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Abstract. We propose an imaging technique for the detection of porous inclu-
sions in a stationary flow based on the Factorization method. The stationary
flow is described by the Stokes-Brinkmann equations, a standard model for a
flow through a (partially) porous medium, involving the deformation tensor of
the flow and the permeability tensor of the porous inclusion. On the boundary
of the domain we prescribe Robin boundary conditions that provide the free-
dom to model, e.g., in- or outlets for the flow. The direct Stokes-Brinkmann
problem to find a velocity field and a pressure for given boundary data is
a mixed variational problem lacking coercivity due to the indefinite pressure
part. It is well-known that indefinite problems are difficult to tackle theoreti-
cally using Factorization methods. Interestingly, the Factorization method can
nevertheless be applied to this non-coercive problem, as long as one uses data
consisting only of velocity measurements. We provide numerical experiments
showing the feasibility of the proposed technique.

1. Introduction. The inverse problem that we consider in this paper is to image
penetrable inclusions modeled by the Stokes-Brinkmann equations in a bounded
Lipschitz domain Ω ⊂ R

d, d = 2 or 3, with Robin boundary conditions. These equa-
tions describe a fluid in steady-state in terms of the velocity field u = (u1, . . . , ud)

⊤ :
Ω → R

d and the pressure p : Ω → R. Both quantities are related through the de-
formation tensor D(u) of the fluid,

D(u) :=
1

2

(
∇u+ (∇u)⊤

)
, where ∇u =




∂u1

∂x1
. . . ∂u1

∂xd

...
. . .

...
∂ud

∂x1
. . . ∂ud

∂xd




and where A⊤ denotes the transposed matrix of a matrix A ∈ R
n×m. The Stokes-

Brinkmann equations

(1) − div(µD(u)) +Mu+∇p = f in Ω

further involve the (scalar) viscosity µ : Ω → R of the fluid and the matrix-valued
function M : Ω → R

d×d. The latter function corresponds, roughly speaking, to the
inverse of the permeability tensor (scaled by the viscosity) of porous inclusions inside
the domain Ω. The latter equation is complemented by the divergence constraint

(2) div u = 0 in Ω.
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2 Armin Lechleiter and Tobias Rienmüller

We should mention already at this point that our notation does not respect some
of the usual notational conventions in the physics literature for viscous flows. Most
differences are intended to reduce the number of required symbols and allow for a
compact notation.

The Stokes-Brinkmann equations are particularly important, at various scales,
for modeling flow through porous and partially porous media. Possible applications
include for instance the modeling of flow of liquids or gas through the ground,
see, e.g., [18, 23] that investigate flow through carbonate karst reservoirs in detail.
The problem of detecting inclusions in flows could moreover be applied to non-
destructive testing problems of isolation materials by streaming air into a block of
the material and measuring the resulting outflow.

On the boundary Γ := ∂Ω we prescribe Robin boundary conditions for the normal
and tangential components of the velocity field. These conditions go back to Navier,
see [22]; they will be introduced in (8) below. These conditions offer considerably
more flexibility to model boundary phenomena than pure Dirichlet (or no-slip) or
Neumann boundary conditions. The Robin conditions for instance allow to crudely
model outlets on the boundary of the domain where liquid or gas streams in or
out. However, since these boundary conditions necessarily link the pressure, the
deformation tensor, and the velocity field, it is impossible to eliminate the pressure
in (1) by, e.g., seeking merely for a velocity field in spaces of divergence-free functions
(the latter technique would be applicable, e.g., when considering no-slip boundary
conditions).

The explicit appearance of the pressure in the boundary conditions complicates
the analysis of the direct and the inverse problem. First, the variational problem
for the direct Stokes-Brinkmann problem necessarily yields a mixed, non-coercive
variational formulation that is coercive in the velocity variable but indefinite in the
pressure variable. Of course, this mixed formulation can be tackled using standard
inf-sup conditions. Second, it is well-known that the analysis of the Factorization
method requires, roughly speaking, coercivity of the direct problem. In our frame-
work, the indefiniteness of the direct problem does not perturb the analysis of the
Factorization method for the inverse problem, as long as one considers (difference)
measurements that are merely based on the velocity field. The analysis that we
present would indeed not work for any (reasonable) measurements involving pres-
sure.

The number of publications on inverse problems for Stokes(-Brinkmann) equa-
tions and related partial differential equations is relatively small when compared
to, e.g., the Laplace, the Helmholtz, or the Maxwell’s equations, and most papers
appeared quite recently. Among the work that is most related to ours is a paper on
a point source method for the Oseen equation (a linearization of the Navier-Stokes
equations), see [26], and a Factorization method for the Stokes equations, see [25],
as well as non-linear integral equations for reconstructing obstacles in a Stokes flow,
see [2]. In contrast to our paper, these works consider flows in an unbounded do-
main for impenetrable obstacles with no-slip (Dirichlet) boundary conditions for
the velocity field. Usually, the viscosity µ outside the obstacle is constant, and the
term div(µD(u)) becomes a multiple of the (vectorial) Laplacian. For such prob-
lems one can avoid to solve an indefinite problem involving the velocity field and
the pressure, for example by solving an integral equation of the second kind for a
single unknown density.
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Other algorithmic techniques for solving inverse problems involving stationary
flows include shape optimization techniques [5] for the shape reconstruction of im-
penetrable cavities, and topological derivatives for the localization of small cav-
ities [3]. For identifiability and stability results for the linear Stokes equations
(and partially also for the time-independent, non-linear Navier-Stokes equation),
see [1, 4, 14]. Finally, [7] even considers inverse (obstacle) problems for time-
dependent flows.

Let us finally comment on a technical detail due to the divergence constraint
in (2). All velocities appearing in this paper are divergence-free functions. Together
with the divergence theorem this implies that the two Robin-to-Dirichlet operators
Λ0,1 for the direct Stokes(-Brinkmann) equations with and without inclusion vanish
when they are applied to a constant multiple of the outside unit normal vector n to
Ω. In principle, one could hence factor out this one-dimensional kernel. We decided
not to do so, since the mixed variational formulation for the velocity-pressure pair
is nevertheless uniquely solvable for any (bounded, linear) right-hand side. In some
sense, the above-described kernel re-appears when we consider the relative Robin-
to-Dirichlet operator Λ0 − Λ1, see Theorem 3.7 for details.

We close this introduction by a couple of less important technical remarks: All
results of this paper remain correct if the porous inclusions possesses the same
viscosity as the background medium. However, the permeability tensor must have
contrast for the proof of Theorem 4.1; stated in our notation, the proof of this
theorem requires that y⊤M(x)y > c|y|2 for points x in the inclusion D and 0 6= y ∈
R

d. Interestingly, this issue is merely linked with the construction of a divergence-
free sampling function for the Factorization method, but not with the range identity.
All of our results also hold if y⊤M(x)y > 0 for x ∈ D and 0 6= y ∈ R

d, at least if
the inverse “square root” M−1/2 does not explode too fast at the boundary of Ω,
compare [16]. Such weaker assumptions, however, require somewhat more involved
proofs. A couple of interesting and practically relevant problems that we do not
treat in this paper are for instance the detection of inclusions on the boundary of
the domain, or the detection of changes in the boundary coefficients.

This paper is organized as follows: We introduce the Stokes and Stokes-Brink-
mann equations together with their variational formulations in Section 2. The
inverse problem of identifying the shape of a penetrable inclusion from boundary
measurements in introduced in Section 3, followed by an analysis of the factoriza-
tion of the measurement operator. Section 4 recalls the well-known fundamental
solution and the Green’s function of the Stokes equations. Section 5 contains the
main characterization result of the paper, and Section 6 presents an (academic)
numerical example that illustrates feasibility, advantages and disadvantages of the
method. The appendix collects a couple of well-known auxiliary results, including,
e.g., several variants of Korn’s inequality we rely on.
Notation. We denote by H1(Ω)d = {u ∈ L2(Ω)d, ∂ui/∂xj ∈ L2(Ω) for i, j =
1, . . . , d} the standard first-order L2-based Sobolev space equipped with usual first-
order Sobolev norm. In the entire text Ω ⊂ R

d, where d = 2 or 3, is a Lipschitz
domain. The boundary of Ω is Γ and n is the unit outward-pointing normal vector

to Ω. We define an inner product for matrices by A:B :=
∑d

i,j=1 AijBij for A,B ∈
R

d×d; the associated norm is |A| =
√
A:A. The corresponding inner product on

L2(Ω)d×d := L2(Ω,Rd×d) is

〈A,B〉L2(Ω)d×d :=

∫

Ω

A(x):B(x) dx for A,B ∈ L2(Ω)d×d.
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2. Stokes flow and variational formulation. The Stokes equations describe
incompressible viscous fluids at low Reynolds number in the steady state. The
governing equations for the velocity u : Ω → R

d and the pressure p : Ω → R are

−div(µD(u)) +∇p = f in Ω,(3)

divu = 0 in Ω,

with suitable boundary conditions of Robin type that we introduce below. The
coefficient µ : Ω → R denotes the fluid’s viscosity and f : Ω → R

d is a source
term. The second equation in (3) is the so-called incompressibility condition for the
fluid. In contrast to many papers and textbooks on the Stokes equations, we do
not assume here that the viscosity µ is constant. Note that a direct computation
shows that for constant viscosity, the term div(µD(u)) reduces (in the distributional
sense) to µ∆u /2, where the Laplacian is applied component-wise.

Lemma 2.1. If u ∈ H1(Ω)d such that divu = 0, then ∆u = 2divD(u).

All differential equations in this text will be formulated variationally. To this
end, the next lemma provides an essential integration-by-parts formula.

Lemma 2.2. For µ ∈ L∞(Ω) and u ∈ H1(Ω)d such that div(µD(u)) ∈ L2(Ω) it
holds that
(4)

−
∫

Ω

v⊤div(µD(u))dx =

∫

Ω

µD(v):D(u)dx −
∫

Γ

v⊤(µD(u)n) dσ ∀v ∈ H1(Ω)d.

The right-most term has to be interpreted as a duality product of v⊤ ∈ H1/2(Γ)d

with the co-normal derivative µD(u)n ∈ H−1/2(Γ)d, see [21]. Seeking for a solution
u ∈ H1(Ω)d to (3) we multiply the first equation with a test function v ∈ H1(Ω)d,
integrate over Ω, and apply Lemma 2.2 as well as the divergence theorem,

(5)

∫

Ω

D(v):µD(u) dx −
∫

Ω

p divv dx +

∫

Γ

v⊤(pn− µD(u)n) dS

=

∫

Ω

v⊤ f dx ∀v ∈ H1(Ω)d.

Let us now consider the boundary terms in (5). Every vector field u on the boundary
can be decomposed into its tangential component v‖ and its normal component v⊥,

(6) v = v‖ + v⊥ =

{
n× (v × n) + (v · n)n, d = 3,
(v1 n2 − v2 n1) (

n2

−n1
) + (v1 n1 + v2 n2) (

n1
n2

) , d = 2.

The same decomposition can be done for the vector field D(u)n,

D(u)n = D‖(u) +D⊥(u) =





n× ((D(u)n)× n) + ((D(u)n) · n)n, d = 3,[
(D(u)n · ( n2

−n1
)
]
( n2

−n1
)

+
[
D(u)n · ( n1

n2
)
]
( n1
n2

) , d = 2.

Hence, v⊤ (D(u)n) = [v‖ + v⊥]
⊤[D‖(u) +D⊥(u)] = v⊤‖ D‖(u) + v⊤⊥ D⊥(u) and (5)

becomes

(7)

∫

Ω

µD(u):D(v) dx −
∫

Ω

p divv dx −
∫

Γ

v⊤‖ (µD‖(u)) dS

+

∫

Γ

v⊤⊥(pn− µD⊥(u)) dS =

∫

Ω

v⊤ f dx .
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Remark 1. Strictly speaking, we would have to restrict a vector field u ∈ H1(Ω)d

to the boundary Γ before taking its normal or tangential component. To simplify
notation, we will nevertheless write u⊥ and u‖ instead of (u|Γ)⊥ and (u|Γ)‖ for

u ∈ H1(Ω)d, respectively.

We want the tangential and normal components of u and of the deformation
tensor D(u) to satisfy Robin-type boundary conditions,

(8) µD‖(u) = g‖ − α‖u‖ on Γ and pn− µD⊥(u) = −g⊥ + α⊥u⊥ on Γ

for given boundary data g ∈ L2(Γ)d. Plugging these relations into (7) yields that

(9)

∫

Ω

µD(u):D(v) dx +

∫

Γ

α‖v
⊤
‖ u‖ dS +

∫

Γ

α⊥v
⊤
⊥u⊥ dS −

∫

Ω

p divv dx

=

∫

Ω

v⊤ f dx +

∫

Γ

v⊤‖ g‖ dS +

∫

Γ

v⊤⊥g⊥ dS ∀v ∈ H1(Ω)d.

For given f ∈ L2(Ω)d and g ∈ L2(Γ)d, the variational formulation to find u ∈
H1(Ω)d and p ∈ L2(Ω) will be presented below, under the assumption that µ ∈
L∞(Ω) and α⊥,‖ ∈ L∞(Γ) are positive. Before stating this mixed formulation, let
us introduce the Stokes-Brinkmann equations.

A penetrable porous inclusion inside the viscous liquid can be modeled by the
Stokes-Brinkmann equations: Using the above notation, these equations describe
the steady-state flow via an additional absorption term M : Ω → R

d×d that is
typically supported inside the inclusions,

−div(µD(u)) +Mu+∇p = f in Ω,(10)

divu = 0 in Ω,

µD‖(u) + α‖u‖ = g‖ on Γ,

(µD⊥(u)− pn) + α⊥u⊥ = g⊥ on Γ.

The material parameters µ and M will typically take different values in the inside
and the outside of a porous inclusion. In particular, outside the inclusion the flow
is free, that is, M vanishes.

To state existence and uniqueness results for the Stokes(-Brinkmann) equations,
we suppose that µ ∈ L∞(Ω) is strictly positive, µ ≥ c > 0, that α⊥,‖ ∈ L∞(Γ) with

α⊥,‖ ≥ c > 0, and that M ∈ L∞(Ω)d×d takes values in the symmetric and positive
semidefinite matrices,

y⊤M(x)y ≥ 0 ∀x ∈ Ω and y ∈ R
d.

Define the bounded bilinear forms

a(u, v) :=

∫

Ω

µD(u):D(v) dx +

∫

Ω

v⊤Mu dx +

∫

Γ

α‖v
⊤
‖ u‖ dS +

∫

Γ

α⊥v
⊤
⊥u⊥ dS ,

(11)

b(v, p) :=−
∫

Ω

p divv dx , and F (v) :=

∫

Ω

v⊤ f dx +

∫

Γ

v⊤g dS

(12)

for u, v ∈ H1(Ω)d, p ∈ L2(Ω), f ∈ L2(Ω)d and g ∈ L2(Γ)d. Repeating exactly
the same integrations by parts that lead us to (9) we obtain the following mixed
variational formulation of the Stokes-Brinkmann equations (10), which obviously
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6 Armin Lechleiter and Tobias Rienmüller

include the Stokes equations by setting M = 0: Seek u ∈ H1(Ω)d and p ∈ L2(Ω)
such that

a(u, v) + b(v, p) = F (v) ∀v ∈ H1(Ω)d,(13)

b(u, q) = 0 ∀q ∈ L2(Ω).(14)

Theorem 2.3. For any bounded linear form F : H1(Ω)d → R there exists a unique
solution (u, p) ∈ H1(Ω)d × L2(Ω) of the variational problem (13).

Proof. This is an application of a standard result on mixed variational formula-
tions, see [6]. For the problem under investigation, one uses Korn’s inequality (see
Lemma A.2(b)) to show coercivity of the bilinear form a(·, ·), and an inf-sup condi-
tion for the form b, see, e.g., [20, 6].

Remark 2. Different physically senseful choices for the boundary conditions on
Γ are possible, e.g., u‖ = 0 and (µD⊥(u) − pn) + α⊥u⊥ = g⊥ on Γ. The ansatz

space for the solution u is then H1
⊥(Ω)

d = {u ∈ H1(Ω)d : u‖ = 0 on Γ}. The

formulation (7) has to be adapted by replacing H1(Ω)d by H1
⊥(Ω)

d and skipping
the term involving α‖. It is also possible to replace all Robin boundary conditions
by Neumann conditions. Then, however, the solution space has to be adapted,
typically yielding a quotient space where rigid motions are factored out.

3. Inverse Stokes problem and factorization of the data operator. In this
section we consider an inverse Stokes problem which is to reconstruct an inclusion
D ⊂ Ω where both viscosity and permeability differ from the background parameters
from boundary measurements taken on Γ = ∂Ω. To this end, we denote by µ0 the
known viscosity of the background medium, while µ1 denotes the unknown viscosity
which differs from µ0 inside an unknown inclusion D ⊂ Ω. In the entire paper
we assume that Ω\D̄ is connected. We also assume that the viscosity inside the
inclusion is higher than in the background medium, and that the permeability inside
D is positive. As above, we describe the permeability effect by a symmetric matrix
M : Ω → R

d×d such that M(x) = 0 a.e. in Ω\D̄ and y⊤M(x)y ≥ c|y|2 > 0 for
a.e. x ∈ D and all 0 6= y ∈ R

d. In the following, we abbreviate this property as

M ≥ c > 0.

Later on, it will be convenient to work with the viscosity contrast κ,

κ :=

{
µ1 − µ0 for x ∈ D,
0 for x ∈ Ω\D̄.

The reconstruction of the shape of D is based on the difference of two Robin-to-
Dirichlet operators. Roughly speaking, the first of these operators, Λ0 : L2(Γ)d →
L2(Γ)d, maps Robin boundary values to the trace of the solution u0 to the Stokes
problem with (background) viscosity µ0 (and without the Brinkmann termM). The
second of these operators, Λ1 : L2(Γ)d → L2(Γ)d, does the same for viscosity µ1

and permeability M . More precisely, Λ0 maps g ∈ L2(Γ)d to u0|Γ, where (u0, p0) ∈
H1(Ω)d × L2(Ω) solves

(15)∫

Ω

µ0D(u0):D(v) dx +

∫

Γ

α‖v
⊤
‖ (u0)‖ dS +

∫

Γ

α⊥v
⊤
⊥(u0)⊥ dS −

∫

Ω

p0 divv dx

+

∫

Ω

q divu0 dx =

∫

Γ

v⊤g dS ∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).
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Remark 3. (a) In (15) we added the incompressibility condition from the second
line of (13) to the first line of (13). Of course, choosing v = 0 in (15) shows that
this condition is still satisfied.

(b) The operator Λ0 can in principle be computed (numerically) without knowing
D, M , or µ1; it is hence not necessarily required to measure Λ0 experimentally. If,
however, such measurements are available, then the modeling error of the difference
Λ0 − Λ1 can be reduced significantly.

Analogously, the Robin-to-Dirichlet operator Λ1 maps g to u1|Γ, where the pair
(u1, p1) ∈ H1(Ω)d × L2(Ω) solves

(16)∫

Ω

µ1D(u1):D(v) dx +

∫

D

v⊤Mu1 dx +

∫

Γ

α‖v
⊤
‖ (u1)‖ dS +

∫

Γ

α⊥v
⊤
⊥(u1)⊥ dS

−
∫

Ω

p1 divv dx +

∫

Ω

q divu1 dx =

∫

Γ

v⊤g dS ∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).

Theorems 2.3 and A.1 show that Λ0,1 are well-defined and compact operators on
L2(Γ)d.

A crucial tool to arrive at a Factorization method for the inverse Stokes-Brink-
mann problem is a factorization of the relative Robin-to-Dirichlet operator Λ0−Λ1.
To construct this factorization we set Λ0g = u0|Γ and Λ1g = u1|Γ and write w =
u0 − u1 and r = p0 − p1. We take the difference of (15) and (16), use the fact that
µ0 = µ1 − κ, and find that

(17)

∫

Ω

µ1D(w):D(v) dx +

∫

D

v⊤Mw dx +

∫

Γ

α‖v
⊤
‖ w‖ dS +

∫

Γ

α⊥v
⊤
⊥w⊥ dS

−
∫

Ω

r divv dx +

∫

Ω

q divw dx =

∫

D

κD(u0):D(v) dx +

∫

D

v⊤Mu0 dx

∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).

To derive a first factorization of Λ0 − Λ1 we define the (evaluation) operator H :
L2(Γ)d → H1(D)d to evaluate the field u0 for background viscosity µ0 in the inclu-
sion D,

H : g 7→ u0|D ,
where (u0, p0) ∈ H1(Ω)d × L2(Ω) solves (15). Additionally, we define the solution
operator

G : H1(D)d → L2(Γ)d by Gh = w,

where (w, r) ∈ H1(Ω)d × L2(Ω) solves

(18)

∫

Ω

µ1D(w):D(v) dx +

∫

D

v⊤Mw dx +

∫

Γ

α‖v
⊤
‖ w‖ dS +

∫

Γ

α⊥v
⊤
⊥w⊥ dS

−
∫

Ω

r divv dx +

∫

Ω

q divw dx =

∫

D

κD(h):D(v) dx +

∫

D

v⊤Mh dx

∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).

Comparing the last mixed variational formulation with (17) directly shows the fac-
torization Λ0 − Λ1 = GH . In the following we will need to work with the adjoint
H∗ of H . We compute this adjoint with respect to the (special) inner product

(19) 〈h1, h2〉∗ =

∫

D

κD(h1):D(h2) dx +

∫

D

h⊤2 Mh1 dx .
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8 Armin Lechleiter and Tobias Rienmüller

Lemma 3.1. If κ ≥ c > 0 and if y⊤M(x)y ≥ c|y|2 > 0 a.e. in D and for all
0 6= y ∈ R

d, then the inner product from (19) is equivalent to the usual inner
product on H1(D)d.

Proof. The proof follows from the coercivity of the bilinear form in (19) due to
Lemma A.2(a).

Theorem 3.2. The adjoint H∗ : H1(D)d → L2(Γ)d is given by H∗h = v|Γ where
v ∈ H1(Ω)d and s ∈ L2(Ω) solve

(20)

∫

Ω

µ0D(v):D(ψ) dx +

∫

Γ

α‖ψ
⊤
‖ v‖ dS +

∫

Γ

α⊥ψ
⊤
⊥v⊥ dS −

∫

Ω

s divψ dx

+

∫

Ω

q divv dx =

∫

D

κD(h):D(ψ) dx +

∫

D

ψ⊤Mh dx

∀ψ ∈ H1(Ω)d, ∀q ∈ L2(Ω).

Proof. Let h ∈ H1(D)d and g ∈ L2(Γ)d. By definition of the inner product (19)
and by definition of H ,

〈h,Hg〉∗ =

∫

D

κD(h):D(Hg) dx +

∫

D

(Hg)⊤Mh dx

=

∫

D

κD(h):D(u0) dx +

∫

D

u⊤0 Mh dx ,

where (u0, p0) ∈ H1(Ω)d×L2(Ω) solves (15). Next, we use (20) with (ψ, q) = (u0, p0)
to get that

∫

D

κD(h):D(u0) dx +

∫

D

u⊤0 Mh dx =

∫

Ω

µ0D(u0):D(v) dx +

∫

Γ

α‖v
⊤
‖ (u0)‖ dS

+

∫

Γ

α⊥v
⊤
⊥(u0)⊥ dS −

∫

Ω

s divu0 dx +

∫

Ω

p0 divv dx
(15)
=

∫

Γ

v⊤g dS .

Hence, 〈h,Hg〉∗ =
∫
Γ v

⊤g dS , meaning that H∗h = v|Γ where (v, s) ∈ H1(Ω)d ×
L2(Ω) solves (20).

Theorem 3.3. The operator H∗ : H1(D)d → L2(Γ)d is compact.

Proof. This follows from the trace theorem, see Theorem A.1.

Theorem 3.4. The factorization

(21) Λ0 − Λ1 = H∗TH

holds with T : H1(D)d → H1(D)d defined by Th = h−w where (w, r) ∈ H1(Ω)d ×
L2(Ω) solves

(22)

∫

Ω

µ1D(w):D(v) dx +

∫

D

v⊤Mw dx +

∫

Γ

α‖v
⊤
‖ w‖ dS +

∫

Γ

α⊥v
⊤
⊥w⊥ dS

−
∫

Ω

r divv dx +

∫

Ω

q divw dx =

∫

D

κD(h):D(v) dx +

∫

D

v⊤Mh dx

∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).
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Proof. We exploit that µ1 = µ0 + κ to rewrite the variational formulation (18) that
defines G(h) = w|Γ by taking all integrals containing κ orM on the right-hand side,

(23)

∫

Ω

µ0D(w):D(v) dx +

∫

Γ

α‖v
⊤
‖ w‖ dS +

∫

Γ

α⊥v
⊤
⊥w⊥ dS −

∫

Ω

r divv dx

+

∫

Ω

q divw dx =

∫

D

κD(h− w):D(v) dx +

∫

D

v⊤M(h− w) dx

∀v ∈ H1(Ω)d, ∀q ∈ L2(Ω).

Since we already know that Λ0 − Λ1 = GH , it remains to use the definition of H∗

in (20) to show that H∗T = G to conclude that (21) holds true. Hence, we need to
show that H∗(h − w) = w|Γ. If H∗(h − w) = w̃|Γ then (w̃, s̃) ∈ H1(Ω)d × L2(Ω)
solves

(24)

∫

Ω

µ0D(w̃):D(ψ) dx +

∫

Γ

α‖ψ
⊤
‖ w̃‖ dS +

∫

Γ

α⊥ψ
⊤
⊥w̃⊥ dS −

∫

Ω

s̃ divψ dx

+

∫

Ω

q divw̃ dx =

∫

D

κD(h− w):D(ψ) dx +

∫

D

ψ⊤M(h− w) dx

∀ψ ∈ H1(Ω)d, ∀q ∈ L2(Ω).

Obviously, (24) is exactly the same variational problem for the unknowns (w̃, s̃)
as (23) for (w, s). Since this problem is uniquely solvable (see Theorem 2.3) we
conclude that w = w̃. In consequence, H∗(Th) = H∗(h − w) = w̃|Γ = w|Γ =
G(h).

Theorem 3.5. The operator T : H1(D)d → H1(D)d, h 7→ h − w, where (w, r) ∈
H1(Ω)d × L2(Ω) solves (22), is self-adjoint on (H1(D), 〈·, ·〉∗); see (19) for a defi-
nition of the inner product 〈·, ·〉∗.
Proof. For h1,2 ∈ H1(Ω)d let (w1,2, r1,2) ∈ H1(Ω)d ×L2(Ω) be the solution to (22).
We need to show that

〈Th1, h2〉∗ =

∫

D

κD(h1 − w1):D(h2) dx +

∫

D

h⊤2 M(h1 − w1) dx

!
=

∫

D

κD(h1):D(h2 − w2) dx +

∫

D

(h2 − w2)
⊤Mh1 dx = 〈h1, Th2〉∗.

Subtracting
∫
D
κD(h1):D(h2) dx +

∫
D
h⊤2 Mh1 dx on both sides, it remains to show

that

(25)

∫

D

(
κD(w1):D(h2) + h⊤2 Mw1

)
dx

!
=

∫

D

(
κD(h1):D(w2) + w⊤

2 Mh1
)
dx .

The variational formulation (22) for (w2, r2) with (w1, r1) as test functions shows
that the left-hand side of (25) equals
∫

Ω

µ1D(w2):D(w1) dx +

∫

D

w⊤
1 Mw2 dx +

∫

Γ

α‖(w1)
⊤
‖ (w2)‖ dS

+

∫

Γ

α⊥(w1)
⊤
⊥(w2)⊥ dS −

∫

Ω

r2 divw1 dx −
∫

Ω

r1 divw2 dx .

The variational formulation (22) for (w1, r1) with (w2, r2) as test functions shows
that the right-hand side in (25) equals the same expression, up to exchanging w1

and w2. Hence, (25) holds true and T is self-adjoint.
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Theorem 3.6. Assume that κ ≥ c > 0 and M ≥ c > 0 are strictly positive in D.
Then the operator T is coercive on (H1(D)d, 〈·, ·〉∗).

Proof. The definition of 〈·, ·〉∗ in (19) and the definition of T in Theorem 3.4 imply
that

〈Th, h〉∗ =

∫

D

(
D(Th):D(h) + h⊤M(Th)

)
dx

=

∫

D

(
κD(h− w):D(h) + h⊤M(h− w)

)
dx .

Obviously,
∫

D

κD(h− w):D(h) dx =

∫

D

κD(h− w):D(h− w) dx +

∫

D

κD(h− w):D(w) dx ,

and
∫

D

h⊤M(h− w) dx =

∫

D

(h− w)⊤M(h− w) dx +

∫

D

w⊤M(h− w) dx .

Now use (23) with v = w to obtain that

(26) 〈Th, h〉∗ =

∫

D

κD(h− w):D(h− w) dx +

∫

D

κD(h− w):D(w) dx

+

∫

D

(h− w)⊤M(h− w) dx +

∫

D

w⊤M(h− w) dx

=

∫

D

κD(h− w):D(h− w) dx +

∫

D

(h− w)⊤M(h− w) dx

+

∫

Ω

µ0D(w):D(w) dx −
∫

Ω

r divw dx +

∫

Γ

α‖|w‖|2 dS

+

∫

Γ

α⊥|w⊥|2 dS +

∫

Ω

q divw dx ∀q ∈ L2(Ω).

Finally choosing the test function q to be r, (26) becomes

(27) 〈Th, h〉∗ =

∫

D

κD(h− w):D(h− w) dx +

∫

D

(h− w)⊤M(h− w) dx

+

∫

Ω

µ0D(w):D(w) dx +

∫

Γ

α‖|w‖|2 dS +

∫

Γ

α⊥|w⊥|2 dS .

The task is now to estimate the terms of the right of (27). First,

∫

D

κD(h− w):D(h− w) dx ≥ c1

∫

D

|D(h− w)|2 dx ,
∫

D

(h− w)⊤M(h− w) dS ≥ c2

∫

D

|h− w|2 dS .

Second, the coercivity of the bilinear form a(·, ·) on H1(Ω)d implies

∫

Ω

µ0D(w):D(w) dx +

∫

Γ

α‖|w‖|2 dS +

∫

Γ

α⊥|w⊥|2 dS ≥ c3‖w‖2H1(Ω)d .

Inverse Problems and Imaging Volume 7, No. 4 (2013), X–XX



Inverse Stokes Problem and Factorization Method 11

Consequently,

〈Th, h〉∗ ≥c1
∫

D

|D(h− w)|2 dx + c2

∫

D

|h− w|2 dx + c3

∫

D

(|D(w)|2 + |w|2) dx

≥
∫

D

[
c1|D(h)|2 − 2c1(D(h):D(w)) + (c1 + c3)|D(w)|2

]
dx

+

∫

D

[
c2|h|2 − 2c2hw + (c2 + c3)|w|2

]
dx

≥
∫

D

[∣∣√c1 + c3D(w) − c1D(h)√
c1 + c3

∣∣2 + c1

(
1− c1

c1 + c3

)
|D(h)|2

]
dx

+

∫

D

[∣∣√c2 + c3 w − c2√
c2 + c3

h
∣∣2 + c2

(
1− c2

c2 + c3

)
|h|2

]
dx

≥ c1c3√
c1 + c3

‖D(h)‖2L2(D)d×d +
c2c3√
c2 + c3

‖h‖2L2(D)d ≥ c4‖h‖2H1(D)d .

Theorem 3.7. The difference Λ0 − Λ1 : L2(Γ)d → L2(Γ)d is compact, self-
adjoint and non-negative. Its one-dimensional kernel is {g ∈ L2(Γ)d, g(x) =
cn(x) for some c ∈ R}.
Proof. The factorization Λ0 − Λ1 = H∗TH and the compactness of H∗ imply that
the difference Λ0 −Λ1 is compact; Theorem 3.5 and the factorization yield the self-
adjointness of the relative Robin-to-Dirichlet operator. The coercivity of T implies

that 〈(Λ0 − Λ1)g, g〉L2(Γ)d ≥ 0 for all g ∈ L2(Γ)
d
. Hence, Λ0 − Λ1 is non-negative.

Next, we prove the stated characterization of the kernel of Λ0−Λ1. Let g ∈ L2(Γ)d

with (Λ0 − Λ1)g = 0. Then

0 = 〈(Λ0 − Λ1)g, g〉L2(Γ)d = 〈H∗THg, g〉L2(Γ)d = 〈THg,Hg〉∗ ≥ c‖Hg‖2H1(D)d ,

and so Hg = 0. Let 0 = Hg = u0|D where (u0, p0) ∈ H1(Ω)d× ∈ L2(Ω) solve (15).
From Lemma A.3 we deduce that u0 = 0 in Ω and that p0 is constant in Ω, say
p0 = −c ∈ R. Consequently, (15) implies that c

∫
Ω divv dx =

∫
Γ g

⊤v dS for all

v ∈ H1(Ω)d. Using the divergence theorem and a decomposition into tangential
and normal components, we find that

(28) c

∫

Γ

v⊥ · n dS =

∫

Γ

v⊤‖ g‖ dS +

∫

Γ

v⊤⊥g⊥ dS ∀v ∈ H1(Ω)d.

Choosing v such that (v|Γ)⊥ = 0 on Γ shows that g‖ = 0 on Γ. Hence,
∫
Γ
v⊤⊥(cn−

g⊥) dS = 0 for arbitrary v ∈ H1(Ω)d. Thus g⊥ = cn and ker(Λ0 −Λ1) ⊂ {g = cn}.
Now we prove that {g = cn} ⊂ ker(Λ0 − Λ1). We assume that g = cn for

some constant c. The pair (u0, p0) = (0, c) solves (15) for boundary data g‖,⊥.
(This follows from the same computation as in the last part). Obviously, Hg = 0,
since u0 vanishes on Ω. Since H and Λ0 − Λ1 are related by the factorization of
Theorem 3.4, we deduce that (Λ0 − Λ1)g = 0.

Since the relative Robin-to-Dirichlet operator is a compact and self-adjoint op-
erator, there exists a complete orthonormal eigensystem (λl, πl)l∈N of Λ0 −Λ1 such
that λl → 0 as l → ∞. Since Λ0 −Λ1 is non-negative, it is obvious that λl ≥ 0 and
the characterization of the kernel of Λ0 − Λ1 shows that precisely one eigenvalue
vanishes. For simplicity, we define λ1 = 0 to be the zero eigenvalue, and order the
remaining eigenvalues λ2 ≥ λ3 ≥ · · · > 0 in decreasing order.
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4. Fundamental solution and Green’s function of the Stokes equations.

The second important ingredient of the Factorization method is a characterization
of the inclusion D via the Green’s function of the Stokes equations. In this section,
we construct this Green’s function via a correction of the boundary values of the
fundamental solution of the Stokes equations. To this end, we will assume that the
viscosity µ0 of the background medium is constant. Without loss of generality, we
choose the simplest case,

µ0 = 2 in Ω,

since then div(µ0D(u)) = ∆u for any divergence-free function due to Lemma 2.1.
It is not difficult to see that any other (positive) constant viscosity can be treated
analogously by a simple scaling argument. The treatment of varying background
viscosities requires more involved adaptions of the fundamental solution to get the
Green’s function for varying viscosity, see, e.g., [13] for the case of the Laplace
equation.

The fundamental solution of the Stokes equations can be found in many references
on boundary integral equations for the Stokes equations, see, e.g., [10, 19, 15]. We
will concentrate in this section on the case d = 2 and announce the results for d = 3
in the end of the section without proof. For x 6= y ∈ R

2, we set

Sij(x, y) =
1

8π

[
δij ln

1

|x− y| +
(xi − yi)(xj − yj)

|x− y|2
]
, si(x, y) =

(xi − yi)

2π |x− y|2 .

The functions

S(x, y) =

(
S11(x, y) S12(x, y)
S21(x, y) S22(x, y)

)
and s(x, y) =

(
s1(x, y)
s2(x, y)

)

are called the fundamental solution of the Stokes equations in two dimensions. We
denote the two columns of the 2× 2 matrix-valued function S by S1 = (S11, S21)

⊤

and by S2 = (S12, S22)
⊤. For i = 1, 2, one can explicitly compute that the pair

(Si, si) satisfies

−∆Si(x, y) +∇si(x, y) = 0 for x 6= y,

divSi(x, y) = 0 for x 6= y.
(29)

The Green’s function is now defined to correct the inhomogeneous boundary values
of the fundamental solution to homogeneous Robin boundary conditions. For y ∈ Ω,
define correction terms

R(x, y) =

(
R11(x, y) R12(x, y)
R21(x, y) R22(x, y)

)
and r(x, y) =

(
r1(x, y)
r2(x, y)

)
,

where Rij ∈ H1(Ω), Ri = (R1i, R2i)
⊤, and ri ∈ L2(Ω). If, for i = 1, 2 and y ∈ Ω,

the pair (Ri, ri) ∈ H1(Ω)2 × L2(Ω) is a variational solution to the Stokes problem

(30) −∆Ri(·, y) +∇ri(·, y) = 0 and divRi(·, y) = 0 in Ω,

subject to the boundary conditions

(31) 2D‖(Ri(·, y)) + α‖Ri(·, y)‖ = −[2D‖(Si(·, y)) + α‖Si(·, y)‖] on Γ

and

(ri(·, y)n−2D⊥(Ri(·, y))n)− α⊥Ri(·, y)⊥(32)

= −[(si(·, y)n− 2D⊥(Si(·, y))n)− α⊥Si(·, y)⊥] on Γ,

then (E, e) = (S, s) + (R, r) is called the Green’s function for the Stokes equations
in Ω. Note that all right-hand sides in the above boundary conditions for (Ri, ri)
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belong to L2(Γ)2, since the singularity y ∈ Ω of the fundamental solution is away
from the boundary Γ. The explicit variational formulation defining (Ri, ri) can
be found from (13), choosing µ ≡ 2, M = 0, g‖ = −[µD‖(Si) + α‖(Si)‖] and
g⊥ = (sin− µD⊥(Si))− α⊥(Si)⊥.

Again, we emphasize that the 2× 2 matrix-valued function E consists of the two
columns E1 and E2. Obviously, the Green’s function (E, e) solves, for i = 1, 2,

−∆Ei(·, y) +∇ei(·, y) = 0 in Ω \ {y},
divEi(·, y) = 0 in Ω \ {y},

2D‖(Ei(·, y)) + α‖Ei(·, y)‖ = 0 on Γ,(33)

(ei(·, y)n− 2D⊥(Ei(·, y))n)− α⊥Ei(·, y)⊥ = 0 on Γ.

The following sampling function in two dimensions plays a main role for the con-
struction of the Factorization method in the next section. For every z ∈ Ω and
some t ∈ [0, 2π) we define

(34) φz ∈ L2(Γ)2 by φz := cos(t) E1(·, z)|Γ + sin(t) E2(·, z)|Γ .
The parameter t could in principle be chosen in dependence on the sampling point z.
However, in all our numerical examples, we will always work with a fixed t, for
simplicity. The sampling function φz characterizes the inclusion D via the range
R(H∗) of the adjoint H∗ : L2(D)2×2 → L2(Γ)2, see Theorem 3.2.

Theorem 4.1. For z ∈ Ω it holds that z ∈ D if and only if φz ∈ R(H∗).

Due to the divergence constraint for the velocity field, the proof of Theorem 4.1
is substantially more involved than the corresponding result for, e.g., the Laplace
equation. The easy direction of the proof is based on the following auxiliary re-
sult that we will not prove in detail since the arguments are rather standard, see,
e.g., [16].

Lemma 4.2. For all z ∈ Ω and t ∈ [0, 2π], the function defined by

x 7→ cos(t)E1(x, z) + sin(t)E2(x, z) for x ∈ Ω \ {z}
does not belong to H1(Ω)2.

In a nutshell, the proof of Lemma 4.2 follows from the definition of Ei = Si+Ri,
from the fact that Ri ∈ H1(Ω)2 by definition, and from the singularity of Si at
x = y, which prevents ∇Si from being square integrable in Ω. Admitting this
result, we next prove Theorem 4.1.

Proof of Theorem 4.1. First, let z ∈ D. To show that φz belongs to the range of H∗

we cut off the singularity of the Green’s function E. This cut-off is usually done by
multiplication of E with a smooth function that vanishes at the singularity. This is,
however, not a successful approach here, since it destroys the divergence condition
divE1,2(·, z) = 0. Instead, we construct a pre-image of φz using a vector potential
approach: It is easy to see that P1,2(x) : R

2\{0} → R defined by

P1(x) = x2 log(|x|)− x2 and P2(x) = x1 log(|x|) − x1,

satisfies

Si(x− y) = − 1

4π

(
−∂Pi(x−y)

∂x2

∂Pi(x−y)
∂x1

)
, x 6= y, i = 1, 2.

Let us choose a closed disc Kε(z) = {x ∈ R
2 : |x− z| ≤ ε} with center z and radius

ε such that Kε(z) ⊂ D. In addition, choose a cut-off function ϕ ∈ C∞(R2) such
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that ϕ(x) = 0 for |x − z| ≤ ε/2 and ϕ(x) = 1 for |x − z| ≥ ε. Using the cut-off
function ϕ, we define v ∈ H1(Ω)2 by

(35)

v(x) = − 1

4π

[
cos(t)

(− ∂
∂x2

(ϕ(x)P1(x− y))
∂

∂x1
(ϕ(x)P1(x− y))

)
+ sin(t)

(− ∂
∂x2

(ϕ(x)P2(x− y))
∂

∂x1
(ϕ(x)P2(x− y))

)]

+ cos(t)R1(x, z) + sin(t)R2(x, z), x ∈ Ω.

The terms in the first line of (35) are smooth functions of x because x 7→ ϕ(x)Pi(x−
y) is smooth. Note also that v is divergence-free in Ω by construction via the
vector potentials. Next, we define a corresponding pressure q ∈ L2(Ω) by q(x) :=
ϕ(x)[cos(t)e1(x, z)+sin(t)e2(x, z)] for x ∈ Ω. Then (v, q) ∈ H1(Ω)2×L2(Ω) satisfies
the Stokes equations in Ω \D, and Lemma 2.2 implies that

(36) 2

∫

Ω\D

D(v):D(ψ) dx +

∫

Γ

α‖v‖ψ‖ dS +

∫

Γ

α⊥v⊥ψ⊥ dS

−
∫

Ω\D

q divψ dx +

∫

Ω\D

θ divv dx −
∫

∂D

ψ⊤(qn− 2D(v)n) dS = 0

∀ψ ∈ H1(Ω\D)2, ∀θ ∈ L2(Ω\D).

Note that the boundary term on ∂D is well-defined since ψ|Γ ∈ H1/2(Γ)2 and since
qn−2D(v)n ∈ H−1/2(Γ)2 due to −div(2D(v))+∇q ∈ L2(Ω)2, compare [21, Chapter
4]. Recall the definition of the inner product 〈·, ·〉∗ on H1(D)2 from (19). Riesz’s
lemma implies that there exists a unique solution u ∈ H1(D)2 to

〈u, ψ〉∗ = 2

∫

D

D(v):D(ψ) dx(37)

−
∫

D

q divψ dx +

∫

∂D

ψ⊤(qn− 2D(v)n) dS ∀ψ ∈ H1(D)2.

Adding (37) and (36) for θ = 0, we get that

2

∫

Ω

D(v):D(ψ) dx +

∫

Γ

α‖v‖ψ‖ dS +

∫

Γ

α⊥v⊥ψ⊥ dS −
∫

Ω

q divψ dx

= 〈u, ψ〉∗ =

∫

D

κD(u):D(ψ) dx +

∫

D

ψ⊤Mu dx ∀ψ ∈ H1(Ω)2.

Since v has been constructed such that divv = 0, the last equation obviously implies
that

(38) 2

∫

Ω

D(v):D(ψ) dx +

∫

Γ

α‖v‖ψ‖ dS +

∫

Γ

α⊥v⊥ψ⊥ dS

−
∫

Ω

q divψ dx +

∫

Ω

θ divv dx =

∫

D

κD(u):D(ψ) dx +

∫

D

ψ⊤Mu dx

∀ψ ∈ H1(Ω)2, ∀θ ∈ L2(Ω).

Therefore, Theorem 3.2 shows that H∗(u|D) = v|Γ = φz and thus φz ∈ R(H∗).
Second, let z 6∈ D. We have to show that φz is not contained in the range of H∗

and we argue by contradiction: Suppose that φz = H∗h for some h ∈ H1(D)2. Let
(u, p) ∈ H1(Ω)2×L2(Ω) be the solution to (20) such thatH∗(h) = u|Γ. Additionally,
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set Dε = D ∪ {x ∈ Ω, |x− z| < ε} ⊂ Ω and define

w = u− [cos(t)(E1(·, z) + sin(t)E2(·, z)] in Ω \Dε(z)

s = p− [cos(t)e1(·, z) + sin(t)e2(·, z)] in Ω \Dε(z).

Then (w, s) ∈ H1(Ω \Dε(z))
2 × L2(Ω \Dε(z)) and w|Γ ∈ L2(Γ)2 satisfies that

w|Γ = u|Γ −
[
cos(t)E1(·, z)|Γ + sin(t)E2(·, z)|Γ

]
= u|Γ − φz . = H∗h− φz = 0.

In addition, (u, p) ∈ H1(Ω)2×L2(Ω) solves (20), that is, for every ε > 0 it holds that
(w, s) ∈ H1(Ω \Dε(z))

2×L2(Ω \Dε(z)) is by construction a variational solution to

−2 divD(w) +∇s = 0 and divw = 0 in Ω\Dε(z),

2D‖(w) + α‖w‖ = 0 on Γ,

(sn− 2D⊥(w)) − α⊥w⊥ = 0 on Γ.

Since, w|Γ = 0 we conclude that 2D⊥(w)n−sn and D‖(w) vanish on Γ, too. Hence,
the unique continuation result stated in Lemma A.4 and extension by zero outside
Ω imply that w vanishes in Ω\Dε(z) for any ε > 0. Since ε > 0 was arbitrary,

(39) u = cos(t)E1(·, z) + sin(t)E2(·, z) in Ω\{z}.
By construction, u ∈ H1(Ω)2. Lemma 4.2 states that the right-hand side in (39)
does not belong to H1(Ω)2, which yields a contradiction.

Remark 4. For d = 3, all results stated in this section remain correct, but the
proofs partly have to be adapted. Of course, the fundamental solution takes a
different form, see, e.g., [24, 19, 15]. The fundamental solution (S, s) is defined via
the functions

Sij(x, y) =
1

16π

[
δij

1

|x− y| +
(xi − yi)(xj − yj)

|x− y|3
]
, si(x, y) = − (xi − yi)

4π |x− y|3 ,

for x 6= y ∈ R
3 and i, j = 1, 2, 3. The Green’s function (E, e) = (S, s) + (R, r) is

constructed precisely as in (30–32). The sampling function φz is again defined as a
(non-trivial) linear combination of the three columns E1,2,3 of the Green’s function,
(40)
φz = ζ1E1(·, z)|Γ + ζ2E2(·, z)|Γ + ζ3E3(·, z)|Γ for z ∈ Ω and ζ ∈ R

3 with |ζ| = 1.

The two-dimensional vector potential used in the proof of Theorem 4.1 has to be
replaced by a corresponding three-dimensional construction that can be found in,
e.g., [24]. The rest of the proof essentially remains the same, up to adapting the
space dimension.

5. The factorization method. Theorem 4.1 explicitly characterizes the inclusion
D ⊂ Ω using the range of the operator H∗. This operator is, however, unknown
because it cannot be computed without knowing the inclusion D. Fortunately, the
factorization Λ0 − Λ1 = H∗TH from Theorem 3.4 relates H∗ with the known data
Λ0 − Λ1. A range identity will then provide to a characterization of the inclusion
D in terms of Λ0 − Λ1 in the main result of this paper, see Theorem 5.1.

We exploit the eigendecomposition

(Λ0 − Λ1)g =

∞∑

l=1

λl〈g, πl〉L2(Γ)dπl, g ∈ L2(Γ)d,
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of Λ0 − Λ1 from Theorem 3.7 to define the (positive semi-definite) square root

(Λ0 − Λ1)
1/2g :=

∞∑

l=1

√
λl〈g, πl〉πl, g ∈ L2(Γ)d.

This square root is again a bounded self-adjoint operator on L2(Γ)d and

(Λ0 − Λ1)
1/2((Λ0 − Λ1)

1/2g) =

∞∑

l=1

(
√
λl)

2〈g, πl〉πl = (Λ0 − Λ1)g.

Now we have two factorizations

Λ0 − Λ1 = H∗TH = (Λ0 − Λ1)
1/2(Λ0 − Λ1)

1/2

of the relative Robin-to-Dirichlet operator on L2(Γ)d. Since T is self-adjoint and
coercive, we can apply the range characterization from [17, Lemma 5.15] (see
Lemma A.5 in the appendix) to the first factorization. The result is that for any
0 6= φ ∈ L2(Γ)d there holds

(41) φ ∈ R(H∗) ⇔ inf{〈(Λ0 − Λ1)g, g〉L2(Γ)d : g ∈ L2(Γ)d, 〈g, φ〉L2(Γ)d = 1} > 0.

Applying the same result to the second factorization Λ0 − Λ1 = (Λ0 − Λ1)
1/2(Λ0 −

Λ1)
1/2 we deduce that for any 0 6= φ ∈ L2(Γ)d there holds

(42)

φ ∈ R((Λ0−Λ1)
1/2) ⇔ inf{〈(Λ0−Λ1)g, g〉L2(Γ)d : g ∈ L2(Γ)d, 〈g, φ〉L2(Γ)d = 1} > 0.

Together, (41) and (42) imply the range identity

(43) R((Λ0 − Λ1)
1/2) = R(H∗).

Since (λl, πl)l∈N is an eigensystem of Λ0 − Λ1 and since λl ≥ 0, it is obvious that
(
√
λl, πl)l∈N is an eigensystem of (Λ0−Λ1)

1/2. Picard’s range criterion [17, Theorem
A.54] then implies the following characterization of D via the sampling functions
φz defined in (34) and in (40) for the case of dimension two and three, respectively.

Theorem 5.1. (Factorization method) For any point z ∈ Ω it holds that

(44) z ∈ D ⇐⇒
∞∑

l=2

|(φz , πl)L2(Γ)d |2
λl

<∞.

Proof. Theorem 4.1 and the range identity (43) imply that z ∈ D if and only if
φz ∈ R((Λ0−Λ1)

1/2). Recall that in last paragraph of Section 3 we have set λ1 = 0,
such that the first eigenfunction π1 spans the kernel of (Λ0−Λ1)

1/2. Moreover, since
φz is the trace of a linear combination of the divergence-free columns E1,...,d(·, z) of
the Green’s function, the divergence theorem states that

∫
Γ n ·φz dS = 0. In conse-

quence, the characterization of the kernel of Λ0−Λ1 implies that 〈φz , π1〉L2(Γ)d = 0.
Thus,

φz ∈ span(π1)
⊥ = R((Λ0 − Λ1)1/2) for all z ∈ Ω.

Hence, Picard’s lemma shows that the series on the right of (44) is finite if and only
if φz ∈ R((Λ0 − Λ1)

1/2), that is, if and only if z ∈ D.
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6. Numerical examples. In this section we present numerical experiments illus-
trating the theoretical results of the last sections and the feasibility of the method.
We present images that are computed from relatively few normal measurements
that are additionally perturbed by additive noise. For simplicity, all examples are
two-dimensional. Further, all experiments are computed using synthetic data com-
puted by a mixed finite element method based on Taylor-Hood (P2/P1) elements,
see, e.g., [8, 6]. All finite element simulations are done using the C++-based open
source finite element code FreeFem++ (see www.freefem.org/ff++ ).

For our numerical examples we decompose the boundary of the domain Ω into
N connected pieces Γj , j = 1, . . . , N of equal length and approximate functions on
the boundary by piecewise constant (vector-valued) functions. We will denote this
approximation space by X(N); later on, we will always choose N = 16. This rather
low-dimensional choice is motivated by the difficulty to experimentally measure
many degrees of freedom of a boundary flow in practice. Valves to measure or
control the in- and outflow require sufficiently large holes in the boundary of the
domain and cannot easily be shifted. Note that the mesh of the domain that we use
to compute the synthetic data has many degrees of freedom on each boundary piece
such that mean-value projections have to be used to project the boundary values of
general finite-element functions into X(N). It is by the way not necessary that the
boundary pieces cover the entire boundary, even if in all our examples this will be
the case.

To approximate the difference Λ0 − Λ1, we firstly discretize (15) using Taylor-
Hood elements to evaluate Hg = u0|D on D, for all g ∈ X(N). Secondly, we exploit
that (Λ0−Λ1)g = GHg, inserting (Hg)|D in the right-hand side of the discretization
of (18). Projecting the boundary values of the solution into X(N) yields a matrix
representation (Λ0−Λ1)

(N) of Λ0−Λ1 of dimension dN×dN (that is, a 32 matrix if
d = 2 andN = 16). The eigenvalues and vectors of the self-adjoint and non-negative

matrix (Λ0 − Λ1)
(N) are λ

(N)
j ≥ 0 and π

(N)
j ∈ (Rd)N for j = 1, . . . , dN .

In our computational examples the domain Ω is the unit circle and the inclusionD
consists of two disjoint circles of radius 0.1 centered in (0, 0.3)⊤ and in (0.3,−0.3)⊤.
The background viscosity equals µ0 ≡ 2 and µ = 100 and 2 inside and outside
the inclusion D, respectively. The (scalar) material parameter M equals 50 inside
the inclusion and vanishes outside. At first glance, these values seem rather big.
However, Figure 1(a) shows that the resulting inclusion is well penetrated by a flow
that is generated by an inflow on the right and an outflow on the left. The boundary
parameters for this example, as well as for all the following ones are α‖ = 5 and
α⊥ = 10. Moreover, the plot of the first component of this flow in Figure 1(b)
shows that the velocity field is influenced by the inclusion. Of course, this influence
decreases if one decreases the contrast; when setting, e.g., µ = 10 and M = 5 inside
D, the flow is no longer visibly influenced.

For the configuration explained in the last paragraph, the eigenvalues of the
numerical approximation to (Λ0−Λ1)

(16) that we use for our inversion experiments
are shown (in decreasing order) in Figure 1(c). The fact that one eigenvalue of
Λ0 − Λ1 vanishes is reflected by the large gap in magnitude between the smallest
eigenvalue (roughly equal to 5e − 18) and all other eigenvalues. Of course, the
precision of the computed eigenvalues depends on the spatial discretization of Ω.
We test this precision by plotting the largest eigenvalue for different meshes in
Figure 1(d). The parameter on the horizontal axis, say k, describes the maximal
mesh width hk = π/(8k). We observe convergence of the largest eigenvalue as k
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increases: 2, 3, and 4 correct digits are attained for k = 6, 11, and 22, respectively.
We use k = 12 for generating the synthetic data later on.

Since the Green’s function of the Stokes equations in Ω has in general no explicit
representation we first compute the correction term (R, r) by discretizing (30–32).
Second, we compute the Green’s function by adding the (analytic evaluation) of the
fundamental solution function and the numerical approximation to the correction
term to construct the sampling function φz from (34). Computing the Green’s
function requires a finer mesh than computing the synthetic data, at least when
the sampling point is close to the boundary. We found that k = 39 gives sufficient
accuracy for reasonable images. Despite we could in principle compute testfunctions
φz for several dipole directions (parametrized by t in (34)) we restrict ourselves to
fix t = 0. Improving the reconstruction quality by, e.g., averaging or optimizing
over dipole directions might be possible; our aim here is merely to give a proof of
concept for the method.
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4.2x 10
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Figure 1. (a) Red arrows: velocity field for an inflow on the
right and outflow on the left. Black lines indicate the domain and
its inclusions. (b) The first component of the velocity field shown in
(a). (c) Blue dots: the 32 eigenvalues of (Λ0 −Λ1)

(16) (no artificial
noise was added to the data). Red diamonds: 32 singular values
of a random additive perturbation of (Λ0 − Λ1)

(16), the relative
noise level equals 1%. (d) Blue dots: the largest eigenvalue of
(Λ0 − Λ1)

(16) computed on different meshes. The eigenvalues are
plotted against an integer k determining the mesh width hk =
π/(8k).
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The sampling points z determining the sampling function φz are chosen on a
uniform grid G of Ω. We compute the sampling function φz from (34) for every
sampling point (without projecting the boundary data of the fundamental solution
into X(N)). Note that this requires to solve the auxiliary problem (30–32) once
for every sampling point. However, the sampling function does not depend on the
inclusion and can be precomputed and re-used for several reconstructions in the
same setting. After assembling the sampling function φz we project the result into
X(N) using a mean-value projection and define

φ(N)
z =

(
vol(Γj)

−1
∫
Γj
φz dS

)N
j=1

∈ (R2)N .

Tangential and normal components φ
(N)
z,‖ and φ

(N)
z,⊥ of φ

(N)
z are then defined compo-

nentwise as in (6).
Finally, to identify an inclusion D in a domain Ω we approximate the reciprocal

of the function from (44) by

(45) z 7→
[ N+∑

l=N−

∣∣〈φ(N)
z , π

(N)
l 〉(R2)N

∣∣/λ(N)
l

]−1

, z ∈ G,

where 1 ≤ N− < N+ ≤ dN − 1 are truncation indices. Roughly speaking, if
the approximation quality of our discrete data is good enough, then Theorem 5.1
motivates that this procedure yields an image of the inclusion, since the function
in (45) should be small outside D while taking large values inside D. Of course,
the quality of the discrete data determines the resolution and the contrast of the
resulting image.

In our numerical experiments, we noted that the tangential component of the
measurements Λ0−Λ1 is fairly small, usually about two orders of magnitude smaller
than the normal component. This observation holds both for tangential and normal
boundary excitations. To this end, in our subsequent examples we merely take the
“normal” part of Λ0 − Λ1 as data, that is, we only use normal excitations and
only measure the normal component of the trace of the resulting flow. Denote by

X
(N)
⊥ = {g ∈ X(N), g · n = 0 on Γ} the space of tangential vector fields in X(N).

Replacing the space X(N) in the above construction of (Λ0 − Λ1)
(N) we obtain a

corresponding matrix representation (Λ0 − Λ1)
(N)
⊥⊥ of size N ×N . If we denote by

λ
(N)
⊥,j and π

(N)
⊥,j , the corresponding eigenvalues and vectors, the indicator function

that we plot is hence

(46) z 7→ W⊥(z) :=




N+∑

l=N−

∣∣〈φ(N)
z,⊥ , π

(N)
⊥,l 〉(R2)N

∣∣/λ(N)
⊥,l



−1

, z ∈ G.

In our experiments, the reconstructions obtained merely from normal measurements
gave better results than those obtained from all measurements. This is presumably
due to the large difference in magnitude of the normal and tangential data, which
causes the tangential measurements to be inexact even when no artificial noise has
been added. It made relatively little difference whether the excitations were chosen
normally or tangentially, as long as we took normal measurements of the velocity
field. Such normal measurements are, by the way, much simpler to measure reliably
in a practical experiment.

In our implementation, we actually replace the factor 1/λ
(N)
⊥,l in (46) by 1/(λ

(N)
⊥,l +

2ǫ) where ǫ > 0 corresponds to the relative noise level, to avoid division by zero.
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(There are definitely more sophisticated numerical techniques for regularizing the
Picard series, see, e.g., [11, 12].) In our numerical experiments we noted that the
image quality can be significantly improved by taking the freedom to vary both
indices N±. For the images shown in Figure 2 we always chose N− = 10 and
N+ = 15. This choice produced the best overall results.

Figures 2(b,c,d) show the images of the inclusion D using W⊥(z) from synthetic

data (Λ0 − Λ1)
(16)
⊥⊥ generated in the setting explained above. In Figures 2(c,d) we

added a random matrix (generated using uniformly distributed random variables)
to the discretization of Λ0 − Λ1. The noise was scaled such that the relative noise
level equals 1% in (c) and 5% in (d). The experiments show that the method
is able to separate the two inclusions up to a noise level of about 1%. However,
even without artificial noise, the shape of the two inclusions is not reconstructed
correctly, in contrast to position and size. This might be surprising when compared
to reconstructions in impedance tomography, see, e.g., [11], but is probably due to
the coarse approximation space X(16) that we employ for approximating functions
on the boundary. The separation of the two inclusions is lost when the noise level
increases to 5%, but geometric information on the inclusions can still be deduced
from the corresponding image.

Appendix A. Auxiliary results. As in the main part of this text, Ω is a Lipschitz
domain with boundary Γ. The following trace theorem is a well-known analytic tool,
see, e.g., [21, 9].

Theorem A.1. There exists a bounded linear operator γ : H1(Ω) → L2(Γ) such
that ‖γu‖L2(Γ) ≤ C(Ω)‖u‖H1(Ω) for each u ∈ H1(Ω) and γu = u|Γ if u ∈ H1(Ω) ∩
C(Ω̄). We call γu the trace of u on Γ. The trace operator γ is compact from H1(Ω)
into L2(Γ).

Note that we do not denote the trace operator explicitly in this text, but rather
write u|Γ. Often, we even omit to denote the trace operation completely if it follows
from the context (as, e.g., inside boundary integrals). For the following Korn’s
inequalities, we refer to, e.g., [20, 21, 6].

Lemma A.2. (Korn’s inequalities) (a) There exists c > 0 such that
∫

Ω

|D(u)|2 dx +

∫

Ω

|u|2 dx ≥ c‖u‖2H1(Ω)d ∀u ∈ H1(Ω)d.

(b) For a non-empty subdomain D ⊂ Ω there exists c > 0 such that
∫

Ω

|D(u)|2 dx +

∫

D

|u|2 dx ≥ c‖u‖2H1(Ω)d ∀u ∈ H1(Ω)d.

(c) There exists c > 0 such that
∫

Ω

|D(u)|2 dx +

∫

Γ

(
|u‖|2 + |u⊥|2

)
dS ≥ c‖u‖2H1(Ω)d ∀u ∈ H1(Ω)d.

The following lemma from [1, Proposition 2.1] states a unique continuation prop-
erty for solutions to the Stokes equations.

Lemma A.3. (Unique continuation property) Let D be an open, non-empty subset
of Ω. If (u, p) ∈ H1(Ω)d × L2(Ω) is a variational solution to

−∆u+∇p = 0 in Ω and divu = 0 in Ω,

and if u = 0 in D, then u = 0 in Ω and p is constant in Ω.
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Figure 2. Images of the inclusion shown in (a) via plots of the
function W⊥ from (46) for N− = 10 and N+ = 15. (b) No artificial
noise added to the synthetic data Λ0−Λ1. (c) Artificial noise level
of 1%. (d) Artificial noise level of 5%.

We recall that (u, p) ∈ H1(Ω)d × L2(Ω) is a variational solution to the Stokes
equations if

2

∫

Ω

D(u):D(v) dx −
∫

Ω

p divv dx +

∫

Ω

q divu dx = 0

for all v ∈ H1(Ω)d and q ∈ L2(Ω) with compact support in Ω. This variational
formulation can of course also be formulated using ∇u instead of the deformation
tensor D(u) due to Lemma 2.1.

The next lemma extends the analytic continuation result from [17, Lemma 6.13]
from the Helmholtz equation to the Stokes equations. The main tool to generalize
the latter result are Green’s first and second identity for the Stokes equations, see,
e.g., [15, Chapter 2.3].

Lemma A.4. Assume that Ω consists of two disjoint Lipschitz subdomains, Ω̄ =
Ω̄1 ∪ Ω̄2 such that Ω1 ∩ Ω2 = ∅. For j = 1, 2, let uj ∈ H1(Ωj)

d and pj ∈ L2(Ωj) be
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variational solutions to the Stokes equations

−∆D(uj) +∇pj = 0 in Ωj and divuj = 0 in Ωj.

Denote by Γ := ∂Ω1 ∩ ∂Ω2 the common boundary of Ω1 and Ω2 and let u1 = u2 in
H1/2(Γ)d and 2D(u1)n−p1n = 2D(u2)n−p2n in H−1/2(Γ)d, where n is a exterior
unit normal vector to Ω. Define

u(x) =

{
u1(x), x ∈ Ω1,

u2(x), x ∈ Ω2,
and p(x) =

{
p1(x), x ∈ Ω1,

p2(x), x ∈ Ω2.

Then u can be extended to an analytic function in Ω and (u, p) satisfies the Stokes
equations in Ω.

The next lemma is a well-known characterization of certain operator ranges, see,
e.g., [17, Lemma 5.15].

Lemma A.5. (Inf-criterion) Let X and Y be Hilbert spaces, B : X → X, A : X →
Y , and T : Y → Y linear and bounded such that B = A∗TA. Furthermore, let T
be self-adjoint and coercive, i.e., 〈Ty, y〉Y ≥ c‖y‖2Y for all y ∈ Y . Then it holds for
any 0 6= ϕ ∈ X that

ϕ ∈ R(A∗) ⇔ inf{〈Bx, x〉X : x ∈ X, 〈x, ϕ〉X = 1} > 0.
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