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Abstract In this contribution we discuss central and autonomous control of produc-
tion networks. We provide a number of parameters that influence the comparative
effectiveness of these two methods. Further, the results concerning stability of the
production networks are discussed and it is shown, how the central planning meth-
ods, implemented into mathematical models with the help of optimal control theory,
can be used to achieve information about the possible form of controls. We investi-
gate the limitations of both control methods and give possible ways, how to increase
the effectiveness of control of production networks.
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1 Introduction

Production networks are typical examples of large-scale and complex systems with
a nonlinear behavior. By an increasing number of entities and material within the
network the control of the material flows and the production rates of entities or
machines is not an easy task. One way to achieve logistic goals, such as a high
performance, robustness and stability, is the shift from centralized to decentralized
or autonomous control.

The term production network is used to describe company or cross-company
owned networks with geographically dispersed plants. These types of networks
may react quickly on perturbations due to redundancies of common resources. But
high flexibility causes interdependencies between production processes in different
plants, e.g., allocation problems for products or planning of transports and transport
capacity [16, 3]. Therefore production planning and control (PPC) of production
networks has to cover these tasks and also has to provide methods for an integrated
planning and synchronization within the network, including planning of sales and
inventory [28]. Under highly dynamic and complex conditions current PPC methods
cannot cope with disturbances or unforeseen events in an appropriate manner [15].
Changing market conditions and inappropriate planning may cause uncertainties of
lead times, inconstancy of schedules or may also lead to instability or even chaos.

The main idea of autonomous cooperating logistic processes is to enable intel-
ligent logistic objects to route themselves through a logistic network according to
their own objectives and to make and execute decisions, based on local information
[29, 30]. In this context intelligent logistic objects may be physical or material ob-
jects, e.g., parts or machines, as well as nonmaterial objects (e.g., production orders,
information). It has been already shown that different autonomous control methods
can help to increase the logistics performance and robustness of single production
systems [18, 19, 20]. On the other hand, autonomously controlled production net-
works may show a sudden change of the dynamical systems behavior in dependence
of varying start parameters and the logistic performance collapses in the sense of
unpredictable and increasing throughput times and growing inventory [21]. Thus,
investigations of the stability of autonomously controlled production networks are
essential to understand the dynamical systems behavior.

Typical examples of unstable behavior are unbounded growth of unsatisfied or-
ders or unbounded growth of the queue of the workload to be processed by a ma-
chine. This causes high inventory costs and loss of customers. To avoid instability of
a network it is worth to investigate its behavior in advance. In particular, mathemati-
cal modeling and analysis provide helpful tools for design, optimization and control
of such networks and for deeper understanding of their dynamical properties.

Roughly speaking, for production networks stability means that the state of the
network remains bounded over time under bounded external inputs. In this contribu-
tion we identify the state as the number of unprocessed parts, which is the sum of the
queue length and the work in progress (WIP). To identify parameters which guaran-
tee stability of the network we are going to apply tools from mathematical systems
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theory. In this context mathematical models describing production network’s behav-
ior are needed.

In this contribution we consider the recent results in modeling of logistic net-
works, based on the input-to-state stability concepts, and analyze, in what form the
limitations of control methods appear in the mathematical models of logistic pro-
cesses. We argue, that in case, when the extensive information about the system is
available, the central control may be quite effective, and can provide at least some
important information about the structure of controls. On the other hand, if there is
only a little information about the network, the autonomous control is a good al-
ternative, but it rises the question about the stability of the network, which can be
answered with the help of mathematical stability theory. We discuss these results
from the viewpoint of limitations of autonomous control, and provide a number of
parameters, that can be used to find the bounds, within which autonomous control
is more effective, than central planning.

The structure of the contribution is as follows. In Section 2.1 we model general
production network, which we analyze by means of optimal control methods in Sec-
tion 2.2. In Section 2.3 we review recent results in autonomous control of production
networks. Then we identify parameters of the network which influence the compar-
ative effectiveness of different control methods in Subsection 2.4. The notions of
stability and the tools to check whether a system is stable are presented in Section 3.
In Section 4 we identify and discuss the limitations of autonomous control. Finally,
the conclusions are given in Section 5.

Throughout the paper by xT we denote the transposition of a vector x∈Rn, n∈N
and Rn

+ denotes the positive orthant {x ∈ Rn : x≥ 0} where we use the standard
partial order for x,y ∈ Rn given by

x≥ y⇔ xi ≥ yi, i = 1, . . . ,n and x 6≥ y⇔∃i : xi < yi.

2 Modeling and control of production networks

2.1 Description and Modeling of a general production network

We are going to construct a model of a production network, consisting of n market
entities (n is an arbitrary positive number), which may be, for example, raw material
suppliers (e.g., extracting or agricultural companies), producers, distributors and
consumers. Each entity is a subsystem of the whole network. For simplicity we
assume, that there is only one unified type of material, i.e., all primary products,
used in the production network, can be measured as a number of units of this unified
material.

We assume, that i-th subsystem is characterized at time t ∈R+ only by the param-
eter xi(t), which is the quantity of unprocessed material within the i-th subsystem
at time t. The state of the whole network is denoted by x(t) = (x1(t), . . . ,xn(t))T . A
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Fig. 1 Example of supply network

subsystem can get material from an external source, which is denoted by ui (external
inputs), and from subsystems of the network (internal inputs).

Let the i-th subsystem processes the raw material from its inventory with the rate
f̃ii(t,x(t))≥ 0 and sends the produced goods (measured in units of unified material)
to the j-th subsystem with the rate f̃ ji(t,x(t)). Thus, the total rate of the distribution
from the i-th subsystem to other subsystems is ∑

n
j=1 f̃ ji(t,x(t)). It may send a part

of production to the customers not considered in the network.
In the version of the model, that we consider in this contribution, we do not dis-

tinct the transport of the production out of the network and the losses of production
in the manufacture process. However, one can slightly generalize the model, to in-
clude the systems with outputs, where output is the total flow of goods out of the
system. In this case it is useful to use instead of input-to-state stability (see Sec-
tion 3) the notion of input-to-output stability.

For general functions f̃ ji it is hard to derive stability conditions. Therefore we
consider the following case: f̃ ji(t,x(t)) = c ji(x(t)) f̃i(xi(t)), c ji(x) ∈ R+ ∀x ∈ Rn

+
and f̃ii(t,x(t)) = c̃ii(x(t)) f̃i(xi(t)), c̃ii(x) ∈ R+, x ∈ Rn

+, where f̃i ∈K is propor-
tional to the processing rate of the system, c ji(x(t)), i 6= j are some positive dis-
tribution coefficients and c̃ii(x(t)) ≥ 0. We will denote them c ji(t) for the sake of
brevity.

Under these assumptions the dynamics of the i-th subsystem is described by or-
dinary differential equations:

ẋi(t) =
n

∑
j=1, j 6=i

ci j(t) f̃ j(x j(t))+ui(t)− c̃ii(t) f̃i(xi(t)), i = 1, . . . ,n. (1)

Denoting cii := −c̃ii we can rewrite the above equations as an interconnected
system in a vector form

ẋ(t) = C(t) f̃ (x(t))+u(t), (2)

where f̃ (x(t)) = ( f̃1(x1(t)), ..., f̃n(xn(t)))T , u(t) = (u1(t), . . . ,un(t))T and C(t) ∈
Rn×n.

The distribution coefficients may be used as controls for some central or au-
tonomous control method. If the elements of the subsystems are controlled au-
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tonomously, then every subsystem can use their own control method, and it is im-
portant to have conditions, that guarantee, that the system is stable.

If the system is controlled by central planning method, then we assume, that there
exists a planning center, that chooses the distribution coefficients to reach some aim,
for example, to maximize the total production rate of the network, to minimize the
transportation costs, to improve the stability properties of the system.

In the following we show, how one can use both methods to obtain the stability
conditions and gain some information, how to construct the possible distributional
coefficients.

2.2 Optimal strategies

In this section we model the planning center of a production network (1) as an
object, that controls directly all distributional coefficients ci j, i, j = 1, . . . ,n, i 6= j.
That is, we assume in this section, that ci j are functions only of t, and do not depend
on x(t) explicitly.

For convenience we assume, that the aim of the planing center is to minimize the
costs for the storage of the material over the time [0,T ], which can be modeled by
the following functional:

S1 =
∫ T

0

n

∑
i=1

x2
i (s)ds→ min. (3)

To achieve this goal it uses the information about the inputs ui, i = 1, . . . ,n (which
is known for some time interval [0,T ]).

The controls, that a planning center may use to achieve this aim, are the distribu-
tional coefficients ci j(t) ≥ 0, i, j = 1, . . . ,n, i 6= j. We assume, that there are given
the following constraints to the distributional coefficients:

n

∑
i=1,i 6= j

ci j(t) = k j, j = 1, . . . ,n. (4)

They tell us, that each node of a network can control only the portions of goods,
distributed to other nodes, but cannot control the total distribution rate.

Our aim is to prove, that under made assumptions the functions ci j, i, j =
1, . . . ,n, i 6= j have to be, for realistic inputs, piecewise constant functions.

The necessary conditions of extremum are given by the Pontryagin Maximum
Principle. The Hamiltonian for system (1) with objective functional (3) is given by:

H =
n

∑
i=1

pi(t)

(
cii(t) fi(xi(t))+

n

∑
j=1, j 6=i

ci j(t) f j(x j(t))+ui(t)

)
−λ0

n

∑
i=1

x2
i (t). (5)

Here pi, i = 1, . . .n and λ0 are the Lagrange coefficients.
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According to Pontryagin Maximum Principle (see, e.g., [1]), ci j ≥ 0 have to be
chosen such, that condition (4) holds, and H→ max.

We cannot control inputs ui and consumption rate cii, i = 1, . . . ,n, and therefore
maximization of (5) leads us to the following problem:

n

∑
i=1

pi(t)

(
n

∑
j=1, j 6=i

ci j(t) f j(x j(t))

)
=

n

∑
i=1

n

∑
j=1, j 6=i

pi(t)ci j(t) f j(x j(t)) =

n

∑
j=1

(
n

∑
i=1,i 6= j

pi(t)ci j(t)

)
f j(x j(t))→ max.

To maximize this linear combination of f j(x j(t)), which are nonnegative for all
t ≥ 0. The coefficients ci j are dependent only on the distributional coefficients from
the same sum in brackets, therefore the terms in brackets may be maximized inde-
pendently

∀ j = 1, . . . ,n
n

∑
i=1,i6= j

pi(t)ci j(t)→ max.

Using constraints, we conclude, in case, if the set {p1(t), . . . , pn(t)} has the
unique maximal element, that

∀ j = 1, . . . ,n, ∀s = 1, . . . ,n, s 6= j, cs j(t) =
{

k j, s = argmax{p1(t), . . . , pn(t)}
0, otherwise

If for some t there exists I ⊂ {1, . . . ,n}, such that ∀i, j ∈ I it holds, that pi = p j
and ∀i ∈ I, ∀k ∈ {1, . . . ,n} pi ≥ pk. Then

∀ j = 1, . . . ,n, ∀s = 1, . . . ,n, s 6= j, cs j(t) =
{
∈ [0,k j], s ∈ I
0, otherwise

and it must still hold (4). These controls are called mixed controls. But the situation,
that the values of at least two functions pi, i = 1, . . . ,n will be identical on some
time interval [t0, t1], t1 > t0 is quite unrealistic, therefore we see, that the controls ci j
are (with exception to quite unrealistic inputs) piecewise constant functions.

One can interpret it, that in every moment one has to send the goods to the node,
that "promises" the biggest virtue.

2.3 Autonomous control methods

In this subsection we describe several autonomous control policies. They can be
implemented in the model of a production network by the terms ci j(t) in (1). These
different policies were developed and investigated in the research project CRC637
(see the Acknowledgement).
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The queue length estimator (QLE) policy enables logistic objects in a production
network to estimate the waiting, processing and transportation times of different al-
ternative processing resources. A logistic object will decide for the plant with the
lowest estimated waiting, processing and transportation time. It uses local informa-
tion to evaluate the states of the alternatives. It was shown in [26] that the applica-
tion of this policy leads to a better systems performance regarding throughput times
compared to classical scheduling algorithms in highly dynamic situations. In the
model (1) the distribution rates of the QLE policy can be defined, for example, by
ci j(t) := cq

i j(t) and

cq
i j(t) :=

1
xi(t)+ε

∑k
1

xk(t)+ε

,

where the index k denotes all subsystems which get material from subsystem j and
ε > 0, arbitrarily small, is inserted to let the fraction be well-defined. The interpreta-
tion of cq

i j is in simple words the following: if the queue length of the ith subsystem
is small, then more material will be sent to subsystem i in contrast to the case where
xi is large and cq

i j is small.
Similar to the QLE, the due date (DUE) policy estimates waiting, processing and

transportation times. While the QLE uses this information for minimizing through-
put times of logistic objects, the DUE policy orientates at the tardiness of logistic
objects. A logistic object using this policy decides for an alternative resource which
offers the lowest difference between estimated due date and pre-planned due date
([23]).

The pheromone based policy is a bio-inspired strategy. The approach is based
on the idea to imitate the process of marking possible routes to food sources by
ants. Ants emit pheromones between the nest and food sources. Other ants can de-
tect those pheromones and will follow the trail with the highest concentration of
pheromones. This is transferred to production networks: During the production pro-
cess, the logistic objects leave information about their transportation, processing and
waiting times at a corresponding machine or plant. Following logistic objects com-
pare this artificial pheromone concentration and choose a production line. Thus, the
pheromone concentration depends on transportation, waiting and processing times
of previous logistic objects ([4, 25]). To model the evaporation process of natural
pheromones a constant vi ∈ R+ is inserted in the definition of the distribution rates,
which can be chosen, for example, as

ci j(t) = cp
i j(t) := (1− vi)

f̃i(xi(t))
∑k f̃k(xk(t))+ε

+ ∑
k 6=i

vk
f̃k(xk(t))

∑q f̃q(xq(t))+ε
,

where k,q are indices denoting the subsystems which get material from subsystem
j, ε > 0 and 0 ≤ vi ≤ 1 is the evaporation constant of the ith subsystem. By the
evaporation constant vi one can justify the PHE method in order to increase the
performance or robustness of the network.
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The honey bee algorithm (HBA) is another bio-inspired strategy. It uses the for-
aging mechanisms of honey bees’ colonies. In nature, bees advertise possible food
sources with a so called ’waggle dance’. The duration of this dance depends on the
ratio between energy consumption of the flight (between hive and food source) and
available energy of the source. The probability of bees recognizing the dance of
a dancing bee is proportional to the dancing duration. According to this principle
logistic objects are able to advertise different alternative production resources by
means of the machining quality, which is determined by calculation of the ratio of
value added and the throughput time needed for this step ([24]).

The natural process, which inspires the chemotaxis (CHE) policy, differs from
the PHE and the HBA policy. It is not inspired by coordination principals of social
insects, but on movement processes coming from microbiology. Natural bacteria
are able to direct their movement according to the concentration of attractants (e.g.,
food substances) or repellants (e.g., toxic substances). Therefore, bacteria perform a
random biased walk to find appropriate food sources. This basic movement principle
is transferred to autonomous decision making by the CHE policy. Logistic objects
using this policy decide according to the gradient of logistic target values of different
decision alternatives ([22]).

In the following section we introduce a couple of parameters that characterize
the information distribution throughout the network.

2.4 Properties of a network

As we will see, neither autonomous control nor central planning is a panacea for
solving of all problems, that arise in the control of production networks.

The central planning, if it is theoretically and practically possible, may provide
better results, than autonomous control. But usually the problems, that arise in real
networks are so complex, that the decisions, made by the central planning method
will take a lot of resources (e.g., too much computation time), and the state of the
systems changes so quickly, that the obtained results will have in a new situation
only limited applicability.

Another problem, that arises in supply networks, is the lack of information in the
network, when it is sent from the subsystems of the network to the planning center.
Managers, that make decisions for the subsystems have always more information
about their own systems, than they send to the planning center. Consequently, al-
though the planning center has information about all the nodes of the network, this
information is not exact, and decisions of a planning center may be not accurate
enough or at all harmful for the system.

In this section we introduce three properties, that allow to choose the appropriate
method to control a production network:

• n - Size of a network.
• p - A number, that characterizes availability of information about the network.
• L - Loss of information in hierarchical structure of a network.
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In networks of small size the central control can provide better results, because
the complexity of the problem is lower than for large scale networks, and central
control can use the knowledge of the state of all the system more effectively.

Availability of information in a production network plays also a big role. The
more knowledge has the planning center, the more effective will be the work of
control center, and the less information is given, the better results will be provided
by the autonomous control strategy.

We collect these considerations to the following table:

n is small n is large
p is small Both Autonomous control
p is large Central planning Mixed strategy

With the increase of L, the advantages of the autonomous control over central
planning also increase.

For modeling of autonomous control it is important to investigate the stability
of the network. We have to be sure, that the decisions, made by subsystems with-
out (or almost without) communication with each other, cannot induce the unstable
behavior of the system.

Since stability is important for the performance and vitality of the network we
provide a framework, that may be used to gain some information about stability
of the network, and we state the recent results about input-to-state stability of the
model of production network, shown in the Section 2.1.

3 Stability of production networks

In this section we recall stability properties and tools how to check whether a system
is stable.

One possibility to model production networks are ordinary differential equations
(ODEs). An ODE is of the form

ẋ(t) = f (x(t),u(t)), t ∈ R+, (6)

where x ∈ RN denotes the state of the system, u ∈ RM is the essentially bounded
measurable external input and f : RN ×RM → RN describes the system dynamics.
ODEs describe the evolution of the state of the system with continuous time t ∈R+,
where R+ := [0,∞).

To have existence and uniqueness of a solution of a system of the form (6) the
function f is assumed to be a locally Lipschitz continuous function. The solution is
denoted by x(t;x0,u) or x(t) for short, where x0 := x(0) is the initial condition.

In general, production networks consist of n ∈ N interconnected systems of the
form

ẋi(t) = fi(x1(t), . . . ,xn(t),ui(t)), t ∈ R+, i = 1, . . . ,n, (7)
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where xi ∈RNi , ui ∈RMi and fi : R∑
n
j=1 N j+Mi→RNi are locally Lipschitz continuous

functions. Here, x j, j 6= i can be interpreted as internal inputs of the i-th subsystem
and the solution is denoted by xi(t;x0

i ,x j, j 6= i,ui) or xi(t) for short, where x0
i :=

xi(0) is the initial condition.
If we define N := ∑

n
i=1 Ni, M := ∑

n
i=1 Mi, x := (xT

1 , . . . ,xT
n )T , u := (uT

1 , . . . ,uT
n )T

and f = ( f T
1 , . . . , f T

n )T , then the interconnected system of the form (7) can be written
as one single system of the form (6), which we call the whole system.

The purpose of this section is to analyse production networks, which can be
written in the form (7), in view of stability. For this purpose we introduce:

Definition 1. We define following classes of functions:

P := { f : Rn→ R+ | f (0) = 0, f (x) > 0, x 6= 0}
K := {γ : R+→ R+ | γ is continuous, γ(0) = 0 and strictly increasing}
K∞ := {γ ∈K | γ is unbounded}

L :=
{

γ : R+→ R+

∣∣∣ γ is continuous and strictly decreasing with lim
t→∞

γ(t) = 0
}

K L := {β : R+×R+→ R+ | β is continuous, β (·, t) ∈K , β (r, ·) ∈L , ∀t,r ≥ 0}

We call functions of class P positive definite.

Definition 2. 1. System (6) is locally input-to-state stable (LISS) if there exist con-
stants ρ, ρu > 0, γ ∈K and β ∈K L such that for all initial values |x0| ≤ ρ

and all inputs ‖u‖
∞
≤ ρu the inequality

|x(t)| ≤max{β (|x0| , t) ,γ (‖u‖
∞
)}

is satisfied ∀ t ∈ R+, where |·| denotes the Euclidean norm and ‖u‖
∞

:=ess sup
t∈[0,∞)

|u(t)| is the essential supremum norm. γ is called (nonlinear) gain.
2. The i-th subsystem of (7) is called LISS if there exist constants ρi, ρi j, ρu

i >
0, γi j, γi ∈K and βi ∈K L such that for all initial values

∣∣x0
i

∣∣ ≤ ρi and all
inputs

∥∥x j
∥∥

∞
≤ ρi j, ‖ui‖∞

≤ ρu
i the inequality

|xi(t)| ≤max
{

βi
(∣∣x0

i
∣∣ , t) ,max

j 6=i
γi j
(∥∥x j

∥∥
∞

)
,γi (‖ui‖∞

)
}

is satisfied ∀ t ∈ R+. γi j and γi are called (nonlinear) gains.

Note that, if ρ,ρu = ∞ then the system (6) is called (global) ISS and if ρi,ρi j,ρ
u
i = ∞

then the i-th subsystem of (7) is called (global) ISS. In particular LISS and ISS
guarantee that the norm of the trajectories of each subsystem is bounded.

An important tool to verify LISS and ISS, respectively, of a system of the form
(7) are Lyapunov functions.

Definition 3. We assume that for each subsystem of the interconnected system (6)
there exists a function Vi : RNi → R+, which is locally Lipschitz continuous, proper
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and positive definite. Then, for i = 1, . . . ,n the function Vi is called a LISS Lyapunov
function of the i-th subsystem of (7) if Vi satisfies the following two conditions:
There exist functions ψ1i, ψ2i ∈K∞, where K∞ is the subset of K -functions that
are unbounded, such that

ψ1i (|xi|)≤Vi(xi)≤ ψ2i (|xi|) , ∀ xi ∈ RNi (8)

and there exist γi j, γi ∈ K , a positive definite function µi, which is continuous,
µi(0) = 0 and µi(r) > 0, ∀r ∈ R, and constants ρi, ρi j, ρu

i > 0 such that

Vi(xi)≥max
{

max
j 6=i

γi j (Vj(x j)) ,γi (|ui|)
}
⇒ ∇Vi(xi) · fi(x,u)≤−µi (Vi(xi)) (9)

for almost all xi ∈ RNi ,
∣∣x0

i

∣∣ ≤ ρi,
∣∣x j
∣∣ ≤ ρi j, ui ∈ RMi , |ui| ≤ ρu

i , χii = 0, where
∇ denotes the gradient of the function Vi. Functions γi j are called LISS Lyapunov
gains.

Note that, if ρi,ρi j,ρ
u
i = ∞ then the LISS Lyapunov function of the i-th subsystem

becomes an ISS Lyapunov function of the i-th subsystem (see [14]). In general the
LISS Lyapunov gains are different from the gains in Definition 2.

Condition (8) implies that Vi is proper, positive definite and radially unbounded.
Vi can be interpreted as the energy of a system and the second condition (9) of a
Lyapunov function means that if Vi(xi) ≥ max

{
max j 6=i γi j (Vj(x j)) ,γi (|ui|)

}
holds,

then the energy decreases. If Vi(xi) < max
{

max j 6=i γi j (Vj(x j)) ,γi (|ui|)
}

then the
energy of the system is bounded by the expression on the left side of the previous
inequality. Overall, the trajectory of the system is bounded.

Furthermore we define the gain-matrix Γ := (γi j)n×n, i, j = 1, . . . ,n, γii = 0,
which defines the map Γ : Rn

+ → Rn
+ by

Γ (s) :=
(

max
j

γ1 j(s j), . . . ,max
j

γn j(s j)
)T

, s ∈ Rn
+. (10)

Note that the matrix Γ describes in particular the interconnection structure of the
network, moreover it contains the information about the mutual influence between
the subsystems, which can be used to verify the (L)ISS property of networks.

Definition 4. Γ satisfies the local small gain condition (LSGC) on [0,w∗], provided
that

Γ (w∗) < w∗ and Γ (s) 6≥ s, ∀s ∈ [0,w∗] , s 6= 0. (11)

Notation 6≥ means that there is at least one component i ∈ {1, . . . ,n} such that
Γ (s)i < si.

To check whether the interconnected system of the form one has to find a LISS
Lyapunov function for each subsystem. If there exists a LISS Lyapunov function for
each subsystem then it has the LISS property. Furthermore, if the LISS Lyapunov
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gains satisfy the local small-gain condition, then the whole system of the form (6)
is LISS, which we recall in the following theorem (see [13]):

Theorem 1. Consider the interconnected system (7), where each subsystem has an
LISS Lyapunov function Vi. If the corresponding gain-matrix Γ satisfies the local
small-gain condition (11), then there exist constants ρ,ρu > 0, such that the whole
system of the form (6) is LISS.

In [12] a similar ISS small-gain theorem for general networks was proved, where
the small-gain condition is of the form

Γ (s) 6≥ s, ∀ s ∈ Rn
+\{0} . (12)

Now we use the stability notions and Lyapunov functions for a stability analysis
of production networks, modeled in Section 2.1 in the form (1) or (2). With help
of Theorem 1 we can derive conditions, which guarantee stability of the production
network:

Proposition 1. Consider a network as in (2).

1. Assume that the ci j are bounded for all i, j = 1, . . . ,n, i 6= j and f̃ j ∈K∞, j =
1, . . . ,n. If ∃a ∈ Rn, ε ∈ Rn, ai > 0, εi < 0, i = 1, . . . ,n such that the condition
C(t)a < ε holds ∀t > 0, then the whole network is ISS.

2. Let f̃ j ∈K \K∞, and α j := supx j∈R{ f̃ j(x j)}, j = 1, . . .n, α := (α1, . . . ,αn)T .
If ∃u ∈ L∞(R+,Rn

+) and ∃ε ∈ Rn, εi < 0, i = 1, . . . ,n such that

C(t)α +‖u‖∞ < ε, (13)

where ‖u‖∞ := (‖u1‖∞, . . . ,‖un‖∞)T , then the whole network (2) is LISS. Fur-
thermore, the constants ρ and ρu from the Definition 2 may be chosen as ρ := ∞,
ρu := mini=1,...,n ‖ui‖∞ and (13) holds for all w ∈ L∞(R+,Rn

+) : ‖w‖∞ ≤ ‖u‖∞.

The proof can be found in [6].
For certain scenarios of production networks it may happen that the conditions

to guarantee stability in Proposition 1 are conservative, which means that one can
find parameters which do not satisfy the conditions, but the trajectory of the state of
the network is bounded (stable). The reason is, that the presented stability analysis
is a “worst-case” approach.

To refine the conditions in Proposition 1 and to identify parameters which guar-
antee stability of a certain scenario of a production network a dual approach of the
stability analysis and simulations was presented in [17]: At first, one derives param-
eters constellations which guarantee stability by the help of Proposition 1. A large
set of parameter constellations is checked except the few constellations for which
the conditions in Proposition 1 are not satisfied. This set of (stable) parameter con-
stellations is refined by simulation runs of the network, where only the parameter
constellations are simulated which do not satisfy the conditions in Proposition 1.

In contrast to a pure simulation approach, where the time needed for the identifi-
cation of parameter constellations which guarantee stability of the network increases
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exponentially by an increasing number of entities or parts within the network, this
dual proceeding identifies parameter constellations in an acceptable time. This pro-
cedure was shown and explained in more detail in [17] and can be summarized in
the following figure:

Fig. 2 Scheme of the identification of (stable) parameter constellations

3.1 Possible generalizations of the model

Naturally, in production networks the time needed for the transportation of material
from one plant to another has to be taken into account. To model time-delays (e.g.,
transportation times) we use functional differential equations of the form

ẋ(t) = f (xt ,u(t)), t > 0, x(τ) = ξ0(τ), τ ∈ [−θ ,0] , (14)

where t ∈R+, x(t)∈RN ,, u(t)∈RM is an essentially bounded measurable input and
the function xt : [−θ ,0]→RN is given by xt(τ) := x(t +τ), τ ∈ [−θ ,0], where θ is
the maximum involved delay. f : C

(
[−θ ,0] ;RN

)
×RM→RN is a locally Lipschitz

continuous functional on any bounded set.
Using interconnections of time-delay systems one can model general production

networks with transportation times, where (1) or (2) must be adapted accordingly
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(see [6]). Also the ISS property has to be defined for systems of the form (14) and
interconnected systems of such type.

To check whether a system of the form (14) has the ISS property, one can use
Lyapunov-Razumikhin (LR) functions or Lyapunov-Krasovskii (LK) functionals. It
was shown in [11] that if each subsystem of an interconnected system with time-
delays admits a LR or a LK function(al) and if the small-gain condition (12) is
satisfied, then the whole network possesses the ISS property. A certain scenario of an
autonomously controlled production network was investigated using the mentioned
tools in [6, 7].

Another approach to model production networks is to combine continuous dy-
namics, described by ODEs or functional differential equations, and discrete dynam-
ics. Such systems are called impulsive or hybrid systems and cover, for example, the
load and unload of the inventory of a plant. Also time-delays can be considered. The
ISS property and the Lyapunov tools have to be defined accordingly. Then, it was
shown in [8, 9] that a network of impulsive or hybrid systems possesses the ISS
property, if there exists a Lyapunov function for each subsystem and the small-gain
condition is satisfied.

To include into the model not only transportation times, but the description of the
whole transportation process, we may use the partial differential equations (PDE).
The simplest model of this art is a standard inhomogeneous transport equation, that
takes into account the transportation time and the losses (or increasing) of goods
during the transportation. In paper [5] the transport equation was generalized to
include the restriction for the traffic flow capacity (in particular, it makes possible
to analyze the traffic jams). The input-to-state stability methods for systems, based
on partial differential equations, at the time are not developed to the same extent, as
the impulsive or time-delay systems. Some preliminary results for certain classes of
PDEs were obtained in [10].

To model the central control methods for the logistic networks, one can use the
corresponding methods from optimal control of systems with time-delays, systems,
based on partial differential equations (see, e.g., [27]) or other classes of systems.

4 Limitations of Autonomous Control

To find, what are the limitations of autonomous control, we have to answer firstly
the question, what are the limitations, common for both central and autonomous
control.

We distinct:

• "essential" limitations, which provide us with bounds, within which the control
method may be applied, both theoretically and in practice.

• limitations of effectiveness, which provide us with bounds, within which the
method works better, than the other ones.
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Returning to parameters of the networks, introduced in Section 2.4, we can say,
that we can identify the following limitations of autonomous control:

Structural limitations: the limitations, that are essential for a system, and do not
depend on the type of control strategy. In our model such limitations are the stability
bounds of the system. It is clear, that if the processing rate of materials is bounded
for all xi(t), then we can always find such an input, that the system will be unstable
for all possible controls ci j. The condition (13) provides us with a priori stability
bounds, within which the stability is guaranteed.

Limitations of information availability: the less information about the network
is available, the less effective is the central control. For example, in retail trade
there is no exact information about the quantity of customers, the time of purchases
etc., therefore the "pure" central planning, in particular, the direct control of all
transportations is not effective, if at all possible. Conversely, for the companies, that
have strict arrangements with other enterprises (in terms of our model, the inputs
are known), the central planning is more effective, and we have here a limitation of
effectiveness for autonomous control methods.

In section 2.2 we have shown, that the optimal controls are the piecewise con-
stant functions, consequently, the computation of the optimal control, if values of
inputs ui, i = 1, . . . ,n are available on time span [0,T ], is resolved to the computa-
tion of the points, where the controls are discontinuous, what essentially decreases
the computation time, needed for a finding of an optimal control. This shows, that
for the systems, for which an extensive information is available, the central control
has advantages over autonomous control. As long-term strategy (when information
about ui increases with time), the model predictive control (see, e.g., [2]) can be
used. But if the information is not available, the computation of optimal controls is
not possible, and we have to exploit autonomous control strategies.

Of course, at the same time different types of limitations may become important.
For example, in the large-scale networks with high availability of information about
subsystems we have, that the central planning may become impossible because of
the large size of a network (essential limitation of central control), but also an au-
tonomous control has its limitations of effectiveness, because the possibility to use
the exact information from all nodes is disregarded.

In this case different mixed strategies may be applied to find the most effective
combination of central planning and autonomous control. For example, the results
of Section 2.2 can be used to design the autonomous control method.

5 Conclusions

We have considered two methods of control of production networks: autonomous
and central control. We have shown, that if information about the flows of goods to
the system from the outside is known, then the central control has certain advantages
in comparison with autonomous control. In particular, in the Section 2.2 we have
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shown, that (in some sense) optimal distributional coefficients have to be piecewise
constant functions.

From the other side, if the information about the flows of goods is not available,
the central methods loss their effectiveness, and the autonomous control come to a
foreground.

We have also outlined the recent research of stability of logistic networks, based
on the notion of input-to-state stability, and discussed perspectives of future inves-
tigations in this field. In particular, the theorems were provided, that give sufficient
conditions for stability of the network (2) in terms of distributional coefficients, that
characterize the material flows between the nodes of a network.

The limitations of both central and autonomous control have been discussed. We
argue, that usually in real systems the mixed strategy should be used, depending on
the properties of the systems, some of which have been considered in this paper.
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