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Abstract

Interior eigenvalues of bounded scattering objects can be rigorously characterised from multi-
static and multi-frequency far �eld data, that is, from the behavior of scattered waves far away
from the object. This characterisation, the so-called inside-outside duality, holds for various
types of penetrable and impenetrable scatterers and is based on the behavior of a particular
eigenvalue of the far �eld operator. It naturally leads to a numerical algorithm for computing
interior eigenvalues of a scatterer that does not require shape or physical properties of the
scatterer as input. Since the non-linear inverse problem to compute such interior eigenvalues
from far �eld data is ill-posed, we propose a regularising algorithm that is shown to converge
as the noise level of the far �eld data tends to zero. We illustrate feasibility and accuracy of
our algorithm by numerical experiments where we compute interior transmission eigenvalues and
Robin eigenvalues of the Laplacian in three-dimensional domains from scattering data of these
domains due to plane incident waves.
Keywords: time-harmonic scattering, interior eigenvalue, inside-outside duality, regularisation.

1 Introduction

Time-harmonic scattering of incident waves from a domain D ⊂ R3 is always linked to a corre-
sponding interior eigenvalue problem in D that arises naturally by asking when an incident wave
does not scatter, that is, when the scattered wave for some incident wave vanishes entirely outside
D. For example, seeking for non-scattering incident waves for domains with Dirichlet or Neumann
boundary conditions leads to the interior eigenvalue problem for the Dirichlet or Neumann Lapla-
cian [CK13] while for penetrable inhomogeneous media such incident waves are connected to the
interior transmission eigenvalue problem [Kir86].

For several of these scattering problems interior eigenvalues of the scatterer can be rigorously
characterised � or at least determined � by the eigenvalues of far �eld operators for a range of wave
numbers using an inside-outside duality �rst shown in [EP95]: Roughly speaking, k2

0 > 0 is an interior
eigenvalue if and only if the eigenvalue of the far �eld operator F = F (k) with the smallest or largest
phase tends to zero as k tends to k0. Since this condition can be explicitly checked if one possesses
far �eld data for multiple frequencies, it is natural to use it for a numerical algorithm computing
interior eigenvalues from far �eld data. Note, however, that the above-described criterion makes
use of eigenvalues of F with small magnitude that are easily perturbed by measurement noise. In
consequence, the computation of interior eigenvalues based on this criterion is an ill-posed non-linear
problem and any inversion algorithm applied to this problem requires regularisation. In this paper,
we prove convergence of such a regularisation technique, �rst proposed in [LP14], and demonstrate
numerically that interior eigenvalues can be stably computed from scattering data. It is well-known
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that such interior eigenvalues yield information on, e.g., the size of the scattering object or the
magnitude of material parameters [GN13, CCM07], which indicates the interest in algorithms for
their computation from measured data in, e.g., non-destructive testing.

The algorithm we consider here is applicable to any scattering problem that satis�es the above-
sketched inside-outside duality. Examples include acoustic scattering from obstacles with Dirichlet,
Neumann, or Robin boundary condition [EP95, LP14], from isotropic or anisotropic penetrable a-
coustic media [KL13, LP15], and electromagnetic scattering from penetrable anisotropic dielectric
media [LR15]. Since the algorithm always works in the same way for all these settings we concen-
trate in this paper on two representative problems, namely the computation of interior transmission
eigenvalues from far �eld data of the corresponding isotropic inhomogeneous medium, and the com-
putation of Robin eigenvalues of the Laplacian from far �eld data of the corresponding impenetrable
obstacle with Robin boundary condition. Let us brie�y indicate both scattering and eigenvalue
problems here. A scattering problem from an inhomogeneous medium considers an entire solution
ui (the incident �eld) to the Helmholtz equation ∆ui + k2ui = 0 in R3 with wave number k > 0 and
a contrast function q supported in a domain D ⊂ R3 and seeks for a total �eld u, solution to

∆u+ k2(1 + q)u = 0 in R3, (1)

subject to a radiation condition for the di�erence us = u − ui (the scattered �eld). Whenever us

vanishes outside of D for some non-trivial ui, the pair (u, ui) =: (v, w) is an eigenpair to the following
transmission eigenvalue problem with interior transmission eigenvalue k2 =: µ,

∆v + µ(1 + q)v = 0 and ∆w + µw = 0 in D, v = w and
∂v

∂ν
=
∂w

∂ν
on ∂D.

Next, scattering from a Robin obstacle involves an incident �eld ui, a scatterer D, and a Robin
coe�cient τ , and seeks for a total �eld u solving

∆u+ k2u = 0 in R3 \D, subject to
∂u

∂ν

∣∣∣∣
∂D

+ τ u|∂D = 0 on ∂D, (2)

such that the scattered �eld us = u− ui again satis�es a radiation condition. If us vanishes outside
of D, then the incident �eld ui =: v solves the following interior Robin eigenvalue problem for −∆
with eigenvalue k2 =: µ,

∆v + µv = 0 in D,
∂v

∂ν

∣∣∣∣
∂D

+ τ v|∂D = 0 on ∂D.

A �rst link between the corresponding scattering and eigenvalue problems hence stems for the fact
that a vanishing scattered �eld gives rise to an interior eigenvalue. (Unfortunately, this link is not
easy to exploit for eigenvalue computations, see [KL13]).

The inside-outside duality instead o�ers a straightforward way to approximate interior eigenval-
ues from far �eld data via the dependence of the smallest of largest phase on the wave number, that
does not require any knowledge on the nature of the scattering object: Compute this extremal phase
of the eigenvalues of the far �eld operator for a su�ciently dense set of wave numbers in an interval
of interest and check at which wave numbers this phase jumps; the resulting wave numbers are then
roots of interior eigenvalues. In practice, this method requires multi-static and multi-frequency data
for a su�ciently �ne grid of wave numbers, which is an obvious drawback of the algorithm. (An
adaptive algorithm that starts on a coarse grid of wave numbers and successively re�nes this grid
merely close to wave numbers where the largest phase is close to π would be possible, but does
not resolve the need to a-priori possess data for many wave numbers.) Note, however, that multi-
frequency data for intervals of wave numbers is almost for free whenever the time-harmonic data are
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obtained from time-resolved measurements of time-dependent wave �elds generated from incident
pulses, simply by computing a Fourier transform in time of the measurements. Such time-resolved
measurements are a common modality for, e.g., ultrasound waves.

Of course, an alternative way to compute interior eigenvalues is to determine �rst the scatterer
from the given data and second the interior eigenvalues from the scatterer. While the advantage
of this procedure certainly is its independence from multi-frequency data, its has at least three
disadvantages, making the algorithm proposed below attractive whenever multi-frequency (or time-
resolved) scattering data are at hand: First, to determine parameters of a scatterer one requires a
model for those parameters that might not always be known. While Newton-like methods based
on parameter-to-state mappings still are the workhorses for parameter identi�cation tasks, these
algorithms typically fail whenever the assumed setting is inaccurate. They further fail whenever the
solution to the inversion problem is non-unique, which is always the case when material parameters
are anisotropic. Second, algorithms for parameter identi�cation typically require to solve many
partial di�erential equations and, for this reason, are signi�cantly more time-consuming than the
technique analysed here, basically requiring to execute the QZ-algorithm once for each wave number
under consideration for a matrix of small size. (Our numerical experiments later on involve between
35 and 130 wave numbers and the far �eld matrices are of size 120.) Moreover, the computation of
interior eigenvalues for a given parameter setting further increases both the numerical workload and
error and is far from trivial, in particular for the non-selfadjoint and non-linear interior transmission
eigenvalue problem. Third, our method is a nice example of an algorithm for feature reconstruction
in an inversion problem where one avoids to invert for the entire problem setting to extract the
searched-for quantity of interest directly from the data. Such algorithms are prominent in inverse
problems for reducing the ill-posedness of the inversion task and thus to increase accuracy of the
solution while, at the same time, speeding up computation times.

This rest of the paper is structured as follows: In the next section we recall basic results on
scattering from inhomogeneous media and obstacles, the associated far �eld operators and state the
theoretical link between the scattering and eigenvalue problems. Section 3 provides approximation
and interpolation results on the unit sphere that we use to construct discrete approximations to
the far �eld operator in Section 4. Section 5 proves convergence of eigenvalues and phases of these
approximations to those the exact far �eld operator. Finally, Section 6 proves the above-introduced
main result on the largest regularised discrete phase. Feasibility and accuracy of the resulting
algorithm is shown in Section 7.

2 Scattering and Eigenvalue Problems

We consider a bounded Lipschitz domain D ⊂ R3 with connected complement that plays to role of
the scattering object and a wave number k > 0. When considering the transmission problem (1) we
assume that the contrast function q ∈ L∞(D) is essentially bounded and real-valued with support D.
When considering the Robin scattering problem (2) we assume that the coe�cient τ ∈ L∞(∂D,R)
is real-valued. (Note that choosing τ = 0 yields a Neumann boundary condition.)

Consider now an incident time-harmonic plane wave ui(x, θ) = exp(ik θ ·x) of direction θ ∈ S2 =
{z ∈ R3, |z| = 1}. For both Helmholtz equations (1) and (2) it is then well-known [CK13, KG08]
that there exists a unique weak solution u = u(·, θ) ∈ H1

loc(R3) such that the scattered �eld us =
us(·, θ) ∈ H1

loc(R3) de�ned by us(·, θ) = u(·, θ)− ui(·, θ) satis�es Sommerfeld's radiation condition,(
∂us

∂|x|
− ikus

)
= O

(
1

|x|2

)
as |x| → ∞, uniformly in x̂ =

x

|x|
∈ S2. (3)

As a consequence of this radiation condition, the scattered wave behaves like an outgoing spherical
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wave,

us(x, θ) =
exp(ik|x|)

4π|x|

(
u∞(x̂, θ) +O

(
1

|x|

))
as |x| → ∞,

with a far �eld pattern u∞(·, θ) ∈ L2(S2). The far �eld pattern describes the behavior of the
scattered �eld far away from the obstacle and is roughly speaking the only information one can
stably measure far away from the obstacle. The far �eld operator is then de�ned by

F : L2(S2)→ L2(S2), Fg(x̂) :=

∫
S2
u∞(x̂, θ)g(θ) dS(θ), x̂ ∈ S2, (4)

that is, Fg is a linear combination of far �elds using a density g ∈ L2(S2). For both governing
equations (1) and (2) it is well-known that the associated far �eld operator is compact and normal
as an operator in L2(S2), that is, there exists a complete orthonormal eigensystem (λj , gj)j∈N with
eigenvalues λj tending to zero such that

Fg =
∑
j∈N

λj(g, gj)gj for all g ∈ L2(S2).

It is moreover well-known that each eigenvalue λj lies on the circle of radius 8π2/k centered at 8π2i/k
in the complex plane, see, e.g., [KG08]. For this reason, the continuity of k 7→ F (k) (that can be
shown using integral equation techniques) allows to choose the ordering of the eigenvalues (λj)j∈N
decreasing in magnitude such that additionally all functions k 7→ λj(k) are continuous. Later on, it
will be convenient to represent the eigenvalues in polar coordinates,

λj = rj exp(iϑj) with rj ≥ 0 and ϑj ∈ [0, π). (5)

Whenever rj = 0 we set ϑj = 0. As λj ∈ {z ∈ C, |z − 8πi/k| = 8π2/k} it holds that 0 ≤ ϑj ≤ π.
Concerning the far �eld operator for the Robin scattering problem (2,3) one can show that merely

a �nite number of its eigenvalues λj possesses a negative real part, that is, Re (λj) > 0 for all j ∈ N
large enough, see [LP14]. Since λj → 0 as j → ∞ the phases ϑj hence tend to zero as j → ∞.
In consequence, the largest phase ϑ∗ = maxj∈N ϑj of the eigenvalues is well de�ned and attained
by some eigenvalue λ∗ that does not vanish. The dependence of this largest phase on the wave
number characterises the interior Robin eigenvalues of D (see Theorem 1 below). Concerning the
transmission scattering problem, it follows from [KL13] that whenever the contrast function q in (1)
is positive within D, the same properties hold for the eigenvalues of the far �eld operator for the
transmission scattering problem (1,3).

To keep our notation compact we indeed restrict ourselves to positive contrast functions q such
that q ≥ c0 > 0 in D, since then interior eigenvalues to both problems under investigation are deter-
mined by the largest phase of eigenvalues of the far �eld operator. Considering negative contrasts
would require to work with the smallest phase of the eigenvalues to F ; interior Dirichlet eigenvalues
of D are characterised via the smallest phase as well. It is, however, not di�cult to transfer all
results shown below to such settings by, roughly speaking, exchanging the largest phase and its limit
π by the smallest phase with limit zero, see [KL13, LP15, LR15].

While the above-introduced scattering problems are posed in the exterior of D the corresponding
interior eigenvalue problems are posed inside D: First, the interior transmission eigenvalue problem
corresponding to (1) is to �nd a transmission eigenvalue µ ∈ C and an associated eigenpair (vµ, wµ) ∈
L2(D)× L2(D) such that vµ − wµ ∈ H2

0 (D) satis�es

∆vµ + µ(1 + q)vµ = 0 in D, and ∆wµ + µwµ = 0 in D. (6)
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Both equations are understood in the weak sense, that is,∫
D
vµ[∆ψ + µ(1 + q)ψ] dx = 0 and

∫
D
wµ[∆ψ + µψ] dx = 0 for all ψ ∈ H2

0 (D).

This eigenvalue problem is non-selfadjoint and non-linear and, despite the importance of transmis-
sion eigenvalues in inverse scattering theory, existence of eigenvalues has only been shown recently,
see [PS08, CGH10]. The numerical approximation of such eigenvalues when D and q are given poses
signi�cant di�culties due to the non-standard structure of the problem, see [Sun11, MS12, Kle13].

Second, the Robin eigenvalue problem corresponding to (2) is to �nd an eigenvalue µ ∈ R and a
corresponding eigenfunction vµ ∈ H1(D) such that

−∆vµ = µ vµ in D and
∂vµ
∂ν

+ τvµ = 0 on ∂D (7)

holds in the weak sense, that is,∫
D
∇vµ · ∇ψ dx+

∫
∂D

τvµψ dS = µ

∫
D
vµ ψ dx for all ψ ∈ H1(D).

This eigenvalue problem is rather standard due to its linear and selfadjoint structure.
The following theorem states the link between the interior eigenvalues to (6) and (7) and the

largest phase ϑ∗(k) of the eigenvalues λj(k) = rj(k) exp(iϑj(k)) of the far �eld operator F = F (k)
to the scattering problems (1,3) and (2,3), respectively. For interior transmission eigenvalues, the
duality statement is only a partial one, as it cannot be guaranteed that all eigenvalues are charac-
terised by ϑ∗. This re�ects the non-selfadjoint structure of the eigenvalue problem, possibly leading
to complex eigenvalues not contained in R.

Theorem 1 (Th. 6.3 in [KL13] & Th. 17 in [LP14]). (a) If q ∈ L∞(D) satis�es q ≥ c0 > 0 in D
for some c0 > 0 and if the largest phase satis�es limi→∞ ϑ

∗(ki) = π for some sequence {ki}i∈N with
ki 6= k and ki → k > 0 as i→∞, then k2 is an interior transmission eigenvalue.

Further, for some c+ > 0 and all q ∈ W 1,∞(D) with ‖∇q‖L∞(D) small enough, the lower bound
q ≥ c+ implies that limi→∞ ϑ

∗(ki) = π if k2 > 0 is the smallest positive transmission eigenvalue and
if {ki}i∈N with ki < k tends to k from below.

(b) If limi→∞ ϑ
∗(ki) = π for some sequence {ki}i∈N with ki 6= k and ki → k > 0 as i→∞, then

k2 is an interior Robin eigenvalue of −∆ in D. If k2 > 0 is a Robin eigenvalue of −∆ in D then
limi→∞ ϑ

∗(ki) = π for any sequence {ki}i∈N with ki > k that tends to k from above.

Remark 2. Since all phases ϑj of eigenvalues of F are contained in [0, π) and since k 7→ λj(k) is
continuous except at wave numbers where λj equals 0 or π, the last theorem implies that disconti-
nuities of the largest phase can only happen at interior eigenvalues. For positive Robin eigenvalues,
there always holds the converse statement as well.

Proof. (a) Theorem 6.3(b) in [KL13] shows the �rst part of this statement, see also Corollary 6.4
formulated in terms of the far �eld instead of the scattering operator. Note that the proof of
Theorem 6.3(b) in [KL13] is valid for any sequence of wave numbers ki di�erent from k but tending
to k as i → ∞, that is, the assumption ki < k of that proof is not necessary (see Theorem 15
in [LR15] for a corresponding proof without this assumption). The second part of Theorem 1(a) on
variable contrasts follows as in Theorem 6.3 of [LP15] or Lemma 24 of [LR15].

(b) This statement follows from Theorem 17 in [LP14]; again, the assumption ki > k in that
proof can be skipped.
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From now on we consider F = F (k) to be the far �eld corresponding to one of the scattering
problems (1,3) or (2,3) and will use this operator to compute the corresponding interior transmission
or Robin eigenvalues without distinguishing these two cases explicitly, because the algorithm we rely
on is independent of the underlying setting.

Theorem 1 motivates to numerically approximate interior eigenvalues by computing the eigen-
values of a �nite-dimensional approximation to the far �eld operator F corresponding to either (1,3)
or (2,3) for a grid of wave numbers by checking where the largest phase of these eigenvalues jumps.
A crucial di�culty here is the ill-posedness of the underlying inverse eigenvalue problem: As the
essential spectrum of F is the origin, any accurate �nite-dimensional approximation FN to F is
likely to possess many small eigenvalues with arbitrary phases in a ball around zero whose radius
equals the approximation error ε = ‖FN − F‖. Thus, a crucial regularisation step for the accurate
computation of interior eigenvalues consists, roughly speaking, in neglecting eigenvalues of FN that
are too small to provide accurate phase information. (In the inverse problems language, this is a
regularisation strategy.) The maximal phase of the remaining eigenvalues of FN is called the largest
regularised discrete phase and denoted by ϑ¸(k,N).

Assuming that the sequence ki tends to k > 0 as i → ∞ and that the approximation error
ε = εNi tends to zero as i → ∞ we prove in Theorem 20 that k2 is an interior eigenvalue if the
largest regularised discrete phase ϑ¸(ki, Ni) tends to π as i → ∞. Numerically checking for jumps
of ϑ¸ on a �nite grid of wave numbers K using discrete derivatives thus yields a simple and fast
algorithm to approximate interior eigenvalues:

(1) Approximate the eigenvalues of FN(k) for k ∈ K using the QZ-algorithm.

(2) Compute the largest phase ϑ¸(k,N) of all eigenvalues of FN(k) with magnitude larger than ε.

(3) Check where the absolute value of the discrete derivative ϑ¸(k,N) is larger than a �xed con-
stant � 1 times the mean of all absolute values of this discrete derivative.

The resulting wave numbers approximate roots of interior eigenvalues. The accuracy of these ap-
proximations of course depends on the step size of the grid K and the approximation error of FN(k)
for k ∈ K. Note, however, that the smoothness of the eigenvalue curves can be exploited to improve
the eigenvalue estimates considerably by an extrapolation procedure (see Section 7).

3 Interpolation on the Sphere

The regularised algorithm for the computation of interior eigenvalues from far �eld data will be
formulated and analysed in terms of approximate and discrete far �eld data. For its analysis we link
this discrete data with the exact far �eld operator F , that is, to construct norm convergent �nite-
dimensional approximations to F . To this end, we consider in this section sequences of interpolation
operators {IN}N∈N possessing suitable approximation properties.

We start with a sequence of sets of pairwise di�erent directions ΘN := {θ(j)
N }Nj=1 ⊂ S2 such that

hN := inf
{∣∣θ − θ(j)

N

∣∣, θ ∈ S2, 1 ≤ j ≤ N
}
→ 0 as N →∞. (8)

Without loss of generality we suppose that hN ≤ 1 for all N ∈ N. To the directions ΘN we associate

continuous functions ΦN := {φ(j)
N , 1 ≤ j ≤ N} ∈ C0(S2) and suppose that the matrix

AΦN =
(
φ

(`)
N (θ

(j)
N )
)N
j,`=1

∈ CN×N

is invertible and functions in ΦN are linearly independent. This allows to de�ne the interpolation
operator

IN : C0(S2)→ L2(S2), IN [g] =

N∑
j=1

[
A−1

ΦN

(
g(θ

(j)
N )
)N
j=1

]
(j)φ

(j)
N , (9)
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such that IN [g](θ
(j)
N ) = g(θ

(j)
N ) for j = 1, . . . , N . Since functions in the Sobolev space Hs(S2) with

s > 1 are continuous due to Sobolev's embedding theorem, IN is in particular well-de�ned and
bounded from Hs(S2), s > 1, into L2(S2). A crucial hypothesis on IN is the following interpolation
estimate on the latter function spaces: We assume that there is σ = σI ≥ 0 and CI = CI(s, σ) > 0
such that for some s > 1− σ there holds

‖g − IN [g]‖L2(S2) ≤ CIhsN‖g‖Hs+σ(S2) for all g ∈ Hs+σ(S2) and all N ∈ N. (A1)

Of course, IN is then bounded from Hs+σ(S2) into L2(S2), ‖IN [g]‖L2(S2) ≤ (1 + CI)‖g‖Hs+σ(S2).

Example 3 (Interpolation formulas). Several interpolation formulas satisfy Assumption (A1).

(a) Assume that {Γ(j)
N , 1 ≤ j ≤ N} ⊂ S2 are disjoint and relatively open subsets of S2 with

Lipschitz boundary ∂Γ
(j)
N such that the union of their closures is dense in S2, the numbers hN =

supj=1,...,N{|x̂ − ŷ|, x̂, ŷ ∈ Γ
(j)
N } tend to zero as N → ∞, and each direction θ

(j)
N ∈ ΘN belongs to

Γ
(j)
N , j = 1, . . . , N . Recall from the Sobolev embedding theorem that functions in Hs(S2) with s > 1

are Hölder continuous with index min(s− 1, 1), that is,

‖g‖C0,min(s−1,1)(S2) = sup
x̂,ŷ∈S2

{
|g(x̂)− g(ŷ)|
|x− y|min(s−1,1)

}
≤ C‖g‖Hs(S2)

with C = C(s) independent of g ∈ Hs(S2), see [H�97, Prop. 8.6.10]. Denote the indicator function
of the jth surface patch of ΓN by 1

ΓjN
, set VΦN = span{1

ΓjN
, j = 1, . . . , N} and de�ne

IN : C0(S2)→ VΦN ⊂ L
2(S2), IN [g](x̂) =

N∑
j=1

g(θ
(j)
N )1

ΓjN
(x̂) for x̂ ∈ S2. (10)

This projection is bounded from Hs(S2) into L2(S2) and for x̂ ∈ ΓjN there holds

|IN [g](x̂)− g(x̂)| = |g(θ
(j)
N )− g(x̂)| ≤ ‖g‖C0,s−1(S2) |θ

(j)
N − x̂|min(s−1,1) ≤ C hmin(s−1,1)

N ‖g‖Hs(S2).

Integrating this estimate over S2 shows that IN from (10) satis�es (A1) with σ = 1 for all s ∈ (1, 2].

(b) If {Γ(j)
N , 1 ≤ j ≤ N} is shape-regular and quasi-uniform family of curved surface panels

on S2 (see [SS13, Ch. 4.1]), considering piecewise polynomial and globally continuous functions
allows to construct interpolation formulas of higher order than (10) by suitably enlarging the set of
interpolation points, see [SS13, Section 4.1.7, Theorem 4.3.21].

(c) Reference [JSW99] discusses several interpolation schemes constructed via a strictly positive
de�nite kernel κ ∈ C0(S2 × S2). Under appropriate assumptions on the nodal points ΘN and the
kernel κ several error estimates for the interpolation error in terms of Sobolev norms are shown.
More details on interpolation on the sphere can be found in, e.g., [FGS98].

We remark that functions in the N -dimensional subspace

VΦN = span{φ(j)
N , j = 1, . . . , N} ⊂ L2(S2) (11)

spanned by the basis functions in ΦN are interpolated exactly by IN , that is,

IN [φ
(j)
N ] = φ

(j)
N , j = 1, . . . , N, and IN [g] = g for all g ∈ VΦN . (12)

To compute the L2-adjoint of IN we de�ne for g ∈ L2(S2) an associated coe�cient vector gΦN ∈ CN ,

gΦN (j) = (g, φ
(j)
N )L2(S2), j = 1, . . . , N, (13)
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and introduce Dirac distributions δ
θ
(j)
N

at the directions θ
(j)
N ∈ S2, de�ned by δ

θ
(j)
N

(g) = g(θ
(j)
N ) for

g ∈ C0(S2). Then

(IN [f ], g)L2(S2) =

( N∑
j=1

[
A−1

ΦN
fΘN

]
(j)φ

(j)
N , g

)
L2(S2)

=
N∑
j=1

[
A−1

ΦN
fΘN

]
(j) (φ

(j)
N , g)L2(S2)

=

N∑
j=1

fΘN (j)
[
(A∗ΦN )−1gΦN

]
(j) =

〈
f,

N∑
j=1

[(A∗ΦN )−1gΦN ](j) δ
θ
(j)
N

〉
Hs(S2)×H−s(S2)

,

such that the adjoint I∗N : L2(S2)→ H−s(S2), s > 1, satis�es

I∗N [g] =
N∑
j=1

[
(A∗ΦN )−1gΦN

]
(j) δ

θ
(j)
N

. (14)

This operator is well-de�ned and bounded from L2(S2) into H−s(S2) if s > 1 as AΦN is invertible,

‖I∗N [g]‖H−s(S2) ≤ sup
‖f‖Hs(S2)=1

N∑
j=1

[(A∗ΦN )−1gΦN (j)] f(θ
(j)
N )

≤
∥∥(A∗ΦN )−1

∥∥
2

sup
‖f‖Hs(S2)=1

N∑
j=1

|(g, φ(j)
N )L2(S2)|‖f‖Hs(S2) ≤

∥∥A−1
ΦN

∥∥
2

N∑
j=1

‖φ(j)
N ‖L2(S2) ‖g‖L2(S2).

Choosing s > 1− σ with σ = σI from (A1), the latter estimate implies that

‖g − I∗N [g]‖H−(s+σ)(S2) = sup
‖f‖Hs+σ(S2)=1

|〈f, g − I∗N [g]〉| = sup
‖f‖Hs+σ(S2)=1

|〈f − IN [f ], g〉|

≤ sup
‖f‖Hs+σ(S2)=1

‖f − IN [f ]‖L2(S2)‖g‖L2(S2) ≤ CIhsN‖g‖L2(S2), g ∈ L2(S2). (15)

Again, this implies that ‖I∗N [g]‖H−(s+σ)(S2) ≤ (1 + CI)‖g‖L2(S2) for g ∈ L2(S2).

We �nally associate to IN and I∗N their discrete counterparts QN : CN → L2(S2) and Q∗N :
L2(S2)→ CN , de�ned by

QNgN =
N∑
j=1

[
A−1

ΦN
gN
]
(j)φ

(j)
N for gN ∈ CN and Q∗Ng =

([
(A∗ΦN )−1gΦN

]
(j)
)N
j=1

for g ∈ L2(S2).

(Recall from (13) that gΦN has entries gΦN (j) = (g, φ
(j)
N )L2(S2).) Due to

(QNgN , g)L2(S2) =

N∑
j=1

[
A−1

ΦN
gN
]
(j) (φ

(j)
N , g)L2(S2) =

N∑
j=1

gN(j)
(
(A∗ΦN )−1gΦN

)
(j) = 〈gN , Q∗Ng〉CN

both operators are adjoint to each other. Further, Q∗Ng ∈ CN is the vector used in (14) to de�ne I∗N ,

I∗Ng =
N∑
j=1

[Q∗Ng](j)δ
θ
(j)
N

, (16)

and, by de�nition of IN in (9), the equality

QNgΘN = IN [g] holds for gΘN =
(
g(θ

(j)
N )
)N
j=1
∈ CN . (17)
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The operator norm of QN is bounded by

‖QNgN‖2L2(S2) ≤ ‖A
−1
ΦN
‖22

N∑
j=1

‖φ(j)
N ‖2L2(S2)‖gN‖

2
CN = CQ(N)‖gN‖2CN for gN ∈ CN , (18)

with CQ(N) = ‖A−1
ΦN
‖22
∑N

j=1 ‖φ
(j)
N ‖2L2(S2), and ‖Q

∗
Ng‖2CN ≤ CQ(N)‖g‖2L2(S2) holds for Q

∗
N .

Remark 4 (Bounds for CQ(N)). (a) For the interpolation scheme of Example 3(a) the approxima-
tion space VΦN = span{1

ΓjN
, j = 1, . . . , N} is spanned by indicator functions of the surface patches

Γ
(j)
N . Thus,

∑N
j=1 ‖φ

(j)
N ‖2L2(S2) =

∫
S2 1 dS = 4π. Since the interpolation IN(g) equals g(θ

(j)
N ) on the

jth patch, AΦN is the unit matrix and CN (Q) = 4π for all N ∈ N.
(b) Without going into details we remark that the interpolation operators mentioned in Exam-

ple 3(b) lead to constants CQ(N) that are uniformly bounded in N as well. However, interpolation
schemes relying on, e.g., spherical harmonics do not necessarily yield constants CQ(N) that are
uniformly bounded in N .

4 Far Field Operator Approximation from Discrete Far Field Data

Assume that we have inexact time-harmonic scattering data u∞δ (θ
(j)
N , θ

(`)
N ) for incoming plane waves

with pairwise di�erent directions θ
(`)
N ⊂ S2, measured in the direction θ

(j)
N for 1 ≤ j, ` ≤ N . The

noise level in these data is δ > 0 and measured in the spectral matrix norm,( N∑
j,`=1

∣∣∣u∞δ (θ
(j)
N , θ

(`)
N )− u∞(θ

(j)
N , θ

(`)
N )
∣∣∣2)1/2

≤ δ. (19)

Our algorithm for the computation of interior eigenvalues from far �eld data is formulated and
analysed in terms of the eigenvalues of the matrix

FδN :=
(
u∞δ (θ

(j)
N , θ

(`)
N )
)N
j,`=1

∈ CN×N , (20)

multiplied by a suitable weight matrix. For the analysis of our algorithm we link this discrete data
with the far �eld operator F , that is, we construct from FδN an approximation F δN that converges to
F as N →∞ and δ → 0, such that the eigenvalues of the matrix FδN equal the non-zero eigenvalues
of F δN . The idea is to exploit the operator QN from the last section that, roughly speaking, maps

scattering data associated to the directions θ
(j)
N to an interpolating function in L2(S2).

We consider a second N × N -matrix FN :=
(
u∞(θ

(j)
N , θ

(`)
N )
)N
j,`=1

de�ned via the exact discrete

scattering data, such that ‖FδN − FN‖2 ≤ δ due to (19). Using these matrices we de�ne �nite-
dimensional approximations FN and F δN to the exact far �eld operator F by

F δNg = QNFδNQ∗Ng =

N∑
j=1

[
A−1

ΦN

(
FδN
[
(A∗ΦN )−1gΦN

])]
(j) φ

(j)
N for g ∈ L2(S2), (21)

and an analogous de�nition for FN with FδN replaced by FN . Both operators map L2(S2) into L2(S2);

as the range of QN equals VΦN = span{φ(j)
N , j = 1, . . . , N}, see (11), their ranges are included in

VΦN and their null spaces equal the orthogonal complement V ⊥ΦN . Due to (16) and (17), FN can also
be represented as

FNg = QNFNQ∗Ng = QN

[
j 7→ (FI∗Ng)(θ

(j)
N )
]

= QN (FI∗Ng)ΘN
= INFI∗Ng for g ∈ L2(S2).
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Lemma 5. Assume that {IN}N∈N satis�es Assumption (A1) for σ = σI ≥ 0 and s+ σ > 1. Then
‖F − FN‖L2(S2)→L2(S2) ≤ ChsN → 0 for N →∞.

Proof. By the approximation estimates (A1) and (15) for IN and I∗N , respectively, and Lemma 21,

‖(F − FN)g‖L2(S2) = ‖Fg − INFI∗Ng‖L2(S2)

≤ ‖F (g − I∗Ng)‖L2(S2) + ‖(F − INF )I∗Ng‖L2(S2)

≤ CIhsN‖F‖H−(s+σ)(S2)→L2(S2)‖g‖L2(S2)

+ ‖I − IN‖Hs+σ(S2)→L2(S2)‖F‖H−(s+σ)(S2)→Hs+σ(S2)‖I
∗
Ng‖H−(s+σ)(S2)

≤ 2CI‖F‖H−(s+σ)(S2)→Hs+σ(S2)(2 + CI)h
s
N‖g‖L2(S2) ≤ ChsN‖g‖L2(S2).

Lemma 6. If the error bound (19) holds, that is, if ‖FN −FδN‖2 ≤ δ, then ‖FN −F δN‖L2(S2)→L2(S2) ≤
CQ(N) δ where CQ(N) is the constant from (18).

Proof. As ‖FN −F δN‖L2(S2)→L2(S2) = ‖QN(FN −FδN)Q∗N‖L2(S2)→L2(S2), the triangle inequality implies
the claim.

Theorem 7. Assume that {IN}N∈N satis�es Assumption (A1) for σ = σI ≥ 0 and s > 1− σ > 0.
Further, assume that the discrete, perturbed far �eld data FδN satisfy the error bound (19). Then

‖F − F δN‖L2(S2)→L2(S2) ≤ ChsN + CQ(N)δ, N ∈ N,

with C independent of N ∈ N.

As mentioned above, for the analysis of our inversion method to compute interior eigenvalues
from far �eld data, we additionally have to require a connection between the eigenvalues of the
�nite-dimensional operator F δN and the eigenvalues of the matrix FδN . To this end, we introduce
weights wN(j) > 0 for 1 ≤ j ≤ N ∈ N, de�ned by

wN(j) :=

(∫
S2
|φ(j)
N |2 dS

)1/2

> 0, j = 1, . . . , N.

The corresponding diagonal matrixWN = diag(wN(j))Nj=1 ∈ RN×N is positive de�nite and invertible.

The following lemma proves the above-mentioned link between the spectra of FδN and of F δN ,
assuming that the following condition linking the directions ΘN with the basis functions ΦN is
satis�ed:

A∗ΦN
(
W2

N gΘN

)
= gΦN for all g ∈ VΦN = span{φ(1)

N , . . . , φ
(j)
N }. (A2)

Recall that gΦN ∈ CN is de�ned by gΦN (j) = (g, φ
(j)
N )L2(S2) and that gΘN (j) = g(θ

(j)
N ), j = 1, . . . , N .

Theorem 8. If Assumption (A2) is satis�ed, then all eigenvalues of WNFNWN and WNFδNWN are
eigenvalues of FN and F δN , respectively, and any additional eigenvalue of FN and F δN must vanish.

Proof. We �rst note that F δN and FN both map VΦN ⊂ L2(S2) into VΦN and vanish on the orthogonal
complement V >ΦN . Hence, any eigenfunction of F δN and FN for a non-zero eigenvalue belongs to VΦN .

Assume that WNFδNWNgΘN = λgΘN for λ ∈ C and 0 6= gΘN ∈ CN . Since ΦN = {φ(1)
N , . . . , φ

(j)
N }

is a basis of VΦN and since AΦN is invertible, there exists a unique g ∈ VΦN such that WNgΘN =
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(A∗ΦN )−1gΦN = Q∗Ng. Hence, FδNQ∗N(g) = FδNWNgΘN = λW−1
N gΘN and

F δNg = QN(FδNQ∗N(g)) = λQN(W−1
N gΘN ) = λ

N∑
j=1

[
A−1

ΦN
W−2

N (A∗ΦN )−1gΦN ]
(
j)φ

(j)
N

(A2)
= λ

N∑
j=1

[A−1
ΦN
gΘN ](j)φ

(j)
N

(9)
= λIN [g] = λg because g ∈ VΦN .

If g ∈ L2(S2) is an eigenfunction of F δN for the eigenvalue λ ∈ C, then either λ = 0 or the eigenfunction
0 6= g must belong to VΦN . Thus, this eigenfunction is of the form

g =

N∑
j=1

[
A−1

ΦN
WNgΘN

]
(j)φ

(j)
N = QN(W−1

N gΘN ) for some gΘN ∈ CN , g 6= 0.

Since QN maps vectors in CN to their unique interpolating function in VΦN , it holds that

λQN(W−1
N gΘN ) = λg = F δNg = QN(FδNQ∗N(g)) = QN

[
FδN(A∗ΦN )−1gΦN

]
(A2)
= QN

[
FδNW 2

NgΘN

]
= QN

[
FδNWNgΘN

]
.

Moreover, QN : CN → VΦN is injective, which is su�cient to conclude that FδNWNgΘN = λW−1
N gΘN ,

that is, WNFδNWNgΘN = λgΘN . Setting δ = 0 shows the same results for FN and FN .

Remark 9. The approximation WNFδNWN mimics a usual numerical practice to use the matrix(
u∞δ (θ

(j)
N , θ

(`)
N )
)
, scaled by a diagonal weight matrix, as a numerical approximation of F .

Corollary 10. Under assumption (A2), the spectral radius of WNFδNWN and of WNFNWN equals the
spectral radius of F δN and of FN , respectively. Furthermore, the operator norm ‖FδNQ∗N‖L2(S2)→CN and

‖FNQ∗N‖L2(S2)→CN equals the operator norm ‖F δN‖L2(S2)→L2(S2) and ‖FN‖L2(S2)→L2(S2), respectively.

Proof. The equality of the spectral radii follow directly from the statement of Theorem 8. Moreover,
the operator norm of an operator T : X → Y between Hilbert spaces X and Y equals the largest
singular value of T , that is, the square root of the largest eigenvalue of T ∗T . Due to Assumption (A2),

Q∗NQNgΘN = (A∗ΦN )−1
(
QNgΘN

)
ΦN

= (QNgΘN )ΘN = gΘN for all gΘN ∈ CN .

The operator norm equality now follows from F ∗NFN = (QNFNQ∗N)∗QNFNQ∗N = QNF∗NFNQ∗N .

Example 11. The interpolations from Example 3(a,b) satisfy Assumption (A2): Recall that the

piecewise constant interpolation relied on the indicator functions φ
(j)
N = 1

ΓjN
of the surface patches

Γ
(j)
N from a surface partition of S2 such that w2

N(j) =
∫
S2 φ

(j)
N dS =

∫
Γ
(j)
N

1 dS. For g ∈ VΦN , the

vector gΦN ∈ CN consists of the entries gΦN (j) = (g, φ
(j)
N )L2(S2) =

∫
Γ
(j)
N

g dS = w2
N(j)g(θ

(j)
N ), that

is, gΦN = W2
NgΘN . As φ

(`)
N (θ

(j)
N ) = δj,`, AΦN is the unit matrix and the equations AΦN = A−1

ΦN
=

A∗ΦN = ICN and A∗ΦN (W2
NgΘN ) = gΦN hold.

More generally, whenever the interpolation formula IN uses basis functions φ
(j)
N that equal one

at the jth direction θ
(j)
N and vanish at all other directions from ΘN , the matrix A∗ΦN is diagonal and

Assumption (A2) holds. This holds in particular, the pth order interpolation formulas from [SS13,
Section 4.1].
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5 Approximating Phases of Eigenvalues of F from Far Field Data

In this section we provide estimates of the eigenvalues and their phases of the discrete far �eld
operator approximation F δN compared to those of the exact far �eld operator F . Recall from the last

section that we de�ned incomplete and inexact far �eld data FδN = (u∞δ (θ
(j)
N , θ

(`)
N ))Nj,`=1 ∈ CN×N that

we used to construct an approximation F δN = QNFδNQ∗N to F via projection operators QN , see (21).
We also showed in Theorem 8 that, roughly speaking, the eigenvalues of WNFδNWN equal those of
F δN if (A2) is satis�ed. Considering a sequence FδNN of perturbed far �eld matrices with noise level
δN > 0, Theorem 7 shows that the following assumption on the noise level,

CQ(N)δN → 0 as N →∞, (22)

together with Assumption (A1) on the convergence of the interpolation scheme IN implies that

‖F δNN − F‖L2(S2)→L2(S2) ≤ ChsN + CQ(N)δN → 0 as N →∞. (23)

Remark 12. For the sake of convenience we do not explicitly denote the dependence of the noise
level δ = δN on N whenever there is no danger of confusion.

As the determining criterion for interior eigenvalues in Theorem 1 relies on the phases of the
eigenvalues of the far �eld operator F , we will �rst investigate how the eigenvalues of

WNFδNWN =
(
wN(j)u∞δ (θ

(j)
N , θ

(`)
N )wN(`)

)N
j,`=1

∈ CN×N (24)

approximate the eigenvalues of F as N →∞ and then pass in a second step to their phases.
Due to the convergence ‖F − F δN‖ → 0 as N → ∞ from (23), perturbation results (see,

e.g., [Kat95, Osb75] or [Cha81]) show that the spectrum σ(F δN) of F δN converges, in a sense ex-
plained below, to σ(F ) = {λj , j ∈ N} ∪ {0} of F . We need to derive quantitative estimates for
this convergence. To this end, recall that F δN : L2(S2) → L2(S2) has a �nite-dimensional image
and is hence non-injective and compact. Thus, σ(F δN) consists of a �nite sequence of eigenvalues
{λN` }

JN
`=1 ⊂ C, counted without multiplicities. Note that we do not explicitly denote the noise level

δ > 0 contained in the eigenvalues λN` of F δN , to simplify notation. We order these eigenvalues
according to their magnitude in decreasing order, such that λNJ(N) = 0. Bounds for the distance

between the spectra of F and F δN rely on the Bauer-Fike theorem [BF60]. A proof of the following
variant can be found in [Bue, Theorem 11].

Theorem 13. Let H be a separable Hilbert space and A : H → H a bounded normal operator such
that there exists a bounded W : `2 → H with bounded inverse and a bounded diagonal operator
Λ : `2 → `2 such that A = WΛW−1. If B : H → H is bounded and if µ is an eigenvalue of B, then

min
λ∈σ(A)

|µ− λ| ≤ ‖W−1‖H→`2 ‖B −A‖H→H ‖W‖`2→H .

Corollary 14. For all eigenvalues λN` of F δN it holds that

min
j∈N
|λN` − λj | ≤ ‖F δN − F‖, ` = 1, . . . ,J (N). (25)

Proof. Apply Theorem 13 with H = L2(S2), A = F =
∑

j λj(·, gj)gj and W : `2 → L2(S2) de�ned
by W ((cj)) =

∑
j∈N cjgj . Orthonormality of the eigenbasis {gj}j∈N of F implies that W is an

isometry and that W−1W = WW−1 = I. Hence, Theorem 13 implies (25).
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Obviously, Corollary 14 implies that all eigenvalues λN` of F δN have a distance to σ(F ) = {λj}j∈N∪
{0} of at most ‖F − F δN‖. This statement does in general not hold when the roles of F δN and F are
exchanged.

Lemma 15. Assume that ‖F −F δN‖ < ε and that σ1 ⊂ σ(F ) is a �nite subset of σ(F ) such that the
Hausdor� distance distH({σ1}, σ(F ) \ {σ1}) between σ1 and the rest of the spectrum of F satis�es
distH({σ1}, σ(F ) \ {σ1}) > 2ε.

(a) All eigenvalues of F δN are contained in an ε-neighborhood of σ(F ) = {λj , j ∈ N} ∪ {0}.
(b) The ε-neighborhood σε1 = {z ∈ C, dist(z, σ1) < ε} contains at least one eigenvalue of F δN .
(c) The closure of the linear hull of the eigenspaces corresponding to all eigenvalues of F in σ1

is isomorphic to the closure of the linear hull of all eigenvalues of F δN contained in σε1.

Proof. Parts (a) and (b) follow from Corollary 14. Part (c) follows from Theorem 3.16 in [Kat95,
Chapter IV-§4].

For the next result, we recall that the set of eigenvalues λNj of F δN is precisely the set of eigenvalues

of the matrix σ(WNFδNWN) together with {0}. Depending on whether zero is an eigenvalue of the

latter matrix or not, we choose J∗N ∈ {JN , JN − 1} such that {λNj }
J∗N
j=1 are the eigenvalues of the

matrix σ(WNFδNWN). Recall that we ordered the λNj according to their magnitude, |λN1 | ≥ |λN2 | ≥
· · · ≥ |λNJ∗N |.

Theorem 16. Assume that IN , ΦN , ΘN and δN satisfy the assumptions (A1), (A2) and (22).
(1) For j ∈ N there is N0 = N0(j) such that the jth eigenvalue λNj of WNFδNWN is well-de�ned

for N ≥ N0(j).
(2) If λj 6= 0 is a non-zero eigenvalue of F , then there exists {j′(N)}N∈N, 1 ≤ j′(N) ≤ J(N)∗,

such that
|λNj′(N) − λj | ≤ ‖F

δ
N − F‖ ≤ C(hsN + CQ(N)δN)

N→∞→ 0 as N →∞.

The sum of the dimensions of the eigenspaces corresponding to all eigenvalues of WNFδNWN contained
in B(λj , εN) equals the multiplicity of λj.

Proof. (1) Consider N0 = N0(j) ∈ N so large that εN := ‖F δN−F‖ is strictly less than dist(λj , σ(F )\
{λj})/2 for N ≥ N0. This choice is always possible due to our assumptions and Theorems 7 and 8,
compare (23). According to Corollary 14 there exists j′(N) ∈ N such that |λNj′(N) − λj | ≤ εN . Since
λj 6= 0 and since 0 ∈ σ(F ) we moreover obtain that

|λNj′(N)| ≥ |λj | − εN ≥ |λj − 0| − εN ≥ dist(λj , σ(F ) \ {λj})− εN > εN

due to our assumption on N0(j). Thus, λNj′(N) cannot vanish and hence must be an eigenvalue of

WNFδNWN according to Theorem 8. This implies that 1 ≤ j′(N) ≤ J(N)∗.
Since εN → 0 as N →∞ and since there exists an in�nite number of di�erent eigenvalues λj of

F this shows that the number of non-zero eigenvalues of F δN and hence also of the matrix WNFδNWN

tends to in�nity as N →∞.
(2) The given estimate of |λNj′(N) − λj | stems from (23). The sum of the dimensions of the

eigenspaces corresponding to eigenvalues λN` included in B(λj , εN) equals the multiplicity of λj
according to Lemma 15.

We noted in the introduction that the eigenvalues λj satisfy Re (λj) > 0 for j ∈ N large enough
and that hence there exists some eigenvalue λ∗ with largest phase ϑ∗ among all eigenvalues λj =
rj exp(iϑj). The phase error of the eigenvalue approximation is investigated next. To this end, we
write λN` = rNj exp(iϑNj ) with radius rNj ≥ 0 and phase ϑNj ∈ [0, 2π) and we set ϑNj = 0 in case that
λNj = 0.
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As any eigenvalue λj of F with magnitude less than ‖F δN−F‖ can be perturbed into an eigenvalue
λN` with arbitrary phase, eigenvalues of F δN close to the origin cannot carry reliable information on
the phase of the corresponding exact eigenvalue of F .

Lemma 17. (1) If |λj | = rj > εN := ‖F δN − F‖, then the phase of any eigenvalue λNj′ ∈ B(λj , εN)

of WNFδNWN satis�es |ϑj − ϑj′ | < arcsin(εN/rj).
(2) Under the assumptions of Theorem 16, assume that N0 = N0(j) is so large that εN < rj

for N ≥ N0(j) and that {j′(N)}N∈N is the sequence from Theorem 16(2) such that λNj′(N) → λj as
N →∞. Then

|ϑNj′(N) − ϑj | < arcsin(εN/rj) ≤
π

2rj
‖F − F δN‖ ≤

Cπ

2rj
(hsN + CQ(N)δN)

N→∞−→ 0

Proof. (1) Assume that λj is an eigenvalue of F and if λNj′ is an eigenvalue of F δN contained in the
ball B(λj , εN), compare Figure 1. The di�erence of the phases ϑj and ϑ

N
j′ of λj and λ

N
j′ is bounded by

the angle α between the line [0, λj ] and one of the tangents to the circle {|z−λj | = εN}. Elementary
triangular geometry shows that 0 < sinα = εN/rj < 1, that is, α = arcsin(εN/rj). In consequence,
ϑNj′ is included between the two numbers ϑj ± arcsin(εN/rj).

(2) The second statement follows from arcsin(εN/rj) ≤ πεN/(2rj) and the estimate of εN =
‖F − F δN‖ from Theorem 16.

α

λj

CIm z

Re z

εNrj

Figure 1: The maximal di�erence between ϑj and ϑ
N
j′ is bounded by α = arcsin(εN/rj).

The last two results indicate two essential problems in view of our aim to stably detect interior
eigenvalues of the scatterer D from discrete far �eld data: First, eigenvalues λN` of WNFδNWN close
to zero cannot provide accurate phase information on the corresponding eigenvalue λj of F due to
the factor 1/rj in the estimates of the last corollary or of Lemma 17. Second, Lemma 17 merely
bounds the phase error in terms of the radius rj of the exact eigenvalue λj . To derive analogous
bounds in terms of the perturbed eigenvalues of WNFδNWN we de�ne εN := ‖F δN − F‖ and consider
an eigenvalue λN` of WNFδNWN that satis�es

|λN` | > 4π (εN/k)1/2 + εN . (26)

(Recall that k > 0 is the wave number of the scattering problem used to de�ne the far �eld operator
F .) If the latter condition is satis�ed then Corollary 14 states the existence of λj ∈ σ(F ) with
|λN` − λj | ≤ εN . Then, necessarily,

rj = |λj | > 4π (εN/k)1/2 .

Recall that λj lies on the circle {|8π2i/k − z| = 8π2/k} in the complex plane, that is, real and
imaginary part of λj = a+ ib satisfy

a2 +

(
b− 8π2

k

)2

=

(
8π2

k

)2

, that is, |λj |2 = a2 + b2 =
16π2

k
b.
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The condition that |λj |2 = a2 + b2 > 16π2εN/k hence implies that b = Im (λj) > εN . Hence, if λ
N
`

satis�es (26) then ImλN` > 0 such that its phase necessarily belongs to (0, π).

Assume now additionally that N is so large that ε
1/2
N < 4π/k1/2. By Lemma 17 applied to λN`

and λj we obtain

|ϑN` − ϑj | ≤
π

2

εN
rj
≤ 1

8
(kεN)1/2. (27)

Lemma 18. Assume that λN` is an eigenvalue of WNFδNWN that satis�es (26) and assume further

that ε
1/2
N < 4π/k1/2. Then the phase of λN` belongs to (0, π). Further, there is an eigenvalue λj of F

such that |λN` −λj | ≤ εN and the phase di�erence |ϑN` −ϑj | between these two eigenvalues is bounded
as in (27).

6 Regularisation Theory for Computing Interior Eigenvalues

Theorem 1 states that k2
0 is an interior eigenvalue if the largest phase ϑ∗(k) of the eigenvalues of

F (k) tends to π as k tends to k0. To compute interior eigenvalues from discrete and noisy far �eld
data we are hence interested in stably approximating the largest phase from the eigenvalues λNj (k) of

WNFδNN (k)WN , which basically means to ignore eigenvalues of WNFδNN (k)WN close to zero as those
do not provide reliable phase information.

To model experimentally measured multi-frequency far �eld data we choose a discrete set of wave
numbers

K = {ki}i∈N ⊂ [kmin, kmax] ⊂ R>0 such that K = [kmin, kmax]. (A3)

Suppose that we know inexact discrete far �eld matrices FδNN (k) ∈ CN×N (see (20)) at wave numbers
k ∈ K such that the noise level

max
k∈K
‖FδNN (k)− FN(k)‖2 ≤ δN , N ∈ N, (A4)

is bounded by δN uniformly for all k ∈ K. Mimicking assumption (22), we moreover suppose that
δN tends su�ciently fast to zero to ensure that

CQ(N)δN → 0 as N →∞. (A5)

Further adopting the assumptions of Theorem 16, we suppose for all N ∈ N that the interpolation
scheme IN is convergent (compare (A1)) and that assumption (A2) holds, such that the eigenvalues
λN` (k) of the matrix WNFδNN (k)WN , roughly speaking, match those of the interpolated operator

F δNN (k) for all k ∈ K due to Theorem 8. Under these assumptions,

εN := max
k∈K
‖F δNN (k)− F (k)‖L2(S2)→L2(S2) ≤ ChsN + CQ(N)δN

N→∞−→ 0. (28)

We recall from Lemma 18 that for k ∈ K and any eigenvalue λN` (k) of F δNN (k) the condition

|λN` (k)| > 4π (εN/k)1/2 + εN , (29)

together with the assumption ε
1/2
N < 4π/k1/2 implies the existence of an eigenvalue λj(k) of F (k)

such that |λN` (k)− λj(k)| ≤ εN and such that the phases ϑN` (k) and ϑj(k) of these two eigenvalues
satisfy

|ϑN` (k)− ϑj(k)| ≤ 1

8
(kεN)1/2. (30)
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To determine interior eigenvalues of D we need to construct a quantity that approximates the largest
phase ϑ∗(k) of the eigenvalues to F (k). To this end, we denote for k ∈ K the largest phase of all
eigenvalues of WNFδNN (k)WN that satisfy (29) by

ϑ¸(k,N) = max
{
ϑNj , λ

N
j ∈ σ(WNFδNN (k)WN), |λNj | > 4π(εN/k)1/2 + εN

}
, k ∈ K. (31)

(The maximum of the empty set is set to zero.) The quantity ϑ¸(k,N) is called the largest regularised
discrete phase at discretisation level N ∈ N for the wave number k ∈ K.

Remark 19. (1) The condition |λN` | > 4π(εN/k)1/2 + εN in (31) implies by Lemma 18 that ϑN` ∈
(0, π) if, additionally, ε

1/2
N < 4π/k1/2. Thus, under the latter condition, ϑ¸(k,N) is the maximum

of �nitely many phases ϑN` ∈ (0, π) such that ϑ¸(k,N) ∈ (0, π), too.

(2) ϑ¸(k,N) is computable whenever one possesses approximate far �eld data FδNN (k) for some
N ∈ N and k ∈ K together with an upper estimate for the noise level εN from (28).

Theorem 20. Assume that (A2), (A3), (A4), and (A5) hold, that {ki}i∈N ⊂ K, ki 6= k, is a
sequence of wave numbers that tends to k ∈ (kmin, kmax), and denote the eigenvalue of F (ki) with
largest phase by λ∗(ki) and its phase by ϑ∗(ki).

(a) If ϑ¸(ki, Ni)→ π for any sequence {Ni }i≥i0 ⊂ N with Ni →∞ as i→∞, then ϑ∗(ki)→ π
as i→∞ and k2 is an interior eigenvalue of D.

(b) If ϑ∗(ki) → π there is i0 ∈ N and a sequence {Ni }i≥i0 ⊂ N with Ni → ∞ as i → ∞ such
that

4π

(
εNi
ki

)1/2

+ 2εNi ≤ min
{
|λ∗(ki)|, dist

[
λ∗(ki), σ

(
F (ki)

)
\ {λ∗(ki)}

]}
, i ≥ i0, (32)

and for any such sequence it holds that ϑ¸(ki, Ni)→ π as i→∞.

Proof. (a) Assume that {ki}i∈N is a sequence of wave numbers with ki → k such that ϑ¸(ki, Ni)→ π
as i→∞ for some sequence {Ni} with Ni →∞ as i→∞. Recall from the de�nition of the largest

regularised discrete phase ϑ¸(ki, Ni) in (31) that the eigenvalue λNi`i (ki) of TNi := WNiF
δNi
Ni

(ki)WNi

whose phase equals ϑ¸(ki, Ni) satis�es

|λNi`i (ki)| > 4π(εNi/ki)
1/2 + εNi , i ∈ N.

The assumptions (A2), (A3), (A4), and (A5) imply by (28) that the noise level εN tends to zero.
Thus, if i0 ∈ N is large enough, the assumption εNi < 16π2/kmax ≤ 16π2/ki from Lemma 18 is
satis�ed for all i ≥ i0. Due to this lemma we deduce that for each i ≥ i0 there is an eigenvalue
λ`′i(ki) 6= 0 of F (ki) with phase ϑ`′i(ki) ∈ (0, π) such that |λNi`i (ki) − λ`′i(ki)| ≤ εNi → 0 as i → ∞.
Moreover,

|ϑ¸(ki, Ni)− ϑ`′i(ki)| = |ϑ
Ni
`i

(ki)− ϑ`′i(ki)| ≤
1

8

(
kiεNi

)1/2
, i ∈ N. (33)

Finally, we exploit that ϑ`′i(ki) ∈ (0, π) is less than or equal to the largest phase ϑ∗(ki),

π ≥ ϑ∗(ki) ≥ ϑ`′i(ki) ≥ ϑ
¸(ki, Ni)−

1

8

(
kiεNi

)1/2 i→∞−→ π.

Thus, ϑ∗(ki)→ π as i→∞ and Theorem 1 implies that k2 is an interior eigenvalue of D.
(b) If ϑ∗(ki)→ π as i→∞, then Theorem 1 shows that k2 is an interior eigenvalue, such that the

discreteness of the interior transmission and Robin eigenvalues implies that there is β > 0 such that
(k2 − β, k2 + β) contains no other interior eigenvalue. Consequently, for some i0 ∈ N it holds that
{ki}i≥i0 ⊂ (k2− β, k2 + β) \ {k2}. Recall that λ∗(ki) = r∗(ki) exp(iϑ∗(ki)) denotes the eigenvalue of
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F (ki) with largest phase ϑ∗(ki). As k
2 is the only interior eigenvalue in (k2− β, k2 + β), Theorem 1

implies that 0 < ϑ∗(ki) < π and r∗(ki) > 0 for all i ≥ i0. Further, the distance of λ∗(ki) to the rest
of the spectrum of F (ki) is positive,

ρi := dist
(
λ∗(ki), σ(F (ki)) \ {λ∗(ki)}

)
> 0 for i ∈ N.

As in part (a) of this proof, the assumptions of the theorem imply that the noise level εN tends to
zero. Thus, there is a monotonously increasing sequence {Ni}i∈N ⊂ N such that (32) is satis�ed,
that is,

4π

(
εNi
ki

)1/2

+ 2εNi < min
{
r∗(ki), ρi

}
for i ≥ i0. (34)

The last bound implies in particular that 2εNi < ρi and hence Lemma 15 applied to λ∗(ki) and

F (ki) shows that there exists at least one eigenvalue λ
Ni
`i

(ki) of TNi := WNiF
δNi
Ni

(ki)WNi such that

|λNi`i (ki) − λ∗(ki)| ≤ εNi for N ∈ N. As (34) implies that 4π(εNi/ki)
1/2 + 2εNi < r∗(ki), we deduce

that
|λNi`i (ki)| ≥ r∗(ki)− εNi > 4π(εNi/ki)

1/2 + εNi for i ≥ i0.

In particular, the de�nition of the largest regularised discrete phase

ϑ¸(ki, Ni) = max
{
ϑNij (ki), λ

Ni
j (ki) ∈ σ(TNi), |λ

Ni
j (ki)| > 4π(εNi/ki)

1/2 + εNi

}
directly implies that ϑ¸(ki, Ni) is larger than or equal to the phase ϑNi`i (ki) of λNi` (ki). As all

eigenvalues of F (ki) lie on the circle {|8π2i/ki − z| = 8π2/ki} it holds that ρi < 16π2/ki and (34)

further implies that ε
1/2
Ni

< 4π/k
1/2
i . Thus, we deduce from Lemma 18 �rst that ϑNi`i (ki) ∈ (0, π) and

second that

|ϑNi` (ki)− ϑ∗(ki)| ≤
1

8

(
kiεNi

)1/2
for N ∈ N. (35)

Hence, the inequalities

ϑ∗(ki)−
1

8

(
kiεNi

)1/2 ≤ ϑNi`i (ki) ≤ ϑ¸(ki, Ni) < π for i ≥ i0,

together with the convergence of ϑ∗(ki) to π and of εNi to zero, imply that ϑ¸(ki, Ni) → π as
i→∞.

7 Numerical Examples

In this section we provide numerical examples illustrating the theoretical results on the computation
of interior eigenvalues of D from the last section. To this end, we use synthetic far �eld data at
various wave numbers scattered from two the unit ball {x ∈ R3, |x| < 1} ⊂ R3 or the unit cube
(0, 1)3 ⊂ R3 which either is a penetrable media modelled by (1) with a constant refractive index
q = q0 = 3, or a Robin obstacle modelled by (2) with constant impedance function τ = τ0 = 1.
For these settings, both scattering problems (1,3) and (2,3) can be solved using boundary integral
equation methods. For the transmission scattering problem, we use a 2 × 2 system of integral
equations �rst given in [KM88], while the Robin scattering problem is tackled by restricting the
representation us = DL(∂us/∂ν)− SL(us) of a the scattered �eld from (2,3) to ∂D. While the �rst
integral equation is known to be uniquely solvable for all positive wave numbers, the second fails at
interior Dirichlet eigenvalues of −∆ in D.

In our experiments we used the software package BEM++, see [SBA+14], to numerically compute
far �elds of scattered �elds caused by plane incident waves via a Galerkin method based on piecewise
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linear and globally continuous basis functions (see [SBA+14, SS13] for details). The triangular
surface mesh ofD contains 1288 nodes for the unit ball and 611 nodes for the unit cube, corresponding
to a mesh width of h = 0.1 for the ball and h = 0.05 for the cube. To construct the matrix FδN(k)
we choose a surface mesh of S2 presented in [Ces96, Section II.2.3.2.1] that provides a partition of
the sphere into N = 48, 80 or 120 quadrangles of equal area. Incident and far �eld directions are
the centres of the quadrangles. We use piecewise constant interpolation on the quadrangles which
yields weight matrices W2

N = wN IdN that reduce to scalars wN = 4π/N , such that WNFδN(k)WN =
(4π/N)FδN(k).

If squared wave numbers k2 are too close to an interior Dirichlet eigenvalue of D then the far �eld
data for the Robin scattering problem (2,3) provided by the numerical solver becomes inaccurate.
This phenomenon did not consistently occur in our experiments and turned out not to perturb the
results presented below since the interior Dirichlet eigenvalues were su�ciently far from the Robin
eigenvalues. However, for safeguarding we did not consider simulated far �eld data for wave numbers
k whenever FδN(k) possessed a relative normality error of more than 10%.

For some experiments we perturbed the simulated data FδN(k) by adding a random matrix that
contains normally distributed random numbers with mean zero and variance one and is scaled to
yield a relative noise level of either 1 or 5 percent individually for each k in the grid of wave numbers.
Depending on the number N of directions we choose the step size 4k for this grid as 4k = 0.2 for
N = 48, 4k = 0.1 for N = 80, and 4k = 0.1 for N = 120.

Finally, after �xing a threshold ε > 0 corresponding to the noise level of the far �eld data we
compute the eigenvalues of (4π/N)FδN(k) using the QZ algorithm and cut o� those with magnitude
larger than ε. Cutting o� all eigenvalues with magnitude larger than 4π(ε/k)1/2 + 2ε as proposed
by (31) turned out to be overcautious in practice such that the resulting scheme required very small
noise levels to be accurate while the relaxed criterion showed to be both robust and accurate. In our
experiments we set ε = (8π2/k)εr, where the quantity 8π2/k corresponds to half the upper bound of
the exact far �eld operator norm ‖F (k)‖, and we chose εr = 0.005 when no arti�cial noise is added
to the far �eld data and εr equals the relative noise level 0.01 or 0.05 when FδN(k) is arti�cially
perturbed.

After computing the phases of the remaining eigenvalues we check for jumps of the largest
regularised discrete phase ϑ¸(k,N) to compute lower and upper estimates of square roots of the
interior transmission and Robin eigenvalues. More precisely, we determine estimates for these roots
by checking where the absolute value of the discrete derivative of the vector (ϑ¸(kmin +n4k,N))nmax

n=0

is smaller than 10 times the mean value of the absolute value of its entries.
Due to Theorems 1 and 20 one expects that at small noise level the largest phase of the remaining

eigenvalues approaches to π from the right or from the left at a couple of wave numbers in [kmin, kmax]
that are square roots of interior eigenvalues, such that one could in principle also check where the
largest phase is close to π. (Recall that Theorem 1 implies that the exact largest phase ϑ∗(k) tends
to π from the right and from the left at the square roots of the interior transmission and Robin
eigenvalues of D, respectively.) Since for coarse wave number grids the largest phase is typically
signi�cantly smaller than π when the wave number is close to an interior eigenvalue, it turned out
that checking for jumps of the largest phase yields, however, a signi�cantly more reliable criterion
than checking where the largest phase is close to π.

Since interior Robin eigenvalues can be computed explicitly both for the cube and the ball,
see [GN13], we start with results for the Robin scattering problem (2,3). When D is the unit ball,
the introduced algorithm detects �ve Robin eigenvalue roots in [0.5, 5.5], see Table 1, obtained from
the jumps of the largest regularised discrete phase forN = 48, 80 and 120. (Note that multiplicities of
eigenvalues are not counted.) Since the largest phase approaches π from above at a Robin eigenvalue
due to Theorem 1(b), Table 1 indicates for each detected jump of the largest discrete phase between
two wave numbers the larger one of these two wave numbers as an upper bound for the square root
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of the exact Robin eigenvalue. Without arti�cial noise on the data, these upper bounds for the
square roots of the Robin eigenvalues values are optimal for the chosen step size of the wave number
grid. The results of Table 1 for 4k = 0.05 were computed from 101 matrix approximations to the
far �eld operator of dimension 120×120 and the entire computation for either noise level took about
1.9 seconds using Matlab on a desktop computer with eight cores. The corresponding experiment
for the cube D = (0, 1)3 yields the very same result, cf. Table 2.

Roots of interior eigenvalues (ball) 1st 2nd 3rd 4th 5th

Exact value (4 digits) 1.571 2.743 3.870 4.712 4.973

N = 48, 4k = 0.2, no arti�cial noise 1.70 2.90 3.90 4.90 5.10

N = 80, 4k = 0.1, no arti�cial noise 1.60 2.80 3.90 4.80 5.00

N = 120, 4k = 0.05, no arti�cial noise 1.60 2.75 3.90 4.75 5.00

N = 120, 4k = 0.05, 1% arti�cial noise 1.60 2.80 3.90 4.75 5.00

N = 120, 4k = 0.05, 5% arti�cial noise 1.60 2.80 3.95 4.75 5.05

Table 1: Estimates of the square roots of the �rst �ve Robin eigenvalues of −∆ in the unit ball from
far �eld data for di�erent levels of arti�cial additive noise.

Roots of interior eigenvalues (cube) 1st 2nd 3rd 4th 5th

Exact value (4 digits) 2.263 4.112 5.357 6.362 6.839

N = 48, 4k = 0.2, no arti�cial noise 2.30 4.30 5.50 6.50 6.90

N = 80, 4k = 0.1, no arti�cial noise 2.30 4.20 5.40 6.40 6.90

N = 120, 4k = 0.05, no arti�cial noise 2.30 4.15 5.40 6.40 6.85

N = 120, 4k = 0.05, 1% arti�cial noise 2.30 4.15 5.40 6.40 6.90

N = 120, 4k = 0.05, 5% arti�cial noise 2.35 4.20 5.45 6.50 6.95

Table 2: Estimates of the square roots of the �rst �ve Robin eigenvalues of −∆ in the cube (0, 1)3

from far �eld data for di�erent levels of arti�cial additive noise.

This situation changes, however, when perturbing the simulated data by arti�cial noise as the
obtained bounds start to shift. The reason for this shift becomes obvious when considering the plot
of the largest regularised discrete phase k 7→ ϑ¸(k, 120) for the case of the cube with and without
arti�cial noise on the data, plotted in Figure 2. By neglecting eigenvalues with magnitude smaller
than the noise level when computing k 7→ ϑ¸(k, 120), the latter function cannot reach π anymore
but at most π − arcsin(εk/(8π2)) = π − arcsin(εr), a function that decreases in the relative noise
level εr > 0.

As a possible numerical remedy when working with noisy data we propose the following heuris-
tic post-processing: If the largest regularised discrete phase jumps between the wave numbers
k∗ − 4k and k∗, then compute the value krob

appr where the straight line in the (k, ϑ)-plane through
(k∗, ϑ

¸(k∗, N)) and (k∗ +4k, ϑ¸(k∗ +4k,N)) intersects the line {ϑ = π},

krob
appr = k∗ +

π − ϑ¸(k∗, N)

ϑ¸(k∗ +4k,N)− ϑ¸(k∗, N)
4k, (36)

to obtain a better approximation of the square root of an interior Robin eigenvalue. Table 3 indicates
the improvement of the resulting approximations for N = 120 and an arti�cial noise level of 5% over
those from Tables 1 and 2.
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(a) Largest regularised discrete phases, no art. noise
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(b) Largest regularised discrete phases, 5% art. noise

Figure 2: The largest regularised discrete phases for the arti�cial noise levels 0% (a) and 5% (b).
Red vertical lines mark the location of the square roots of the exact Robin eigenvalues.

Roots of interior eigenvalues 1st 2nd 3rd 4th 5th

Ball � Exact value (4 digits) 1.571 2.743 3.870 4.712 4.973
Extrapolation (36) 1.575 2.763 3.884 4.719 4.988
Relative error 0.25% 0.73% 0.36% 0.14% 0.30%

Cube � Exact value (4 digits) 2.263 4.112 5.357 6.362 6.839
Extrapolation (36) 2.267 4.133 5.307 6.406 6.827
Relative error 0.17% 0.51% 0.93% 0.69% 0.17%

Table 3: Estimates of the square roots of the �rst �ve Robin eigenvalues by the extrapolation
procedure. The relative arti�cial noise level equals 5%. Fixed parameters are N = 120, 4k = 0.05

We �nally show results for the computation of positive interior transmission eigenvalues from
far �elds, using the same algorithm as explained above but, for simplicity, merely for N = 120
and 4k = 0.05. To the best of our knowledge, the transmission eigenvalues for the unit cube with
constant contrast q0 can not be computed analytically and no numerical computations have been
published for this case in the literature yet, such that we merely know exact values in case that D
is the ball (see [KL13] for the corresponding formula). The extrapolation formula (36) has to be
adapted to transmission eigenvalues, since the largest phase tends to π from below at an interior
transmission eigenvalue with q0 > 0: If the largest regularised discrete phase jumps between k∗ and
k∗+4k, we compute the intersection of the straight line through the points (k∗−4k, ϑ¸(k∗−4k,N))
and (k∗, ϑ

¸(k∗, N)) with {ϑ = π},

kite
appr = k∗ +

π − ϑ¸(k∗, N)

ϑ¸(k∗ +4k,N)− ϑ¸(k∗, N)
4k, (37)

to increase accuracy of the eigenvalue estimate. Except for the smallest positive transmission eigen-
value, Table 4 shows results of about the same quality as for Robin eigenvalues. Indeed, the smallest
positive transmission eigenvalue (which has multiplicity four for this setting) is poorly approximated
for noisy data. Figure 3 hints why: For q0 = 3, the two phase curves with largest phase intersect
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at k = π (see the solid lines in Figure 3(a), but one of two phase curve is extremely �at when it
reaches the value π. As Figure 3(b) shows, the largest discrete phase (marked by bold squares) for
this reason indicates two distinct eigenvalues, underestimating the smallest positive transmission
eigenvalue π. The rather steep dashed curves indicating the second and third interior transmission
eigenvalue are, by the same argument, also estimated rather accurately for noisy data. As no lower
bound for the derivative of the phase curves at values close to π is known, this phenomenon explains
why, e.g., convergence rates for the eigenvalue approximations are di�cult to obtain without further
assumptions.

Roots of interior eigenvalues (ball) 1st 2nd 3rd 4th

Exact value (4 digits) 3.142 � 3.692 4.262 4.832
Estimate, no arti�cial noise 3.00 � 3.65 4.25 4.85
Extrapolation (37), no arti�cial noise 3.116 � 3.697 4.268 4.857
Relative error (extrapolation) 0.81% � 0.14% 0.14% 0.52%

Estimate, 1% arti�cial noise 2.90 3.10 3.65 4.25 4.85
Extrapolation (37), 1% arti�cial noise 2.953 3.145 3.697 4.268 4.858
Relative error (extrapolation) 6.00% 0.10% 0.14% 0.14% 0.54%

Estimate, 5% arti�cial noise 2.75 3.10 3.65 4.25 4.80
Extrapolation (37), 5% arti�cial noise 2.803 3.144 3.698 4.268 4.845
Relative error (extrapolation) 10.78% 0.08 0.16% 0.14% 0.27%

Table 4: Estimates of the square roots of the �rst four interior transmission eigenvalues of the unit
ball for various noise levels. Fixed parameters are N = 120, 4k = 0.05, q0 = 3.

Table 5 �nally shows the corresponding results for the cube (−1, 1)3.

(a) Exact phases of F . (b) Computed phases, 5% art. noise.

Figure 3: The phases of the �ve eigenvalues of F (k) with largest phase (a) and the numerically
computed regularised discrete phases (b) for the unit ball and contrast q0 = 3. (Phases on the
vertical axes vs. wave numbers on the horizontal axes.)
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Roots of interior eigenvalues (cube) 1st 2nd 3rd 4th 5th

Estimate, no arti�cial noise 4.95 5.35 5.65 6.00 6.60
Extrapolation (37), no arti�cial noise 4.983 5.432 5.697 6.023 6.673

Estimate, 1% arti�cial noise 4.90 5.35 5.65 5.95 6.60
Extrapolation (37), 1% arti�cial noise 4.980 5.464 5.721 5.973 6.673

Estimate, 5% arti�cial noise 4.85 5.25 5.55 5.90 6.50
Extrapolation (37), 5% arti�cial noise 4.964 5.334 5.575 5.955 6.552

Table 5: Estimates of the square roots of the �rst �ve interior transmission eigenvalues of the unit
cube for various noise levels. Fixed parameters are N = 120, 4k = 0.05, q0 = 3.

A Auxiliary Results

The Sobolev spaces Hs(S2) can, for s ∈ R, be de�ned using the complete orthonormal system of
spherical harmonics Y m

n ∈ L2(S2) as the completion of C∞(S2) in the norm

‖f‖2Hs =
∞∑
n=0

n∑
|m|≤n

(1 + n2)s|fmn |2, fmn =

∫
S2
f Y m

n dS, n ∈ N0, m ∈ Z, s ∈ R. (38)

Lemma 21. The far �eld operator F is bounded from H−s(S2) into Hs(S2) for all s ≥ 0.

Proof. The kernel u∞ of the linear integral operator F is C∞-smooth in both variables (see [CK13]).
Thus, F is a bounded linear operator from L2(S2) into any function space C`(S2), ` ∈ N, of con-
tinuously di�erentiable functions on the sphere and thus also from L2(S2) into any Sobolev space
H`(S2). Since H`(S2) can be de�ned equivalently via local charts (see, e.g., [McL00]) or via spherical
harmonics, the boundedness of F implies that |(Fg)mn |2 ≤ C(t)(1 + n2)−t for any t > 0 and any
g ∈ L2(S2) with C(t) independent of g. Choosing g = Y m

n and t = 2s shows the claim.
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