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Factorization method in inverse

scattering

Synonyms

Kirsch’s factorization method; operator factorization method (rarely used); linear sam-

pling method (ambiguous and to avoid—the name is very rarely used for the factor-

ization method by now but has been employed more frequently after the first papers

on the method appeared).

Definition

The factorization method for inverse scattering provides an explicit and theoretically

sound characterization for the support of a scattering object using multi-static far field

measurements at fixed frequency: A point z belongs to the scatterer if and only if a

special test function belongs to the range of the square root of a certain operator that
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can be straightforwardly computed in terms of far field data. This characterization

yields a fast and easy-to-implement numerical algorithm to image scattering objects.

A crucial ingredient of the proof of this characterization is a factorization of the mea-

surement operator, which explains the method’s name. There are basically two variants

of the method leading to different characterization criteria: If the far field operator F

is normal, the above characterization applies for the square root (F ∗F )1/4 of F itself;

otherwise, one considers the square root of F] := |ReF | + ImF where ReF and ImF

are the selfadjoint and non-selfadjoint part of F , respectively.

Overview

The factorization method was first introduced by Andreas Kirsch [15, 16] for time-

harmonic inverse obstacle and inverse medium scattering problems where the task is to

determine the support of the scatterer from multi-static far field measurements at fixed

frequency (roughly speaking, from measurements of the far field pattern of scattered

waves in several directions and for several incident plane waves). The method follows

the spirit of the linear sampling method and can be seen as a refinement of the latter

technique. Both methods try to determine the support of the scatterer by deciding

whether a point z in space is inside or outside the scattering object. When the far

field operator F is normal, the factorization method’s criterion for this decision is

whether or not special test functions φz, parametrized by z and explicitly known for

homogeneous background media, are contained in the range of the linear operator

(F ∗F )1/4. Indeed, when the point z is outside the scatterer then φz is not contained in

the range of (F ∗F )1/4 whereas φz belongs to this range when z is inside the scatterer.

The factorization method can be used for imaging by computing the norm of a possible

solution gz to (F ∗F )1/4gz = φz using Picard’s criterion for many sampling points z

from a grid covering a region of interest. Plotting these norms then yields a picture
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of the scattering object. If F fails to be normal, a variant of the method based on

F] := |ReF |+ ImF provides analogous analytical results and imaging algorithms.

These algorithms are very efficient compared to other techniques solving inverse

scattering problems since their numerical implementation basically requires the com-

putation of the singular value decomposition of a discretization of the far field operator

F . A further attractive feature of the method is its independence of the nature of the

scattering object; for instance, the factorization method yields the same object char-

acterization and imaging algorithm for penetrable and impenetrable objects, such that

a mathematical model describing the scatterer does not need to be known in advance.

The analysis of the factorization method is based on functional analytic results

on range identities for operator factorizations of the form F = H∗TH. Under appro-

priate assumptions, these results state, roughly speaking, that the range of the square

root of F equals the range of H∗. Moreover, via unique continuation results and fun-

damental solutions it is usually not difficult to show that the range of H∗ characterizes

the scattering object, since the far field φz of a point source at z belongs to this range

if and only if z belongs to the scattering object. Combining these two results hence

provides a direct characterization of the scattering object in terms of the range of the

square root of F .

Differences to the Linear Sampling Method and Limitations

The fundamental difference between the factorization method and the linear sampling

method is that the latter one considers an operator equation for the measurement

operator itself, while the Factorization method considers the corresponding equation

for the “square root” of this operator. Due to this difference, the factorization method is

able to provide an mathematically rigorous and exact characterization of the scattering

object that is fully explicit and merely based on the measurement operator. Note that
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the linear sampling method does not share this feature, since, for points z inside the

scatterer, the theorem that is usually employed to justify that method claims that

there exist approximate solutions to a certain operator equation. It remains however

unclear how to actually determine or to compute these approximate solutions. Several

variants of the standard version of the linear sampling method are able to cope with

this problem, see, e.g., Arens and Lechleiter [5] or Audibert and Haddar [1].

To obtain a mathematically rigorous characterization of the scatterer’s support,

the Factorization method however requires the inverse scattering problem under inves-

tigation to satisfy several structural assumptions that are not required by the linear

sampling method (or other sampling methods). The reason is a functional analytic re-

sult on range identities for operator factorizations that is the backbone of the method.

First, the measurement operator F defined on a Hilbert space V (imagine the far field

operator defined on L2 of the unit sphere) needs to have a self-adjoint factorization

of the form F = H∗TH with a compact operator H : V → X and a bounded oper-

ator T : X → X∗, where X is a reflexive Banach space. It is crucial that the outer

operators of this factorization are adjoint to each other. Second, the middle operator

T needs to be a compact perturbation of a coercive operator: T = T1 + T2 such that

Re 〈T1φ, φ〉X∗×X ≥ c‖φ‖2X for all φ ∈ X and some c > 0, and such that T2 is compact.

There are several inverse scattering problems where at least one of these two condi-

tions is violated. The first one does, for instance, not hold for near-field measurements

when the wave number is different from zero. The coercivity assumption for the middle

operator is violated, e.g., for electromagnetic scattering from a perfect conductor, for

acoustic scattering from a scatterer that is partly sound-soft and partly sound-hard,

and for scattering from an inhomogeneous medium that is partly stronger scattering

and partly weaker scattering than the background medium. Consequently, providing

theory that does not require either of the two conditions would be highly desirable.
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In the first years after the invention of the method in Kirsch [15], the factoriza-

tion method could only be applied to far field inverse scattering problems where the

far field operator is normal. When the scatterer is absorbing, the far field operator fails

to be normal and it was an open problem whether the factorization method applies to

such problems. This problem has been solved by decoupling real and imaginary parts

of the measurement operator, yielding range identities for the square root of the aux-

iliary operator F] = (Re(F )∗Re(F ))1/2 + Im (F ) that is easily computed in terms of F

(see Grinberg [12]; Kirsch and Grinberg [20]).

Applications of the Factorization Method in Inverse Scattering

Even if the factorization method cannot be applied to all inverse scattering problems,

there are many situations where the method provides the above-mentioned characteri-

zation of the support of the scattering object. To list only a few of them, the method has

been successfully applied to inverse acoustic obstacle scattering from sound-soft, sound-

hard or impedance obstacles, see Kirsch [15]; Grinberg [12], to inverse acoustic medium

scattering problems, see Kirsch [16], to electromagnetic medium scattering problems,

see Kirsch [19]; Kirsch and Grinberg [20], to inverse electromagnetic scattering problems

at low frequency, see Gebauer et al [11], to inverse scattering problems for penetrable

and impenetrable periodic structures, see Arens and Kirsch [4]; Arens and Grinberg

[3]; Lechleiter and Nguyen [24], to inverse problems in elasticity, see Charalambopoulus

et al [8], to inverse scattering problems in acousto-elasticity, see Kirsch and Ruiz [21],

to inverse problems for stationary Stokes flows, see Lechleiter and Rienmüller [25], and

to inverse scattering problems problems for limited aperture, see Kirsch and Grinberg

[20, Section 2.3].

Apart from inverse scattering, the factorization method has been applied to a

variety of inverse problems for partial differential equations. The monograph of Kirsch
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and Grinberg [20] and the review of Hanke and Kirsch [14] indicate a variety of other

inverse problems treated by this method, and also further references for the factoriza-

tion method in inverse scattering. Finally, we mention that the factorization method is

linked to other sampling methods as the linear sampling method, see Arens [2]; Arens

and Lechleiter [5], and the MUSIC algorithm, see Kirsch [18]; Arens et al [6].

An Example – Factorization Method for Inverse

Medium Scattering

In this section, we consider a time-harmonic inverse medium scattering problem and

explain in some detail how the factorization method works. This material is mostly

from Kirsch [16, 18]; Kirsch and Grinberg [20]. We also indicate why there exist several

variants of the method.

Scattering from an Inhomogeneous Medium

Time harmonic scattering theory considers waves U(x, t) = u(x) exp(−iωt) with an-

gular frequency ω > 0 and time dependence exp(−iωt). If we denote by c the space-

dependent wave speed in R3, and by c0 the constant wave speed in the background

medium, then the wave equation c2∆U − ∂ttU = 0 reduces to the Helmholtz equation

∆u+ k2n2u = 0 in R3 (1)

with (constant) wave number k = ω/c0 > 0 and space-dependent refractive index

n = c0/c. In the following, we suppose that the refractive index equals one in the

complement of a bounded Lipschitz domain D with connected complement; the domain

D hence plays the role of the scattering object.

A typical direct scattering problem is the following: For an incident plane wave

ui(x) = exp(ik x · θ), x ∈ R3, of direction θ ∈ S2 := {x ∈ R3, |x| = 1} we seek a total
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field ut that solves (1). Moreover, the scattered field us = ut − ui needs to satisfy the

Sommerfeld radiation condition

lim
|x|→∞

|x|
(

∂

∂|x|
− ik

)
us = 0 uniformly in x̂ =

x

|x|
∈ S2. (2)

Sommerfeld’s radiation condition acts as a boundary condition “at infinity” for the

scattered field and guarantees uniqueness of solution to scattering problems on un-

bounded domains. Physically, this condition means that the scattered wave is created

locally in D and propagates away from D. The scattering problem to find us when given

ui and n2 is well-posed in standard function spaces under reasonable assumptions on

the refractive index, see Colton and Kress [10]. Solutions to the exterior Helmholtz

equation that satisfy the Sommerfeld radiation condition behave at infinity like an

outgoing spherical wave modulated by a certain angular behaviour,

u(x) = Φ(x)

(
u∞(x̂) +O

(
|x|−2

))
as |x| → ∞, Φ(x) :=

eik|x|

4π|x|
.

The function u∞ ∈ L2(S2) is called the far field pattern of u.

In the following, we denote by u∞(x̂, θ) the far field pattern in the direction

x̂ ∈ S2 of the scattered wave caused by an incident plane wave of direction θ ∈ S2. The

refractive index n2 is allowed to be real and positive, or complex valued with positive

real part and non-negative imaginary part (further assumptions on n2 will be stated

where they are required).

Inverse Problem and Factorization

In an inverse medium scattering problem with far field data one seeks to determine

properties of the scatterer from the knowledge of the far field pattern u∞(x̂, θ) for all

directions x̂ in a given set of measurement directions and all θ in a given set of direc-

tions of incidence. Particularly, the factorization method solves the following inverse
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scattering problem: Given u∞(x̂, θ) for all x̂ ∈ S2 and all θ ∈ S2, find the support D of

the scattering object! Recall that D was defined to be the support of n2 − 1.

A central tool for the factorization method is the far field operator F ,

F : L2(S2)→ L2(S2) g 7→
∫
S2
u∞(·, θ) g(θ) ds(θ).

This is an integral operator with continuous kernel u∞(·, ·) and the theory on integral

equations states that F is a compact operator. By linearity of the scattering problem,

F maps a density g to the far field of the scattered field for the incident Herglotz wave

function

vg(x) =

∫
S2
g(θ)eik θ·x ds(θ), x ∈ R3.

The restriction of a Herglotz wave function vg on the obstacle D yields a bounded linear

operator H : L2(S2)→ L2(D), g 7→ vg|D. Obviously, if we know {u∞(x̂, θ) : x̂, θ ∈ S2}

for all directions x̂, θ ∈ S2, then we also know F . Therefore we reformulate our inverse

scattering problem as follows: Given F , determine the support D of the scatterer!

Theorem 1 (Factorization). The far field operator can be factored as

F = H∗TH,

where T : L2(D)→ L2(D) is defined by Tf = k2(n2 − 1) (f + v|D), and v ∈ H1
loc(R3)

solves ∆v + k2n2 v = k2(1 − n2)f in R3, subject to the Sommerfeld radiation condi-

tion (2).

The adjoint H∗ of the Herglotz operator can be used to characterize the scat-

terer’s support D: It holds that the far field Φ∞(x̂, z) = exp(ik x̂ · z) of a point source

Φ(x− z) = exp(ik|x− z|)/(4π|x− z|) at z ∈ R3 belongs to the range of H∗ if and only

if z ∈ D. Due to the factorization from the last theorem one would now like to link the

range of H∗ with the range of (some power of) the measurement operator F to obtain

characterization results for the scatterer D.
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Two Characterization Results

If the refractive index n2 is real then F is a normal operator and consequently possesses

a complete system of eigenvectors {φj}j∈N with associated eigenvalues {λj}j∈N. Under

suitable assumptions, this basis of eigenvectors allows to prove that the test functions

Φ∞(·, z) belong to the range of (F ∗F )1/4—the square root of F—if and only if the

point z belongs to D. One key idea of the proof is that the orthonormal basis {φj}j∈N

of L2(S2) transforms into a Riesz basis {λ−1/2j Hφj} of a suitable subspace of L2(D)

due the factorization of F . (This is a simplified statement, see Section 4 in [16] for

the precise formulation.) Picard’s criterion yields the following characterization of the

scatterer:

z ∈ R3 belongs to D if and only if
∞∑
j=1

∣∣〈Φ∞(·, z), φj〉L2(S2)
∣∣2

|λj|
<∞. (3)

The main assumptions on n2 for this result are that n2 is real-valued, that n2− 1 does

not change sign, and that k2 is not an interior transmission eigenvalue, see Cakoni et al

[7] for a definition.

If the refractive index takes imaginary values inside D, which corresponds to

an absorbing scattering object, then the far field operator fails to be normal and the

(F ∗F )1/4-variant of the factorization method does not work. However Grinberg and

Kirsch [12; 18] showed that, under suitable assumptions, the auxiliary operator F] =

(Re(F )∗Re(F ))1/2+Im (F ) allows to prove that the ranges of F
1/2
] and of H∗ are equal.

Since the test functions Φ∞(·, z) belong to the range of H∗ if and only if z ∈ D, one can

then conclude that Φ∞(·, z) belongs to the range of F
1/2
] if and only if z ∈ D. Denote by

{ψj}j∈N the eigenvalues of the compact and selfadjoint operator F] and by {µj}j∈N the

corresponding eigenvalues. Using Picard’s criterion we reformulate the characterization

of D as follows:

z ∈ R3 belongs to D if and only if
∞∑
j=1

∣∣〈Φ∞(·, z), ψj〉L2(S2)
∣∣2

|µj|
<∞. (4)
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The main assumptions for this result are that Re (n2 − 1) does not change sign The

assumption that k2 is not an interior transmission eigenvalue can be dropped for this

variant of the method, but not for the (F ∗F )1/4-variant from (3), see Lechleiter [23].

Discretization

The criterion in (3) or (4) suggests the following algorithm to image the scattering

object: Choose a discrete set of grid points in a certain test domain and plot the re-

ciprocal of the series in (3) or (4) on this grid. Of course, in practice one can only plot

a finite approximation to the infinite series afflicted with certain errors. Nevertheless,

one might hope that plotting the reciprocal of the truncated series as a function of y

leads to large and small values at points z inside and outside the scatterer D, respec-

tively. However, the ill-posedness of the inverse scattering problem afflicts this imaging

process, because we divide by small numbers λj or µj. For instance, if one only knows

approximations λδj with |λδj − λj| ≤ δ and φδj with ‖φδj − φj‖ ≤ δ then the difference

between
∣∣〈Φ∞(·, z), φδj〉

∣∣2/|λδj | and the corresponding exact value is in general much

larger than the noise level δ > 0. Consequently, one needs to regularize the Picard

series. Several methods are available: Tikhonov regularization, see Colton et al [9],

regularization by truncation of the series, see Lechleiter [22], comparison techniques,

see Hanke and Brühl [13], and noise subspace techniques, see Arens et al [6].

Figure 1 shows reconstructions for a two-dimensional inhomogeneous medium

with piecewise constant index of refraction; n2 equals 10 inside the inclusion, shown

in Figure 1(a), and 1 outside the inclusion. The wave number is k = 2 and the re-

construction uses 32 incident and measurement directions uniformly distributed on the

unit circle. These examples are reproduced from Arens et al [6] where further details

can be found.



11

(a) (b) (c)

Fig. 1. Reconstructions of the support of an inhomogeneous medium using the factorization method,

reproduced from Arens et al [6]. (a) The exact support of the scatterer (b) Reconstruction without

artificial noise (c) Reconstruction with 5 percent artificial noise.

Key Results on Range Characterizations

The factorization method can be seen as a tool to pass the geometric information on

the scattering object contained in the inaccessible operator H∗ of the factorization

F = H∗TH to the measurement operator F . To this end, there are basically three

functional analytic frameworks that can be used. As in the first section, we assume

here that F is a compact operator on a Hilbert space V , that H : V → X is compact,

and that T : X → X∗ s bounded where X is a reflexive Banach space.

The first variant of the factorization method, the so-called (F ∗F )1/4-variant,

requires F to be normal. In this case F possesses a complete basis of eigenvectors

{φj}j∈N such that Fφj = λjφj. The vectors ψj = λ
−1/2
j Hφj satisfy

〈Tψi, ψj〉X∗×X =
λi
|λi|

δi,j, i, j ∈ N.

If T is a compact perturbation of a coercive operator, and if the eigenvalues {λj}j∈N sat-

isfy certain geometric conditions, then Theorem 3.4 in Kirsch [15] proves that {ψj}j∈N

is a Riesz basis of X. This is the key step to prove that the range of (F ∗F )1/4 equals

the range of H∗, see Kirsch [15, Theorem 3.6].

The second variant of the method, the so-called infimum criterion, was a first

step towards the treatment of problems where F fails to be normal. In Kirsch [17,
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Theorem 2.3], it is shown that if there exist positive numbers c1,2 such that

c1‖Tψ‖2X∗ ≤ |〈Tψ, ψ〉X∗×X | ≤ c2‖Tψ‖2X∗

for all ψ ∈ X, then an element g ∈ V belongs to the range of H∗ is and only if

inf {|〈Fφ, φ〉V | , φ ∈ V, 〈g, φ〉V = 1} > 0.

The drawback of this characterization is that the criterion whether or not a point

belongs to the scatterer requires to solve an optimization problem. To get an image

of the scattering object, one hence needs to solve an optimization problem for each

sampling point in the grid.

The third variant of the method relies on the auxiliary operator F] = (Re(F )∗Re(F ))1/2+

Im (F ), see Grinberg [12]. For this operator, the equality of the ranges of F
1/2
] and H∗

can be shown, e.g., under the conditions that T is injective, that the real part of T

is a compact perturbation of a coercive operator, and that the imaginary part of T is

non-negative, see Lechleiter [23].
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