea-
surement is taken into account.

Studying the ISS property, introduced in [20], for large-
scale interconnected systems establishes a small-gain condi-
tion as in [2], [3], [8], [10]. The ISDS property for large-scale
systems was studied in [1].
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We design quasi-ISS reduced-order observers for subsys-
tems of large-scale interconnected systems, from which an
observer for the whole system can be designed. Furthermore
we investigate the quantized output feedback stabilization for
large-scale systems, which is based on the works [15], [19].

The paper is organized as follows: Section II contains
some basic notions. The quasi-ISDS property is introduced
in Section III. Section IV includes the design of quasi-ISS
reduced-order observers for large-scale interconnected sys-
tems. The quantized output feedback for large-scale systems
can be found in Section V. Finally, Section VI concludes the
paper.

II. PRELIMINARIES

By xT we denote the transposition of a vector x ∈
Rn, n ∈ N, furthermore R+ := [0,∞) and Rn+ denotes the
positive orthant {x ∈ Rn : x ≥ 0} where we use the standard
partial order for x, y ∈ Rn given by

x ≥ y ⇔ xi ≥ yi, i = 1, . . . , n and x 6≥ y ⇔ ∃i : xi < yi.

We denote the standard Euclidean norm in Rn by |·| and
the supremum norm of a function f by ‖f‖[a,b], where
[a, b], a ≤ b is an interval. ∇V denotes the gradient of
a function V .

We consider general nonlinear systems of the form

ẋ = f(x, u), y = h(x), (1)

where x ∈ RN is the state, u ∈ RM is a control input,
y ∈ RP is the output, function f : RN×RM → RN is locally
Lipschitz in x uniformly in u and function h : RN → RP is
continuously differentiable with locally Lipschitz derivative
(called a C1

L function). In addition, it is assumed f(0, 0) = 0
and h(0) = 0.

A state observer for the system (1) is of the form

˙̂
ξ = F (ȳ, ξ̂, u), x̂ = H(ȳ, ξ̂, u), (2)

where ξ̂ ∈ RL is the observer state, x̂ ∈ RN is the estimate
of the system state x and ȳ ∈ RP is the measurement of y
that may be disturbed by d: ȳ = y + d. We denote the state
estimation error by

x̃ = x̂− x.

For the next sections we need:
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Definition 2.1: We define the following classes of func-
tions:

K := {γ : R+ → R+ | γ is continuous, γ(0) = 0
and strictly increasing}

K∞ := {γ ∈ K | γ is unbounded}
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}

KL := {β : R+ × R+ → R+ | β is continuous,
β(·, t) ∈ K, β(r, ·) ∈ L, ∀t, r ≥ 0}

KLD := {µ ∈ KL | µ(r, t+ s) = µ(µ(r, t), s),∀r, t, s ≥ 0}

III. QUASI-ISDS REDUCED-ORDER OBSERVERS
In this section we introduce the quasi-ISDS property and

give a motivating example for the introduction. Then we
show that the reduced-order observer designed in Theorem 1
in [19] has the quasi-ISDS property provided that an error
ISDS Lyapunov function exists.

We start with the following definition:
Definition 3.1: System (2) is called a quasi-ISDS observer

for the system (1) if there exist functions µ̃ ∈ KLD, η̃ ∈ K∞
and for each K > 0 a function γ̃ ISDS

K ∈ K∞ such that

|x̃(t)| ≤ max{µ̃(η̃(|x̃0|), t), ess sup
τ∈[0,t]

µ̃(γ̃ ISDS
K (|d(τ)|), t− τ)},

whenever ||u||[0,t] ≤ K and ||x||[0,t] ≤ K.
The notion of ISDS was introduced in [7]. Here and in

[1] the advantages of ISDS over ISS were discussed. One
of these advantages is the memory-fading effect. For quasi-
ISDS observer this means that the recent disturbance of
the measurement is taken into account, whereas the quasi-
ISS observer takes into account the supremum norm of the
disturbance (see the Definition 1 in [19]).

The motivation of the introduction of quasi-ISDS ob-
servers will be illustrated by the following example.

Example 3.2: Consider the system in the Example 1 in
[19]

ẋ = −x+ x2u, y = x, (3)

where ˙̂x = −x̂ + y2u is an observer. We consider the
perturbed measurement ȳ = y + d, with d = e−t

1
10 . Then

the error dynamics becomes

˙̃x = −x̃+ 2xud+ ud2.

This system is ISS and ISDS from d to x̃ when u(t) and x(t)
are bounded. Let u ≡ 1 be constant, then the estimations of
the error dynamics are displayed in Figure 1 for x0 = x̃0 =
0.2. Here the ISS estimation takes the maximal value of d
into account, whereas the ISDS estimation has the so-called
memory-fading effect.

We assume that there exists a global coordinate change
z = φ(x) such that the system (1) is globally diffeomorphic
to a system with linear output of the form

ż =
[
ż1
ż2

]
=
[
f̃1(z1, z2, u)
f̃2(z1, z2, u)

]
= f(z, u), y = z1, (4)

Fig. 1. Displaying of the trajectory, error, quasi-ISS and quasi-ISDS
estimate of system (3).

where z1 ∈ RP and z2 ∈ RN−P .
For the results in this paper we need the following assump-

tion, where we use reduced-order error Lyapunov functions.
Error Lyapunov functions were first introduced in [16] and
in [11] the equivalence of the existence of an error Lyapunov
function and the existence of an observer was shown.

Assumption 3.3: Let ε > 0 be given. There exist a C1
L

function l : RP → RN−P , a C1 function V : RN−P → R,
functions α, η̃ ∈ K∞ and µ̃ ∈ KLD such that

|e|
1 + ε

≤ V (e) ≤ η̃(|e|),
∣∣∣∣∂V∂e (e)

∣∣∣∣ ≤ α(|e|), (5)

∂V

∂e
(e)
([
f̃2(z1, e+ z2, u) +

∂l

∂z1
(z1)f̃1(z1, e+ z2, u)

]
−
[
f̃2(z1, z2, u) +

∂l

∂z1
(z1)f̃1(z1, z2, u)

])
(6)

≤ − (1 + ε) g(|e|),

where µ̃ solves the equation

d
dt
µ̃(r, t) = −g (µ̃ (r, t)) , r, t > 0

for a locally Lipschitz continuous function g : R+ → R+

and there exist a function α̃ ∈ K∞ such that

α̃(s)α(s) ≤ g(s), s ∈ R+.

The next lemma is a counterpart of Theorem 1 in [19], where
a quasi-ISS reduced-order observer for the system (4) was
designed. Here the design is the same, but it provides a quasi-
ISDS reduced-order observer for system (4).

Lemma 3.4: Under Assumption 3.3 the system

˙̂
ξ = f̃2(ȳ, ξ̂ − l(ȳ), u) +

∂l

∂z1
(ȳ)f̃1(ȳ, ξ̂ − l(ȳ), u),

ẑ1 = ȳ, ẑ2 = ξ̂ − l(ȳ),

where ξ̂ ∈ RN−P is the observer state and ẑ1, ẑ2 are the
estimates of z1 and z2, respectively, becomes a quasi-ISDS
reduced-order observer for the system (4).
The proof goes along the lines of the proof of Theorem 1 in
[19] with corresponding changes according to Definition 3.1
and Assumption 3.3.
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IV. LARGE-SCALE INTERCONNECTED SYSTEMS

In this section we consider large-scale interconnected
systems. We design quasi-ISS reduced-order observers for
each subsystem and therefore the whole system, provided
that the small-gain condition is satisfied.

We consider n ∈ N interconnected systems of the form

ẋi = fi(y1, . . . , xi, . . . , yn, ui), yi = hi(xi), (7)

i = 1, . . . , n, where xi ∈ RNi is the state of the ith
subsystem, ui ∈ RMi are control inputs, yi ∈ RPi are the
outputs, functions fi : R

∑
j 6=i Pj+Ni+Mi → RNi are locally

Lipschitz in (yT1 , . . . , x
T
i , . . . , y

T
n )T uniformly in ui and

functions hi : RNi → RPi are continuously differentiable
with locally Lipschitz derivatives. In addition, it is assumed
fi(0, . . . , 0) = 0 and hi(0) = 0.

The state observer of the ith subsystem is of the form

˙̂
ξi =Fi(ȳ1, . . . , ȳn, ξ̂i, ui),

x̂i =Hi(ȳ1, . . . , ȳn, ξ̂i, ui),
(8)

i = 1, . . . , n, where ξ̂i ∈ RLi is the observer state of the ith
subsystem, x̂i ∈ RNi is the estimate of the system state xi
and ȳi ∈ RPi is the measurement of yi that may be disturbed
by di: ȳi = yi+di. We note the state estimation error of the
ith subsystem by x̃i := x̂i−xi. Next, we define the quasi-ISS
property extending Definition 1 in [19] for interconnected
systems.

Definition 4.1: The ith subsystem of (8) is called a quasi-
ISS observer for the ith subsystem of (7) if there exist
a function β̃i ∈ {KL} and for each Ki > 0 functions
γ̃Ki
i , γ̃Ki

ij ∈ {K}∞, j = 1, . . . , n, j 6= i such that

|x̃i(t)|
≤max{β̃i(|x̃0

i |), t),max
j 6=i

γ̃Ki
ij (||dj ||[0,t]), γ̃Ki

i (||di||[0,t])},

whenever ||ui||[0,t] ≤ Ki and ||xj ||[0,t] ≤ Ki, j = 1, . . . , n.
We assume that there exists a global coordinate change zi =
φi(xi) with xi = (yT1 , . . . , x

T
i , . . . , y

T
n )T such that the ith

subsystem of (7) is globally diffeomorphic to a system with
linear output of the form

żi =
[
ż1i
ż2i

]
=
[
f1i(y1, . . . , z1i, z2i, . . . , yn, ui)
f2i(y1, . . . , z1i, z2i, . . . , yn, ui)

]
=fi(y1, . . . , zi, . . . , yn, ui),

yi =z1i, i = 1, . . . , n,

(9)

where z1i ∈ RPi and z2i ∈ RNi−Pi , i = 1, . . . , n.
Assumption 4.2: For each i = 1, . . . , n there exist C1

L

functions li : RPi → RNi−Pi , a C1 function Vi : RNi−Pi →

R, functions α1i, α2i, α3i, α4i,∈ K∞ such that

α1i(|ei|) ≤ Vi(ei) ≤ α2i(|ei|),
∣∣∣∣∂Vi∂ei

(ei)
∣∣∣∣ ≤ α4i(|ei|),

∂Vi
∂ei

(ei) ([f2i(y1, . . . , z1i, ei + z2i, . . . , yn, ui)

+
∂li
∂z1i

(z1i)f1i(y1, . . . , z1i, ei + z2i, . . . , yn, ui)
]

− [f2i(y1, . . . , z1i, z2i, . . . , yn, ui)

+
∂li
∂z1i

(z1i)f1i(y1, . . . , z1i, z2i, . . . , yn, ui)
])

≤ −α3i(|ei|)

and there exist class-K∞ functions αi such that

αi(s)α4i ≤ α3i(s).
The next theorem is a counterpart of the Theorem 1 in
[19] for the design of an observer for each subsystem of
an interconnected system.

Theorem 4.3: Under Assumption 4.2, the system

ˆ̇
ξi =f2i(ȳ1, . . . , ȳi, ξ̂i − li(ȳi), . . . , ȳn, ui)

+
∂li
∂z1i

(ȳi)f1i(ȳ1, . . . , ȳi, ξ̂i − li(ȳi), . . . , ȳn, ui)

ẑ1i =ȳi, ẑ2i = ξ̂i − li(ȳi)
(10)

becomes a quasi-ISS reduced-order observer for the ith
subsystem of (9).

Proof: We define ξi := z2i + li(z1i). Then

ż1i =f1i(y1, . . . , z1i, ξi − li(z1i), . . . , yn, ui),
ξ̇i =f2i(y1, . . . , z1i, ξi − li(z1i), . . . , yn, ui)

=:Fi(y1, . . . , z1i, ξi, . . . , yn, ui),
yi =z1i, i = 1, . . . , n.

The reduced-order observer (10) is written as ξ̂i =
Fi(ȳ1, . . . , ȳi, ξ̂i, . . . , ȳn, ui). Let e := ξ̂i − ξi. We use the
shorthand for j = 1, 2

f̂dji =

fji(y1 + d1, . . . , z1i + di, ξ̂i − li(z1i + di), . . . , yn + dn, ui),

fdji =
fji(y1 + d1, . . . , z1i + di, ξi − li(z1i + di), . . . , yn + dn, ui),
fji = fji(y1, . . . , z1i, ξi − li(z1i), . . . , yn, ui),

then we have

V̇i(ei)

=
∂Vi
∂ei

(ei)
([
f̂d2i +

∂li
∂z1i

(z1i + di)f̂d1i

]
−
[
f2i +

∂li
∂z1i

(z1i)f1i

])
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≤− α3i(|ei|) +
∂Vi
∂ei

(ei) (Fi(ȳ1, . . . , ȳi, ξi, . . . , ȳn, ui)

−Fi(y1, . . . , yi, ξi, . . . , yn, ui))
≤− α3i(|ei|) + max{γi(z11, . . . , yi, ξi, . . . , z1n, ui)ρi(|di|),

max
j 6=i

γij(z11, . . . , yi, ξi, . . . , z1n, ui)ρij(|dj |)},

where γi, γij are continuous positive functions and ρi, ρij
are class-K functions such that

|Fi(ȳ1, . . . , ȳi, ξi, . . . , ȳn, ui)− Fi(y1, . . . , yi, ξi, . . . , yn, ui)|
≤ max{γi(z11, . . . , yi, ξi, . . . , z1n, ui)ρi(|di|),
max
j 6=i

γij(z11, . . . , yi, ξi, . . . , z1n, ui)ρij(|dj |)}

whose existence can be shown using similar results in [4],
[5]. It follows that for an arbitrary εi ∈ (0, 1), we have

|ei| ≥
α−1
i ((1− εi) max{γi(z11, . . . , y1, ξi, . . . , z1n, ui)ρi(|di|),

max
j 6=i

γij(z11, . . . , yi, ξi, . . . , z1n, ui)ρij(|dj |)})

⇒ V̇i ≤ −εiα3i(|ei|).

Under the conditions that |zj(τ)| ≤ Ki and |ui(τ)| ≤
Ki, j = 1, . . . , n for 0 ≤ τ ≤ t it can be shown that there
exist a function β̄i ∈ KL, functions γ̄Ki

i , γ̄Ki
ij ∈ {K}∞, j =

1, . . . , n, j 6= i such that

|ei(t)| ≤
max{β̄i(|e0i |), t),max

j 6=i
γ̄Ki
ij (||dj ||[0,t]), γ̄Ki

i (||di||[0,t])}.

(11)

Recalling (10), we have that

z̃i =
[
z̃1i
z̃2i

]
:=
[
ẑ1i − z1i
ẑ2i − z2i

]
=
[

di
ei − li(z1i + di) + li(z1i)

]
,

which leads to

|z̃i| ≤ |di|+ |ei|+ θKi
(|di|) and |ei| ≤ |z̃2i|+ θKi

(|di|),

where θKi
(|di|) is a class-K function, parametrized by Ki

such that |l(z1i + di)− l(z1i)| ≤ θKi
(|di|) when |z1i| ≤ Ki.

Together with (11) we obtain

|z̃i(t)|
≤max{β̄i(|e0i |), t),max

j 6=i
γ̄Ki
ij (||dj ||[0,t]), γ̄Ki

i (||di||[0,t])}

+ θKi
(|di(t)|) + |di(t)|

≤max{3β̄i((|z̃0
2i|+ θKi

(|d0
i |)), t),

3 max
j 6=i

γ̄Ki
ij (||dj ||[0,t]), 3χKi

i (||di||[0,t])},

where χKi
i (r) := max{γ̄Ki

i (r), θKi(r), r}. By α(a + b) ≤
max{α(2a), α(2b)} for α ∈ K we have that

|β̄i((|z̃0
2i|+ θKi(|d0

i |)), t)|
≤max{β̄i(2|z̃0

2i|, t), β̄i(2θKi
(|d0

i |), t)}
≤max{β̄i(2|z̃0

2i|, t), 2θKi
(||di||[0,t])}

and with β̌i(r, t) := β̄i(2r, t), θ̄Ki
:= 2θKi

we obtain

|z̃i(t)|
≤max{3β̌i(|z̃0

2i|, t), 3θ̄Ki
(||di||[0,t]), 3 max

j 6=i
γ̄Ki
ij (||dj ||[0,t]),

3χKi
i (||di||[0,t])}

=: max{β̃i(|z̃0
i |, t),max

j 6=i
γ̃Ki
ij (||dj ||[0,t]), γ̃Ki

i (||di||[0,t])},

which proves that the system (10) is a quasi-ISS reduced
order observer for the ith subsystem.

Remark 4.4: This approach is also possible for the quasi-
ISDS property, with similar calculations. It may happen that
the decay rate becomes conservative, because the estimations
above are conservative.
Now, if we define P =

∑
Pi, N =

∑
Ni,M =

∑
Mi

z := (zT1 , . . . , z
T
n )T ∈ RN , z1 := (zT11, . . . , z

T
1n)T ∈ RP ,

z2 := (zT21, . . . , z
T
2n)T ∈ RP−N , u := (uT1 , . . . , u

T
n )T ∈

RM , d = (dT1 , . . . , d
T
n )T and f := (fT1 , . . . , f

T
n )T , f̃1 :=

(fT11, . . . , f
T
1n)T , f̃2 := (fT21, . . . , f

T
2n)T , then the system (9)

can be written as a system of the form (4).
We collect all gains γ̃Ki

ij in a gain-matrix Γ̃, which defines
a map Γ̃ : Rn+ → Rn+ by

Γ̃ (s) := (max
j
γ̃K1
1j (sj), . . . ,max

j
γ̃Kn
nj (sj))T , (12)

∀ s ∈ Rn+, with γ̃Ki
ii ≡ 0.

We say that Γ̃ satisfies the small-gain condition if

Γ(s) 6≥ s, ∀ s ∈ Rn+\ {0} . (13)

For more details about this condition see [2], [3]. Note
that if Γ̃ satisfies the small-gain condition (13), then there
exists an Ω-path σ = (σ1, . . . , σn)T with respect to Γ̃ (see
[3], Theorem 5.2 and [18]).

With these considerations a quasi-ISS reduced-order ob-
server for the overall system can be designed.

Lemma 4.5: Consider a system of the form (9). Assume
that Assumption 4.2 and Theorem 4.3 hold true for each i =
1, . . . , n. If Γ̃ satisfies the small-gain condition (13), then the
reduced-order error Lyapunov function V as in Assumption 1
in [19] is given by V = maxi{σ−1

i (Vi)} and the quasi-ISS
reduced-order observer for the overall system is given by

ξ̂ = (ξ̂T1 , . . . , ξ̂
T
n )T ,

and

ˆ̇
ξ =f2(ȳ, ξ̂ − l(ȳ), u) +

∂l

∂z1
(ȳ)f1(ȳ, ξ̂, u)

ẑ1 =ȳ, ẑ2 = ξ̂ − l(ȳ).
(14)

Proof: We give only an outline of the proof:
For vector valued functions z = (zT1 , . . . , z

T
n )T : R+ →

R
∑n

i=1Ni with zi : R+ → RNi and times 0 ≤ t1 ≤ t2, t ∈
R+ we define

z̃(t) := (|z̃1(t)| , . . . , |z̃n(t)|)T ∈ Rn+,

d [t1,t2] :=
(
‖d1‖[t1,t2] , . . . , ‖dn‖[t1,t2]

)T
∈ Rn+, .

5735



For t ∈ R+ and s ∈ Rn+ we define

γ̃K(‖d‖[t1,t2]) :=
(
γ̃K1
1 (‖d1‖[t1,t2]), . . . , γ̃

Kn
n (‖dn‖[t1,t2])

)T
,

β̃(s, t) :=
(
β̃1(s1, t), . . . , β̃n(sn, t)

)T
∈ Rn+.

Using Assumption 4.2 and Theorem 4.3 for each subsystem
we arrive at

z̃(t) ≤ max{β̃( z̃0 ), Γ̃( d [0,t]), γ̃(||d||[0,t])}

where the maximum for vectors is taken componentwise.
Since the small-gain condition is satisfied it follows with
similar arguments as for the proof of Theorem 11 in [2] that
ξ̂ = (ξ̂T1 , . . . , ξ̂

T
n )T is a quasi-ISS reduced-order observer for

the overall system. Similar to the proof of Theorem 5.3 in [3]
it follows, that the reduced-order error Lyapunov function V
for the overall system is given by V = maxi{σ−1

i (Vi)}.

V. QUANTIZED OUTPUT FEEDBACK

In this section we first consider single systems and com-
bine the quantized output feedback stabilization with the
ISDS property as in Chapter V in [19]. Then we consider
large-scale systems and give a counterpart to Proposition 1
in [19] for such kind of systems.

A. Single systems

We consider again one single system in the form (4). By an
output quantizer we mean a piecewise constant function q :
RP → Q, where Q is a finite subset of RP . The quantization
error is denoted by

d := q(y)− y, (15)

and the quantizer’s range M > 0 by |y| ≤M , which implies
the error bound |d| ≤ ∆, ∆ > 0.

Now suppose that Assumption 3.3 holds and a quasi-ISDS
observer has been designed as in Lemma 3.4. With d as in
(15) the observer acts on the quantized output measurements
ȳ = q(y). Furthermore suppose that a controller is given in
the form u = k(z). We can now define a quantized output
feedback law by

u = k(ẑ) = k(z + z̃),

where ẑ is the state estimate generated by the observer and
z̃ = ẑ − z is the state estimation error. We impose on the
feedback law:

Assumption 5.1: The system

ż = f(z, k(ẑ)) = f(z, k(z + z̃))

is ISDS with respect to z̃, i.e.,

|z(t)| ≤ max{µ̂(η̂(|z0|), t), ess sup
τ∈[0,t]

µ̂(γ̂ ISDS(|z̃(τ)|), t− τ)}

(16)

for some µ̂ ∈ KLD, η̂ and γ̂ ISDS ∈ K∞.
For a detailed discussion for the case of an ISS controller
we refer to [15].

The overall closed-loop system obtained by combining the
plant, the observer and the control law can be written as

ż =
[
ż1
ż2

]
=
[
f1(z1, z2, k(ẑ))
f2(z1, z2, k(ẑ))

]
,

˙̂
ξ =f2(q(z1), ξ̂ − l(q(z1)), k(ẑ))

+
∂l

∂z1
(q(z1))f1(q(z1), ξ̂ − l(q(z1)), k(ẑ)),

ẑ =
[
ẑ1
ẑ2

]
=
[

q(z1)
ξ̂ − l(q(z1))

]
.

We know that for e = ξ̂−ξ, where ξ = z2 + l(z1), the bound

|e(t)| ≤ max{µ̄(η̄(|e0|), t), ess sup
τ∈[0,t]

µ̄(γ̄ ISDS(|d(τ)|), t− τ)}

holds. Combining this with (16) and |z̃| ≤ |d|+|e|+θK(|d|),
we can show that∣∣∣∣( z(t)

ξ̂(t)

)∣∣∣∣ ≤ max
{
µ

(
η

(∣∣∣∣( z0
ξ̂0

)∣∣∣∣) , t) , ν(d, t)
}

is valid for ‖z‖[0,t] ≤ K and ‖u‖[0,t] = ‖k(ẑ)‖[0,t] ≤ K,
where ν(d, t) :=ess sup

τ∈[0,t]

µ(γ ISDS(|d(τ)|), t− τ).

B. Large-scale systems

Now, we consider again an interconnected system of the
form 7 or 9, respectively.

The output quantizer of the ith subsystem is given by
qi : RPi → Qi, where Qi is a finite subset of RPi , the
quantization error by di := qi(yi)− yi, the quantizer’s range
Mi > 0 by |yi| ≤ Mi, which implies |di| ≤ ∆i, where
∆i > 0 is the error bound. We suppose that Assumption 4.2
holds and observer for the ith subsystem has been designed
by Theorem 4.3, which acts on the quantized output mea-
surements yi = qi(yi).

Suppose that a controller of the ith subsystem is given by
ui = ki(zi) and the quantized output feedback law is defined
by

ui := ki(ẑi) = ki(zi + z̃i)

where ẑi is the state estimate generated by the observer and
z̃i = ẑi − zi is the state estimation error. In the rest of the
paper we suppose the following:

Assumption 5.2: The ith subsystem żi =
fi(y1, . . . , zi, . . . , yn, ki(ẑi)) is ISS with respect to z̃i,
i.e.,

|zi(t)|
≤max{β̂i(z0

i , t),max
j 6=i

γ̂ij(||z̃j ||[0,t]), γ̂i(||z̃i||[0,t])}

for some β̂i ∈ KL and γ̂ij , γ̂i ∈ K∞.
We can show that for the ith subsystem of the overall

closed-loop system obtained by combining the plant, the
observer and the control law it holds∣∣∣∣( zi(t)

ξ̂i(t)

)∣∣∣∣
≤max{βi

(∣∣∣∣ z0
i

ξ̂0i

∣∣∣∣ , t) ,max
j 6=i

γKi
ij (||dj ||[0,t]), γKi

i (||di||[0,t])}
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for ||zj ||[0,t] ≤ Ki, j = 1, . . . , n and ||ui||[0,t] =
||ki(ẑi)||[0,t] ≤ Ki.

Furthermore we can show, that if the small-gain condition
(13) is satisfied for Γ = (γij)n×n, which defines a map as
in (12), then for the overall closed system it holds∣∣∣∣( z(t)

ξ̂(t)

)∣∣∣∣ ≤ max{β
(∣∣∣∣ z0

ξ̂0

∣∣∣∣ , t) , γK(||d||[0,t])},

where z, ξ̂, β and γK are defined as in Lemma 4.5 and its
proof.

Define z1 = (zT11, . . . , z
T
1n)T , l = (lT1 , . . . , l

T
n )T and κl ∈

K∞ with |l(z1)| ≤ κl(|z1|), ∀z1 and κu ∈ K∞ with |k(z)| ≤
κu(|z|), ∀z, so that we give a counterpart of Proposition 1
in [19] for interconnected systems.

Proposition 5.3:
1) Assume max{γKi

ij (∆j), γKi
i (∆i)} ≤Mi and∣∣∣∣( z0

i

ξ̂0i

)∣∣∣∣ < E0
i

where E0
i > 0 is such that βi(E0

i , 0) = Mi. Then
the corresponding solution of the ith subsystem of the
overall closed-loop system satisfies

lim sup
t→∞

∣∣∣∣( zi(t)
ξ̂i(t)

)∣∣∣∣ ≤ max{γKi
ij (∆j), γKi

i (∆i)}.

2) Assume that 1) holds for i = 1, . . . , n. Define M :=
maxMi, ∆ := max ∆i, K := max{M,κu(2M+∆+
κl(M + ∆))} and suppose that Γ satisfies the small-
gain condition (13). Then the corresponding solution
of the overall closed-loop system satisfies

lim sup
t→∞

∣∣∣∣( z(t)
ξ̂(t)

)∣∣∣∣ ≤ γK(∆).

The proof is omitted because of the limited space, but 1)
goes along the line of the proof of Proposition 1 in [19]
with corresponding changes to interconnected systems and
2) is an immediate consequence of 1) and the small-gain
condition.

VI. CONCLUSIONS
We introduced the quasi-ISDS property for observers,

which main advantage over ISS is the memory fading effect.
This was demonstrated in an example. We showed how to
design quasi-ISS reduced-order observers for subsystems of
interconnected systems. They were used to design an quasi-
ISS reduced-order observer for the overall system under a
small-gain condition.

As an application we showed that quantized output feed-
back stabilization for a subsystem is achievable, under the as-
sumptions that the subsystem possesses a quasi-ISS reduced-
order observer and a state feedback controller providing
ISS with respect to measurement errors. If this holds for
all subsystems of the large-scale system and the small-
gain condition is satisfied, then quantized output feedback
stabilization is also achievable for the overall system.

Future works are for example the investigation of the
design of nonlinear output feedback control or nonlinear ob-
servers to satisfy the small-gain condition and the application

of the results in this paper to the design of dynamic quantized
interconnected control systems.
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systems to state measurement disturbances. In Proceedings of the
32nd IEEE CDC, pages 1507–1512, 1993.

[5] Randy A. Freeman and Petar V. Kokotović. Robust nonlinear control
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