
Identifying Lamé Parameters from

Time-dependent Elastic Wave Measurements

Armin Lechleitera and John W. Schlaschea,b∗∗

aZentrum für Technomathematik, University of Bremen, Germany;
bISEMP, University of Bremen, Germany

October 12, 2015

Abstract

In many sectors of today’s industry it is of utmost importance to detect defects in elastic
structures contained in technical devices to guarantee their failure-free operation. As currently
used signal processing techniques have natural limits with respect to accuracy and significance,
modern mathematical methods are crucial to improve current algorithms. We consider in this paper
a parameter identification approach for isotropic and linear elastic structures described by their
Lamé parameters and a material density. This approach can be employed for non-destructive defect
detection, location and characterization from time-dependent measurements of one elastic wave.
To this end, we show that the operator linking the static parameters with the wave measurements
is Fréchet differentiable, which allows to set up Newton-like methods for the nonlinear parameter
identification problem. We indicate the performance of a specific inexact Newton-like regularization
method by numerical examples for a testing problem of a thin plate from measurements of the
normal component of the displacement field on the boundary. As an extension, we further augment
this method with a total variation regularization and thereby improve reconstructed parameters
that feature edges.

1 Introduction

We consider the reconstruction of the material parameters of a linear and isotropic elastic structure
from time-dependent measurements of an elastic wave on the surface of a bounded domain of propaga-
tion. More precisely, we assume that (known and time-independent) background parameters contain
so-called inclusions, that is, subdomains where background parameters are perturbed, and aim to re-
construct the perturbed parameters. To this end, we exploit the differentiability of the operator that
maps material parameters to the time-dependent wave field measurements and set up a regularized
Newton-like algorithm for parameter identification.

Our basic model for propagation of elastic waves in a bounded domain Ω ⊂ R3 are the equations
of time-dependent elasticity linking the displacement field u : [0, T ]×Ω→ R3 with the Cauchy stress
tensor σ(u) : [0, T ]× Ω→ R3×3 in a fixed time interval [0, T ] for some T > 0,

% ü− div σ(u) = 0 in (0, T )× Ω, (1)

where the divergence operator div is applied row-wise to σ(u). Restricting ourselves to a linear,
isotropic model, we introduce the symmetric strain tensor ε(u) = (Du + (Du)>)/2, involving the
Jacobian Du of u, the scalar divergence operator div u, and the 3×3 unit matrix I3, to prescribe that
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Figure 1: Experimental setup: A laser beam induces a pulse in the plate; components of the generated
elastic wave are measured at a couple of positions.

σ(u) = 2µε(u) + λ div u I3. Here µ, λ : Ω→ R denote the Lamé coefficients of the body Ω, linked to
the modulus of elasticity E and the Poisson’s ratio ν by

µ = E/(2 + 2ν) and λ = Eν/((1 + ν)(1− 2ν)). (2)

Thus, (1) can be rewritten as

% ü− 2 div(µε(u))−∇(λdiv u) = 0 in (0, T )× Ω, (3)

This system will be complemented by initial conditions at time t = 0 and homogeneous boundary
conditions that prescribe that the body is fixed on some non-empty open part Γ ⊂ ∂Ω, i.e., u = 0 on
[0, T ]× Γ, while no exterior forces are applied on the remaining boundary ∂Ω \ Γ. Using the exterior
unit normal field n to Ω, this condition reads σ(u)n = 0 on ∂Ω \ Γ.

The following experimental setup is one of the many ways in which the approach can be used
to identify inhomogeneities in a given part of known geometry. Assume that we generate an elastic
ultrasound wave inside Ω by vibrating a (small) part of the boundary ∂Ω\Γ by a piezoelectric actuator
or by inducing the wave inside the material using an incident laser beam. The generated ultrasound
wave propagates through Ω and its normal component on top of the plate can be recorded in time
at a couple of measurement positions by, e.g., optical methods that provide distance information
(see Figure 1). Contactless optical measurement techniques avoid the need to build sensors in or on
the mechanical structure, which provides an advantage over, e.g., standard strain measurements via
piezoelectric sensors or fiber Bragg gratings. The above-introduced parameter identification problem
then boils down to the approximation of some of the material parameters µ, λ and % of the plate from
such time-dependent wave measurements. (Of course, one could formulate the same identification
problem for surface strain measurements instead of field measurements.)

There are various frameworks for establishing existence and uniqueness of solution to the elastic
wave equation (3) with suitable boundary conditions and initial values. We rely on the Fourier series-
based approach of [1, 2] to obtain (weak) solutions that are continuous in time with values in the
Sobolev space H1 and continuously differentiable in time with values in L2. As for the scalar wave
equation, existence theory can as well be based on a Galerkin or on a semi-group approach, see,
e.g., [3], or on the abstract theory on first-order evolution equations in [4]. Under sufficient regularity
assumptions on the initial values and the coefficients, higher-order regularity is obtained as in [1,2] for
the scalar wave equation. Analogous to the results in [1], we next establish Fréchet differentiability of
the solution to the elastic wave equation (3) with respect to its bounded and measurable coefficients;
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note that earlier results in the same spirit for the scalar wave equation have been shown in [5]. Let
us note here that the existence and differentiability theory for the scalar wave equation in [1, 2] can
indeed be applied to any linear second-order wave propagation problem with spatial derivatives that
feature a positive-definite bilinear form.

The characterization of the Fréchet derivative and its adjoint via elastic wave equations conse-
quently allows to tackle the identification problem using a successive linearization approach: We opt
for the Newton-like regularization method REGINN, see [6, 7], to approximate searched-for parame-
ters numerically. Discretization of the elastic wave equation using finite differences in time and finite
elements in space then allows to set up a simulation framework; numerical examples gained within
this framework indicate the amount of information that can be gained by this approach. To improve
the reconstruction quality for parameters that are piecewise smooth perturbations of the (known)
background parameters with jump discontinuities over edges, we couple this Newton-like regulariza-
tion algorithm with an additional total variation regularization. To this end, we approximate the
total variation of a function by a differentiable functional and, after each Newton step, reduce the
total variation of the current parameter approximation by a gradient descent step with respect to the
smoothed total variation. This enhanced variant of the numerical algorithm improves in particular
the reconstruction of edges.

Although we are ultimately interested in numerical algorithms for parameter identification and/or
inclusion detection, let us briefly survey uniqueness results for the determination of parameters in
wave equations, concentrating on time-dependent and/or elastic problems. Uniqueness results for the
parameter q(t, x) of the Schrödinger equation ü−∆u+ qu = 0 in (0, T )×Ω for given measurements
of one wave field on the boundary of a bounded domain go back to [8–11]. Concerning the (static)
elastic wave equation, we refer to [12–15] for results on the unique dependence of Lamé coefficients on
measurements of (many) Cauchy data of solutions to the time-independent elasticity equation. We
further mention the work [16] on the determination of spatially constant elasticity parameters from
finitely many measurements of the displacement field. It is however not clear to us whether uniqueness
results for the inverse problem considered in this paper do hold; nevertheless, the importance of the
problem for applications linked to non-destructive structural testing motivates to develop algorithms
that allow at least to approximate some features of the Lamé coefficients.

The structure of the remainder of this paper is as follows: Whilst Section 2 recalls existence
analysis for the direct elastic wave propagation problem, Section 3 investigates Fréchet differentiability
of the displacement fields with respect to the material parameters. In Section 4, we characterize the
L2-adjoints to these derivatives by solutions to elastic wave equations with particular right-hand
sides, and set up an identification algorithm in Section 5. Finally, Section 6 contains details on the
implementation of the algorithm and its variant by adding a gradient step with respect to the total
variation of the searched-for parameters, together with several numerical examples.

Notation: By Hs(Ω), s ∈ R, we denote the usual time-independent Sobolev spaces of scalar
functions on a domain Ω ⊂ R3; corresponding Sobolev spaces of vector- or matrix valued functions
are denoted by Hs(Ω)3 or Hs(Ω)3×3. The Jacobian matrix of a function u : R3 7→ R3 is Du, a
matrix in R3×3 and A : B =

∑
i,j Ai,jBi,j denotes the corresponding matrix scalar product. Time

and space variables are t ∈ R and x = (x1, . . . , xn)>, respectively; first and second time derivatives
are abbreviated by u̇ and ü, respectively. Further, for any Hilbert space V and T > 0 the space
C0([0, T ], V ) contains continuous functions from [0, T ] into V , equipped with the maximum norm;
analogously, Ck([0, T ], V ) for k ∈ N denotes k-times continuously differentiable functions from [0, T ]
into V , a normed space when equipped with the sum of the maximum norms of the first k time
derivatives and the function itself. The generic constant C might change its value from line to line.
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2 Existence, Uniqueness, and Regularity of Solutions to the Elastic
Wave Equation

In this section, we adapt a proof for existence and uniqueness to solutions of the scalar wave equation
from [1] to the elastic wave equation in a Lipschitz domain Ω ⊂ R3, subject to a spatial excitation
f : [0, T ] × Ω → R3 and mixed homogeneous boundary conditions on ∂Ω. On a relatively open
and non-empty subset Γ ⊂ ∂Ω the body is fixed while the complement ∂Ω \ Γ is free. Thus, the
displacement u : [0, T ]× Ω→ R3 satisfies

% ü− div σ(u) = f in (0, T )× Ω, (4)

u = 0 on (0, T )× Γ, (5)

σ(u)n = 0 on (0, T )× ∂Ω \ Γ, (6)

u(0, ·) = u0, u̇(0, ·) = u1 in Ω, (7)

and we already introduced the isotropic elastic model σ(u) = 2µε(u) + λdiv u I3 considered in the
following. In the sequel, we are interested in variational (aka weak) solutions to this wave equation,
assuming that the material parameters µ, λ and % all belong to L∞(Ω) and satisfy

µ(x) ≥ cµ > 0, λ ≥ cλ > 0, and % ≥ c% > 0 almost everywhere in Ω, (8)

for arbitrary fixed positive constants c%, cµ, and cλ. We introduce two spaces of real-valued functions,

H := L2(Ω)3 and V := H1
Γ(Ω)3 :=

{
v ∈ H1(Ω)3 : v|Γ = 0

}
,

and assume that the volume force f belongs to L2([0, T ], H) while the initial values u0 and u1 belong
to V and H, respectively. Note that we abbreviate the L2-norm and scalar product on H by ‖ · ‖H
and (·, ·)H , respectively, and analogously write ‖ · ‖V and (·, ·)V for the H1-norm of functions that
vanish on Γ.

For the variational formulation of (4-7) we further introduce the Banach space

X := C0([0, T ], V ) ∩ C1([0, T ], H) with norm ‖u‖X =

(
max

0≤t≤T
‖u‖2V + max

0≤t≤T
‖u̇‖2H

)1/2

and its subspace X0 = {v ∈ X, v(0, ·) = v(T, ·) = 0}. Thus, if u ∈ X (or in X0), then u̇(t, ·) and ü(t, ·)
are well-defined functions in V and in L2(Ω) for all t ∈ [0, H], respectively. Formally multiplying (4)
by a test function v ∈ X0, integrating over [0, T ] × Ω, and integrating by parts in space using the
divergence theorem (see [17]), as well as in time, yields that∫ T

0

∫
Ω
fv dx dt =

∫ T

0

∫
Ω

[% ü− 2 div(µε(u))− div(λdiv u I3)] · v dx dt

=

∫ T

0

∫
Ω

[2µε(u) : ε(v) + λdiv(u) · div(v)− % u̇ · v̇] dx ,

(9)

since ε(u) is a symmetric matrix. This motivates the definition of the symmetric sesquilinear form

aµ,λ : V × V → R, aµ,λ(u, v) :=

∫
Ω

[2µε(u) : ε(v) + λ div(u) div(v)] dx , (10)

and to define u ∈ X to be a variational solution to (4-7) if u satisfies the variational formulation∫ T

0

[
aµ,λ(u, v)− (% u̇, v̇)H

]
dt =

∫ T

0
(f, v)H dt for all v ∈ X0. (11)
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Since µ and λ are bounded from below away from zero, ellipticity of aµ,λ on V follows from Korn’s
inequality in H1

Γ(Ω)3, see, e.g., [17]: There exists c > 0 such that

‖ε(u)‖2L2(Ω)3×3 ≥ c‖Du‖2L2(Ω)3×3 for all u ∈ H1
Γ(Ω)3. (12)

The Dirichlet boundary condition on Γ now implies by Poincaré’s inequality that u 7→ ‖ε(u)‖L2(Ω)3×3

is an equivalent norm on H1
Γ(Ω)3, such that aµ,λ is indeed elliptic: For some C > 0,

aµ,λ(u, u) ≥ C‖u‖2H1
Γ(Ω)3 for all u ∈ H1

Γ(Ω)3. (13)

Theorem 1. For all f ∈ L2([0, T ], H) there exists a unique variational solution u ∈ X to (11) that
is bounded in terms of f , i.e., ‖u‖X ≤ C‖f‖L2([0,T ],H).

Proof. The basic ingredient is a classic energy estimate for solutions to (11) that we briefly sketch
here. Assume that u ∈ X solves (11) with time-derivative u̇ ∈ X and consider the energy E(t) :=
(aµ,λ(u(t), u(t)) + (% u̇(t), u̇(t))H)/2 that is well-defined in C1([0, T ]). (Writing u(t), we ignore the
spatial argument x here and in what follows.) Differentiating E(t) and integrating by parts in space
as in (9) shows that

∂E

∂t
(s) = aµ,λ(u(s), u̇(s)) + (% ü(s), u̇(s))H = (f(s), u̇(s)), s ∈ [0, T ].

After integration in time between between 0 and t we deduce that

E(t) ≤ E(0) +

∫ t

0
|f(s)| |u̇(s)| ds ≤ E(0) +

√
2

∫ t

0
‖%−1/2f(s)‖H

√
E(s) ds ,

such that Gronwall’s and Jensen’s inequality imply that

E(t) ≤
[
E(0)1/2 + 2−1/2

∫ t

0
‖%−1/2f(s)‖H ds

]2

≤ 2E(0) +
√

2‖%−1‖∞
∫ t

0
‖f(s)‖2H ds .

By definition of E(t), this implies the following energy estimate for t ∈ [0, T ],

‖u(t)‖2V + ‖u̇‖2H ≤ C [aµ,λ(u(t), u(t)) + (% u̇(t), u̇(t))H ]

≤ C
[
‖u0‖2V + ‖u1‖2H +

∫ t

0
‖f(s)‖2H ds

]
.

Due to this energy estimate for solutions u such that u̇ ∈ V , existence of solutions to (11) can be shown
using, e.g., a Galerkin approach as in [3]; the energy estimate moreover transfers by an approximation
argument to solutions u ∈ X to (11).

In addition to the latter result, the following regularity theorem for solutions to (11) holds. To
this end, we introduce the operator Σ : V → V ′ from V into its dual V ′, defined by

(Σu, v)V = aµ,λ(u, v) for all u, v ∈ V. (14)

Theorem 2. If f ∈ C1([0, T ], H) and if u0,1 ∈ V such that Σu0 ∈ H then the solution u ∈ X
to (11) satisfies u ∈ C2([0, T ], H) ∩ C1([0, T ], V ) and %u(3) ∈ L2((0, T ), V ′) and ‖u‖X + ‖u̇‖X ≤
C[‖f‖C1([0,T ],H) + ‖Σu0‖V + ‖u1‖V ].

Since the proof of Lemma 2.4 in [1] can almost literally be copied, we omit the proof.
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3 Fréchet Differentiability with Respect to Material Parameters

As we aim to set up a Newton-like algorithm for parameter identification, we compute in this section
the Fréchet derivatives of the solution operator to the wave equation (11) with respect to the material
parameters, following the approach in [1], where the linearization of the acoustic wave equation with
respect to density and wave speed is analyzed. More precisely, if we fix the source term f in (11) and
define D(L) as the set of all triples (µ, λ, %) ∈ L∞(Ω)3 that satisfy (8), then the main result of this
section shows Fréchet differentiability with respect to %, µ, and λ of the solution operator

L : D(L) ⊂ L∞(Ω)3 → X, (%, µ, λ)→ u where u solves (11). (15)

3.1 Auxiliary Results

We start by an auxiliary result on solutions to variational problems with particular right-hand sides
that become important when computing Fréchet derivatives later on. As a general assumption we
suppose that %, µ, and λ satisfy (8).

Lemma 3. Assume that f ∈ C1([0, T ], H), that u ∈ X solves (11) with initial values u0 = 0 and
u1 ∈ V , and that h1, h2 ∈ L∞(Ω). Then there exist unique solutions w1, w2 ∈ X such that w1(0, ·) =
w2(0, ·) = 0 and ẇ1(0, ·) = ẇ2(0, ·) = 0 to the variational problems∫ T

0

[
aµ,λ(w1, v)− (% ẇ1, v̇)H

]
dt = −

∫ T

0
ah1,0(u, v) dt for all v ∈ X0, (16)

and ∫ T

0

[
aµ,λ(w2, v)− (% ẇ2, v̇)H

]
dt = −

∫ T

0
a0,h2(u, v) dt for all v ∈ X0, (17)

that satisfy ‖w1,2‖X ≤ C‖h1,2‖L∞(Ω)‖u‖C1([0,T ],V ). Both w1 and w2 also satisfy (16) and (17), respec-
tively, for all v ∈ X that merely satisfy v(T ) = 0.

Proof. We follow the proof of Theorem 3.5 in [1] for the scalar wave equation and rewrite the right
hand sides of (16) and (17) as scalar products using Riesz’s representation theorem: The lower
bound (13) gained from Korn’s inequality and the Cauchy-Schwarz inequality show that aµ,λ defines
a scalar product on V equivalent to the scalar product on H1(Ω)3, as c‖v‖2V ≤ aµ,λ(v, v) ≤ C‖v‖2V
for constants C > c > 0 and all v ∈ V .

For fixed u ∈ X, both linear forms v 7→ ah1,0(u, v) and v 7→ a0,h2(u, v) are continuous (for the
second form this follows from | div(v)|2 ≤ |D(v)|2), such that for all t ∈ [0, T ] the Riesz representation
theorem yields existence of g1(t) and g2(t) solving

aµ,λ(g1(t), v) = ah1,0(u(t), v) and aµ,λ(g2(t), v) = a0,h2(u(t), v) for all v ∈ V. (18)

Moreover, the assumed regularity of both f ∈ C1([0, T ], V ) and the initial values implies by Theorem 2
that u ∈ C1([0, T ], V ), such that continuity and linearity of the operators mapping u(t) to g1(t) and
g2(t) implies that g1,2 ∈ C1([0, T ], V ), too. By (18), boundedness and coercivity of aµ,λ yields that
‖g1(t)‖V ≤ C‖h1‖L∞(Ω)‖u(t)‖V as well as ‖ġ1(t)‖V ≤ C‖h1‖L∞(Ω)‖u̇(t)‖V , i.e., ‖g1‖C1([0,T ],V ) ≤
C‖h1‖L∞(Ω)‖u‖C1([0,T ],V ). The same argument shows that ‖g2‖C1([0,T ],V ) ≤ C‖h2‖L∞(Ω)‖u‖C1([0,T ],V ),
too. Thus, the lemma’s claim follows from the subsequent Lemma 4.

Lemma 4. For g ∈ C1([0, T ], V ) the variational problem∫ T

0
[aµ,λ(w, v)− (% ẇ, v̇)H)] dt =

∫ T

0
aµ,λ(g, v) dt for all v ∈ X0 (19)
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possesses a unique solution w ∈ X such that ‖w‖X ≤ C‖g‖C1([0,T ],V ). Further, w satisfies (19) for all
v ∈ X with v(T ) = 0.

If g ∈ C2
0 ([0, T ], V ) and if g(0, ·) = 0, then w belongs to C2([0, T ], H) ∩ C1([0, T ], V ) and ‖w‖X +

‖ẇ‖X ≤ C‖g‖C2([0,T ],V ).

Proof. (1) The spectral theorem for selfadjoint, compact operators and the compact embedding of
H in V imply existence of H-orthogonal eigenvectors {ϕk} ⊂ V with eigenvalues νk > 0 that satisfy
aµ,λ(ϕk, ϕ) = νk (%ϕk, ϕ)H for all ϕ ∈ V and k ∈ N. By normalizing these eigenvectors with respect to
the scalar product aµ,λ(·, ·), the {ϕk}k∈N moreover are a complete orthonormal system of (V, aµ,λ(·, ·));
thus, {√νkϕk}k∈N is a complete orthonormal system of (H, (% ·, ·)H). Due to (8), the latter inner
product is equivalent to the standard L2-inner product ( ·, ·)H . Following [1] we search a solution w
in series form,

w(t, x) =
∑
k∈N

wk(t)ϕk(x) (20)

and analogously decompose the right-hand side as g(t, x) =
∑

k∈N gk(t)ϕk(x) with time-dependent
coefficients gk given by gk(t) = aµ,λ(g(t, ·), ϕk(t, ·)). (Note that gk(0) = 0.) Depending on the assumed

regularity of g, Parseval’s equality implies that ‖g‖2
C`([0,T ],V )

= sup0≤t≤T
∑

k∈N
∑`

j=0 |g
(j)
k (t)|2 is finite

for ` = 0, 1 or even 2. Due to orthogonality of the ϕk, the scalar coefficients wk of w need to solve

ẅk + νkwk = νkgk , wk(0) = ẇk(0) = 0,

compare the proof of Theorem 2.3 in [1]. Thus, wk ∈ C2([0, T ]) is explicitly given by

wk(t) =
√
νk

∫ t

0
sin(
√
νk(t− s))gk(s) ds , t ∈ [0, T ]. (21)

Let us now for a moment assume that the series in (20) converges in X and check that, under
this condition, w indeed solves (19): Plugging v(x, t) =

∑m
l=1 vl(t)ϕl(x) with arbitrary m ∈ N and

coefficients vl ∈ C1([0, T ]) such that vl(0) = vl(T ) = 0 into (19), orthogonality of the ϕk yields∫ T

0
[aµ,λ(w, v)− (%w, v)H ] dt =

m∑
l,k=1

∫ T

0

(
wkvlaµ,λ(ϕk, ϕl)− ẇkϕ̇l

(
√
νkϕk,

√
νlϕl)H√

νk
√
νl

)
dt

=
m∑
k=1

∫ T

0

(
wkvk −

ẇkv̇k
νk

)
dt =

m∑
k=1

∫ T

0
vk

(
wk +

ẅk
νk

)
dt .

As m is arbitrary, a density argument shows that (19) holds.
(2) To show that (19) holds even for v ∈ X such that merely v(T ) = 0, choose ϕ ∈ V and

ψ ∈ C1([0, T ]) such that ψ(0) = ψ(T ) = 0 and plug v(x, t) = ψ(t)ϕ(x) into (19),∫ T

0

(
[aµ,λ(w(t), ϕ)− aµ,λ(g(t), ϕ)]ψ(t)− (% ẇ(t), ϕ)H ψ̇(t)

)
dt = 0.

As ϕ and ψ are arbitrary and t 7→ aµ,λ(g(t), ϕ) is continuously differentiable, we conclude that
t 7→ (% ẇ(t), ϕ)H is continuously differentiable as well and satisfies

∂

∂t
(% ẇ(t), ϕ)H = −aµ,λ(w(t), ϕ) + aµ,λ(g(t, ·), ϕ), t ∈ [0, T ]. (22)

Consider now v ∈ X such that v(T ) = 0 with representation v(x, t) =
∑

k∈N vk(t)ϕk(x), such that
ϕk(T ) = 0 and max0≤t≤T

∑
k∈N

[
|vk(t)|2 + |v̇k(t)|2/νk

]
≤ C‖v‖2X . Plugging in v as a test function

into (19) and exploiting orthogonality of the ϕk yields∫ T

0
[aµ,λ(w, v)− (% ẇ, v̇)H)] dt =

∑
k∈N

∫ T

0
[aµ,λ(w(t), ϕk)vk(t)− (% ẇ(t), ϕk)H v̇k(t)] dt ,
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such that integration by parts in time, (22), vk(T ) = 0, and ẇ(0) = 0 imply that∫ T

0

[
aµ,λ(w(t), ϕk) +

∂

∂t
(% ẇ(t), ϕk)H

]
vk(t) dt

− (% ẇ(T ), ϕk)H vk(T ) + (% ẇ(0), ϕk)H vk(0) =

∫ T

0
aµ,λ(g, ϕk)vk(t)

for all k ∈ N. Thus, (19) holds for all v ∈ X with v(T ) = 0.
(3) It remains to prove the regularity of u, i.e., the convergence of the series in (20) in the claimed

function spaces. To this end, we exploit estimates for wk and its derivatives. A partial integration in
[0, T ] and the initial condition gk(0) = 0 show that

wk(t) = gk(t)−
∫ t

0
cos(
√
νk(t− s))ġk(s) ds =

∫ t

0
[1− cos(

√
νk(t− s))]ġk(s) ds

for t ∈ [0, T ], such that |wk(t)| ≤ C‖ġk‖L2([0,T ]). Differentiating (21), integrating by parts again and
exploiting that gk(0) = 0 further shows that

ẇk(t) = νk

∫ t

0
cos(
√
νk(t− s))gk(s) ds = −

√
νk

∫ t

0
sin(
√
νk(t− s))ġk(s) ds (23)

= −
∫ t

0
cos(
√
νk(t− s))g̈k(s) ds , t ∈ [0, T ],

such that |ẇk(t)| ≤ C‖g̈k(t)‖L2([0,T ]). Differentiating (23) with respect to t again shows that ẅk(t) =

−√νk sin(
√
νkt)ġk(0) − √νk

∫ t
0 sin(

√
νk(t − s))g̈k(s) ds for t ∈ [0, T ], and the continuous embedding

of the continuous functions in H1([0, T ]) implies that

|ẅk(t)| ≤
√
νk
[
|ġk(t)|+ C‖g̈k‖L2([0,T ])

]
≤ C
√
νk‖gk‖H2([0,T ]), t ∈ [0, T ]. (24)

Let us now first prove that w ∈ C0([0, T ], V ), by showing that the partial sums wm(t, x) =
∑m

k=1wk(t)ϕk(x)
form a Cauchy sequence in C0([0, T ], V ). We exploit that the bilinear form aµ,λ defines a scalar prod-
uct equivalent to the H1-scalar product: If m > n, then

max
0≤t≤T

‖wm(t, ·)− wn(t, ·)‖2V = max
0≤t≤T

aµ,λ
(
wm(t, ·)− wn(t, ·), wm(t, ·)− wn(t, ·)

)
=

m∑
k=n+1

max
0≤t≤T

|wk(t)|2 ≤ C
m∑

k=n+1

‖ġk‖2L2([0,T ]) ≤ C‖g‖
2
C1([0,T ],V ),

such that the limit w belongs to C0([0, T ], V ) if g ∈ C1([0, T ], V ). If, moreover, g ∈ C2([0, T ], V ),
the time derivatives of the partial sums wm are a Cauchy sequence in C1([0, T ], V ) as ‖ẇm(t, ·) −
ẇn(t, ·)‖(V,aµ,λ) ≤ C

∑m
k=n+1 ‖g̈k‖2L2([0,T ]) ≤ C‖g‖2C2([0,T ],V ) for all t ∈ [0, T ]. Thus, w ∈ C1([0, T ], V ).

Finally, ẅ belongs to L2((0, T ), H), because

‖ẅm(t, ·)‖2H ≤
∫

Ω
%|ẅm(t, ·)|2 dx =

m∑
k=1

|ẅk(t)|2

νk
≤ C

m∑
k=1

‖gk‖2H2([0,T ]) ≤ C‖g‖
2
C2([0,T ],V )

holds for each t ∈ [0, T ].
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3.2 The Fréchet Derivative of the Solution Operator

Next we compute the linearization of parameter-to-state map L introduced in (15) with respect to
material parameters µ, λ, and %. We assume again that all these three parameters are essentially
bounded and satisfy (8). Recall from (15) that the solution operator maps material parameters to
the unique variational solution u ∈ X = C1([0, T ], H) ∩ C0([0, T ], V ) to (11), that is,∫ T

0
[aµ,λ(u, v)− (%u, v)H ] dt =

∫ T

0
(f, v)H dt for all v ∈ X0 = {z ∈ X, z(0) = z(T ) = 0} (25)

with (fixed) initial values u(0, ·) = u0 ∈ V , u̇(0, ·) = u1 ∈ H and right-hand side f ∈ L2((0, H), H).

Theorem 5. Assume that u = L(µ, λ, %) ∈ X solves (25) for material parameters (µ, λ, %) ∈ D(L),
initial data u0 = 0 and u1 ∈ V , and right-hand side f ∈ C1([0, T ], H).

(a) The solution operator L is Fréchet differentiable in (µ, λ, %) with respect to µ and λ. For
h = (h1, h2) ∈ L∞(Ω)2, the Fréchet derivative ∇1,2L(µ, λ, %) ∈ L(L∞(Ω)2, X) with respect to µ and
λ is represented by ∇1,2L(µ, λ, %)h = w1 +w2, with individual Fréchet derivatives ∂1,2L(µ, λ, %)h1,2 =
w′1,2 ∈ X with respect to µ and λ that satisfy w′1,2(0, ·) = ẇ′1,2(0, ·) = 0 and solve∫ T

0
(aµ,λ(w′1, v)− (% ẇ′1, v̇)H) dt = −

∫ T

0
ah1,0(u, v) dt for all v ∈ X with v(T ) = 0, (26)

and ∫ T

0
(aµ,λ(w′2, v)− (% ẇ′2, v̇)H) dt = −

∫ T

0
a0,h2(u, v) dt for all v ∈ X with v(T ) = 0. (27)

(b) If, additionally, Σu1 ∈ H (see (14)) and f ∈ C2([0, T ], H) with f(0) = 0, then L is Fréchet
differentiable in (µ, λ, %) with respect to all three parameters µ, λ, and %. For h = (h1, h2, h3) ∈
L∞(Ω)3, the Fréchet derivative ∇L(µ, λ, %) ∈ L(L∞(Ω)3, X) is represented by ∇L(µ, λ, %)h = w′1 +
w′2 + w′3 with w′1,2 from (a) and w′3 = ∂3L(µ, λ, %)h3 ∈ X that satisfies w′3(0, ·) = ẇ′3(0, ·) = 0 and
solves ∫ T

0
(aµ,λ(w′3, v)− (% ẇ′3, v̇)H) dt =

∫ T

0
(h3u̇, v̇)H dt for all v ∈ X with v(T ) = 0. (28)

Proof. (a) Our assumptions on u0, u1, and f ∈ C1([0, T ], H) imply by Theorem 2 that uh and that u
belongs to C2([0, T ], H) ∩ C1([0, T ], V ), such that u̇ ∈ X = C1([0, T ], H) ∩ C0([0, T ], V ), too. Thus,
existence and uniqueness of solution to (26) and (27) follows from Lemma 3. That lemma also provides
the bound ‖w′1,2‖X ≤ C‖h1,2‖L∞(Ω)‖u‖C1([0,H],V ), proving that the linear operators ∂1L(µ, λ, %) and
∂2L(µ, λ, %) are bounded. We will now show that w′ = w′1 + w′2 is the Fréchet derivative of L with
respect µ and λ in direction h = (h1, h2) ∈ L∞(Ω)2. This requires to prove that for ‖h‖L∞(Ω)2

small enough it holds that ‖L(µ + h1, λ + h2, %) − L(µ, λ, %) − w′1 − w′2‖X ≤ C‖h‖L∞(Ω)2 . Setting
uh = L(µ+h1, λ+h2, %), where ‖h‖L∞(Ω)2 is chosen small enough such that (µ+h1, λ+h2, %) ∈ D(L),
and d = (uh − u) − w we hence need to estimate ‖d‖X . By definition, uh satisfies uh(0) = 0 and
u̇h(0) = u1 and solves∫ T

0

[
aµ+h1,λ+h2(uh, v)− (% u̇h, v̇)H

]
dt =

∫ T

0
(f, v)H dt for all v ∈ X0,

and possesses the same regularity as u. The difference d satisfies d(0) = 0, ḋ(0) = 0, and solves∫ T

0
(aµ,λ(d, v)− (% ḋ, v̇)H) dt =

∫ T

0
ah1,h2(u− uh, v) dt for all v ∈ X0. (29)
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Thus, Lemma 3 states that ‖d‖X ≤ C‖h‖L∞(Ω)2‖u− uh‖C1([0,H],V ), such that to find an estimate for
‖uh − u‖C1([0,T ],V ). Since uh − u solves∫ T

0
(aµ,λ(uh − u, v)− (%uh − u, v)H) dt = −

∫ T

0
ah1,h2(uh, v) dt for all v ∈ C∞0 ([0, T ], V ),

Lemma 3 states that ‖uh − u‖X ≤ C‖h‖L∞(Ω)2‖uh‖C1([0,H],V ) ≤ C‖h‖L∞(Ω)2 [‖u1‖V + ‖f‖C1([0,T ],H)].
We conclude that

‖d‖X ≤ C‖h‖L∞(Ω)2‖u− uh‖C1([0,H],V ) ≤ C‖h‖2L∞(Ω)2

[
‖u1‖V + ‖f‖C1([0,T ],H)

]
.

(b) We omit the proof of this part and refer to the proof of Theorem 3.3 in [1]. (The stronger
regularity on the initial data and f imply that h3ü ∈ L2([0, T ], H).)

We finish this section by a corollary on the Fréchet differentiability of a parameter-to-data operator
that maps the volume force f and the initial conditions u0 = 0 and v0 = 0 to linear functionals of the
solution u to (25).

Corollary 6. Assume that f ∈ C2([0, T ], H) with f(0) = 0 and that u0 = u1 = 0. If Ψ : X → Z is
a bounded linear operator into a Banach space Z, then Ψ ◦ L : D(L)→ Z is Fréchet differentiable in
(µ, λ, %) ∈ D(L) with Fréchet derivative

∇(Ψ ◦ L)(µ, λ, %) : L∞(Ω)3 → Z, h 7→ Ψ (∇L(µ, λ, %)) = Ψ(w1 + w2 + w3),

where the partial derivatives w1,2,3 are defined in Theorem 5.

4 The Adjoint of the Fréchet Derivative

Newton-like schemes for parameter identification of material parameters always require to evaluate
the adjoint of the Fréchet derivative of the parameter-to-data mapping Ψ ◦ L. As it is infeasible
in our setting to numerically set up the full matrix discretizing this derivative, we characterize this
adjoint operator using an elastic wave equation and start by computing the L2-adjoint of L. Recall
that for Hilbert spaces Y and Z and a bounded linear operator T ∈ L(Y,Z), the (Hilbert-)adjoint
operator is defined by (y, T ∗z)Y = (Ty, z)Z for y ∈ Y and z ∈ Z. As neither L∞(Ω) nor X possess
inner products generating equivalent norms, we compute in part (a) of the subsequent theorem a
linear operator (∇L(p))∗ for p = (µ, λ, %) ∈ D(L) that is bounded from L2([0, T ], H) into L1(Ω)3 and
satisfies(

h, (∇L(p))∗g
)
L2(Ω)3 = (∇L(p)h, g)L2([0,T ],H) for all h ∈ L∞(Ω)3, g ∈ L2([0, T ], H). (30)

Note that we extended the inner product of L2(Ω) on the right of the latter equation to a duality
product between L∞(Ω)3 and L1(Ω)3 and, by abuse of notation, we continue to do so in the sequel.

Theorem 7. Assume that f ∈ C2([0, T ], H) with f(0) = 0 and that u0 = u1 = 0 and choose
p = (µ, λ, %) ∈ D(L) ⊂ L∞(Ω)3.

(a) For g ∈ L2((0, H), H), (∇L(p))∗g = (q1, q2, q3)> ∈ L1(Ω)3 is represented by q1,2,3 ∈ L1(Ω),
given by

q1(x) =

∫ T

0
ε(u(t, x)) : ε(z(t, x)) dt , q2(x) =

∫ T

0
div(u(t, x)) · div(z(t, x)) dt , (31)

and q3(x) =

∫ T

0
u̇(t, x) · ż(t, x) dt , a.e. in Ω, (32)
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where u = L(p) ∈ X solves (25) and z ∈ X with z(T ) = ż(T ) = 0 uniquely solves∫ T

0
(aµ,λ(z, v)− (% ż, v̇)H) dt =

∫ T

0
(g, v)H dt for all v ∈ X such that v(0) = 0. (33)

(b) There is a bounded and linear operator (∇L(p))(∗,V ) : L2((0, T ), V )→ L1(Ω)3 such that

(
h, (∇L(p))(∗,V )g

)
L2(Ω)3 = (∇L(p)h, g)L2([0,T ],V )

(
=:

∫ T

0
aµ,λ(∇L(p)h, g) dt

)
(34)

holds for all h ∈ L∞(Ω)3 and g ∈ L2([0, T ], V ). Again, (∇L(p))(∗,V )g = (q1, q2, q3)> ∈ L1(Ω)3 is given
by (31), where z ∈ C2([0, T ], H) ∩ C1([0, T ], V ) with z(T ) = ż(T ) = 0 uniquely solves∫ T

0
(aµ,λ(z, v)− (% ż, v̇)H) dt =

∫ T

0
aµ,λ(g, v) dt for all v ∈ X such that v(0) = 0. (35)

Remark 8. (a) At the expense of a more involved proof we could also consider Sobolev spaces with
more regularity in time on the right of (34).

(b) The proof actually shows that g 7→ q3 is even bounded from L2((0, T ), H) into L6/5(Ω)3, due
to time regularity of u. If one knows a-priori that the spatial regularity of u allows to conclude
that u(t, ·) ∈ Lr(Ω)3 for r > 2, then (∇L(p))∗ also maps into Lr/2(Ω)3; in particular, the Sobolev
embedding of H1(Ω)3 in L6(Ω)3 implies that (∇L(p))∗ ∈ L3(Ω)3.

Proof. (a) It is clear that determining the adjoint operator (∇L(p))∗ can be split into three separate
problems, since for h = (h1, h2, h3) it holds that

(∇L(p)h, g)L2([0,T ],H) =
3∑
j=1

(∂jL(p)hj , g)L2([0,T ],H) =
( 3∑
j=1

w′j , g
)
L2([0,T ],H)

with w′1,2,3 ∈ X as defined in Theorem 5. Hence we individually compute functions qj = qj(g) ∈ L1(Ω)
depending on g that satisfy (hj , qj)L2(Ω) = (w′j , g)L2([0,T ],H), j = 1, 2, 3, such that (∇L(p))∗g =

(q1, q2, q3)>. To this end, recall that u = L(p) (= L(µ, λ, %)) ∈ X denotes the solution to (25) that
belongs to C2([0, T ], H) ∩ C1([0, T ], V ) due to our assumptions on u0, u1, and f ∈ C2([0, T ], H) and
Theorem 2.

Define gtrv ∈ L2((0, T ), H) by gtrv(t) = g(T − t) and denote by ztrv ∈ X the unique solution to∫ T

0
(aµ,λ(ztrv, v)− (% żtrv, v̇)H) dt =

∫ T

0
(g, v)H dt for all v ∈ X0, (36)

with initial conditions ztrv(0) = żtrv(0) = 0; existence and uniqueness of ztrv follow from Theorem 1.
As in part (2) of the proof of Theorem 19 one shows that the vanishing initial conditions for ztrv

imply that the latter variational formulation holds even for arbitrary v ∈ X such that v(T ) = 0.
Thus, the time-reversed function z ∈ X, defined by z(t) = ztrv(T − t), is the unique solution in X of
the time-reversed wave equation∫ T

0
(aµ,λ(z, v)− (% ż, v̇)H) dt =

∫ T

0
(g, v)H dt for all v ∈ X such that v(0) = 0, (37)

subject to final conditions z(T ) = ż(T ) = 0. The stability bound ‖ztrv‖X ≤ C‖g‖L2([0,T ],H) of
Theorem 1 moreover shows that ‖z‖X ≤ C‖g‖L2([0,T ],H). Because (37) holds for all test functions
that vanish at t = T , we can in particular choose v = w′j in (33) and exploit that z itself is also
admissible as test function in the variational formulation (26)-(28) of w′1,2,3. For simplicity, we treat
each case j = 1, 2, 3 individually.
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(1) For j = 1,∫ T

0
(g, w′1)H dt =

∫ T

0
(aµ,λ(z, w′1)− (% ż, ẇ′1)H) dt

(26)
= −

∫ T

0
ah1,0(u, z) dt .

To determine q1 = q1(g) = (∂jL(p)hj)
∗ that satisfies (g, w′1)L2([0,T ],H) = (h1, q1)L2(Ω) we need to solve

−
∫ T

0
ah1,0(u, z) dt = −

∫ T

0

∫
Ω
h1ε(u) : ε(z) dx dt

!
=

∫
Ω
q1(x) · h1(x) dx ,

and directly conclude that q1(x) =
∫ T

0 ε(u(t, x)) : ε(z(t, x)) dt . Since

‖q1‖L1(Ω) ≤
∫

Ω

∫ T

0
|ε(u(t))| |ε(z(t))|dt dx ≤

∫ T

0
‖ε(u(t))‖H‖ε(z(t))‖H dt

≤ ‖u‖C0([0,T ],V )‖z‖C0([0,T ],V ) ≤ ‖u‖C0([0,T ],V )‖g‖L2([0,T ],H),

the mapping g 7→ q1 is bounded from L2([0, H], H) into L1(Ω).
(2) For j = 2, we find that∫ T

0
(g, w′2)H dt =

∫ T

0
(aµ,λ(z, w′2)− (% ż, ẇ′2)H) dt

(27)
= −

∫ T

0
a0,h2(u, z) dt .

Searching for q2 = q2(g) such that (g, w′2)L2([0,T ],H) = (h2, q2)L2(Ω) leads to∫ T

0
a0,h2(u, z) dt =

∫ T

0

∫
Ω
h2 · div(u) · div(z) dx dt

!
=

∫
Ω
h2(x)q2(x) dx .

Thus, q2(x) =
∫ T

0 div(u(t, x)) · div(z(t, x)) dt and g 7→ q2 is bounded from L2([0, H], H) into L1(Ω),
because ‖q2‖L1(Ω) ≤ ‖u‖C0([0,T ],V )‖z‖C0([0,T ],V ) ≤ C‖u‖C0([0,T ],V )‖g‖L2([0,T ],H), as for q1.

(3) For j = 3, it holds that∫ T

0
(g, w′3)H dt =

∫ T

0
(aµ,λ(z, w′3)− (% ż, ẇ′3)H) dt

(28)
=

∫ T

0
(h3 u̇, ż)H dt ,

and, as above, we compute that∫ T

0
(h3 u̇, ż)H dt =

∫
Ω
h3

∫ T

0
u̇ · ż dt dx

(28)
=

∫
Ω
h3q3 dx

and conclude that q3(x) =
∫ T

0 u̇(t, x) · ż(t, x) dt . As u̇ ∈ C0([0, T ], V ) and as V ⊂ H1(Ω)3 is continu-
ously embedded in Lr(Ω)3 for 1 ≤ r ≤ 6, we use the generalized Hölder inequality to estimate

‖q3‖(r+2)/(2r)

L2r/(r+2)(Ω)
≤
∫

Ω

∫ T

0
|u̇ · ż|2r/(r+2) dt dx ≤

∫ T

0

∫
Ω
|u̇ · ż|2r/(r+2) dx dt

=

∫ T

0
‖u̇‖Lr(Ω)3‖ż‖L2(Ω)3 dt ≤ ‖u‖C1([0,T ],V )‖z‖C0([0,T ],V ) ≤ ‖u‖C1([0,T ],V )‖g‖L2([0,T ],H).

Thus, g 7→ q3 is bounded from L2([0, T ], H) into Ls(Ω) for 1 ≤ s < 6/5 and, in particular, belongs to
L(L2([0, T ], H), L1(Ω)).

Summing up, we have shown that (∇L(p)h)∗ =
∑3

j=1 qj satisfies the claimed representation and

defines a bounded and linear operator from L2((0, T ), H) into L1(Ω).
(b) Replacing the Hilbert space H in the scalar product (∇L(p)h, g)L2((0,T ),H) on the right of (30)

by V in (34) merely requires to change the scalar product (g, v)H on the right of (36) by aµ,λ(g, v),
such that the solution z changes, too. Due to the assumption f ∈ C2([0, T ], H), Lemma 19 states
that the regularity of z thus increases, as both z and ż belong to X. Consequently, g 7→ q3 is even
bounded from L2((0, T ), V ) into Ls(Ω) for 1 ≤ s < 3.
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As in the last section, we also consider the adjoint of the Fréchet derivative of the parameter-to-
data operator Ψ ◦ L from Corollary 6.

Corollary 9. Assume that f ∈ C2([0, T ], H) with f(0) = 0, that u0 = u1 = 0, that Z is a Hilbert
space, and choose p = (µ, λ, %) ∈ D(L) ⊂ L∞(Ω)3.

(a) If Ψ∗ : Z → L2((0, T ), H) denotes the adjoint of Ψ ∈ L(L2([0, T ], H), Z), then(
h, (∇L(p))∗Ψ∗g

)
L2(Ω)3 = (Ψ(∇L(p)h), g)Z for all h ∈ L∞(Ω)3 and g ∈ Z,

where (∇L(p))∗ : L2((0, T ), H)→ L1(Ω)3 has been defined in Theorem 7(a).
(b) If Ψ∗ : Z → L2((0, T ), V ) denotes the adjoint of Ψ ∈ L(L2([0, T ], V ), Z), then(

h, (∇L(p))∗,V Ψ∗g
)
L2(Ω)3 = (Ψ(∇L(p)h), g)Z for all h ∈ L∞(Ω)3 and g ∈ Z,

where (∇L(p))∗,V : L2((0, T ), V )→ L1(Ω)3 has been defined in Theorem 7(b).

Let us illustrate the last corollary by a crude time-independent model for wave field measurements
in time by sensors fixed on ∂Ω: As these sensors cover a certain volume or surface area we choose
functions {mi}Nmi=1 that either belong to L∞(Ω)3 or to L∞(∂Ω) and model, e.g., the sensor’s coupling
to and embedding in the material. Setting

(ΨΩu)i(t) =

∫
Ω
mi(x)uj(x, t) dx or (Ψ∂Ωu)i(t) =

∫
∂Ω
mi(x) u|∂Ω (x, t) · ν(x) dS (38)

for i = 1, . . . , Nm and some j ∈ {1, 2, 3} then defines measurement models ΨΩ : L2(Ω)3 → (L2((0, T )))Nm

or Ψ∂Ω : X → (L2((0, T )))Nm that are both linear. While boundedness is obvious for ΨΩ it requires
the trace theorem to prove that Ψ∂Ω is bounded,

‖(Ψ∂Ωu)j‖L2(0,T ) ≤ ‖mi‖L∞(∂Ω)‖u|∂Ω‖L2((0,T ),L2(∂Ω)) ≤ ‖mi‖L∞(∂Ω)‖u‖L2((0,T ),V ).

5 The REGINN Algorithm Applied to Parameter Identification

We have now prepared all ingredients to rigorously state the identification problem for the material
parameters of the elastic domain Ω we are interested in, and to develop an iterative algorithm for
its solution. Recall that L : D(L) ⊂ L∞(Ω)3 → X denotes the parameter-to-solution operator and
that Ψ : X → Z models a measurement operator mapping the elastic wave u ∈ X to Nm sensor
measurements Ψ(u). (Examples for such measurement operators have been considered in the end of
the last section.) Let us further assume that f ∈ C2([0, T ], H) satisfies f(0) = 0, that both initial
conditions u0 = u1 = 0 vanish and that Z is a Hilbert space, such that Corollary 9 implies that the
non-linear parameter-to-data operator Ψ ◦ L is Fréchet differentiable.

Approximation of the Lamé parameters µ and λ and the material density % from (perturbed)
measurements vmeas ∈ Z of the normal component of one elastic wave at several sensor positions then
means to find a solution p = (%, µ, λ) such that

Ψ(L(p)) = vmeas is satisfied for p = (%, µ, λ) ∈ D(L). (39)

As uniqueness of this inverse problem is unclear, we are further interested in finding a minimum-norm
solution to that problem, that is, a solution with smallest L∞(Ω)3-norm, see [18,19].

As Corollary 9 explicitly characterizes the Fréchet derivative and its adjoint via elastic wave
equations, we aim to use a Newton-like scheme for parameter approximation and opt for the so-called
REGINN algorithm (REGularization of INverse problems by inexact Newton iterations), see [6,7,20].
This regularization algorithm for non-linear ill-posed problems in Hilbert spaces iteratively linearizes
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the non-linear operator equation (39) and computes the jth iteration step hj from the linearized
auxiliary problem

∇Ψ(L(pj))hj = vmeas −Ψ(L(pj−1)), j = 1, 2, . . . , (40)

by a truncated conjugate gradient (cg) method in an inner iteration. The step hj then yields the next
iterate pj+1 = pj + hj for the outer iteration.

Obviously, such a Hilbert space setting does not fit to our above setting with Lamé parameters µ
and λ in L∞. Despite there are Banach space variants of this algorithm, see, e.g., [21], but also [19]
for other iterative regularization methods, we rely for simplicity on the Hilbert space version of that
algorithm, to avoid implementations of duality mappings. (The variant in [21] requires anyway a
reflexive Banach space for the searched-for unknowns which is not the case in our setting.) To this
end, we proceed from now on purely formally to obtain a numerical reconstruction algorithm – in
other words, we assume that algorithm to be well-posed and indicate its performance by numerical
experiments.

The cg-iteration computes iterates hj,i that can be expressed by polynomials pj,i of degree i ∈ N,
depending on the non-linear residual vmeas−Ψ(L(pj−1)), such that this method is nonlinear, see [6,22];
setting F (pj) = Ψ(L(pj)) and F ′(pj) = ∇(Ψ ◦ L(pj)),

hj,i = pj,i
(
F ′(pj)

∗F ′(pj)
)
F ′(pj)

∗[vmeas − F (pj)], i = 1, 2, . . .

Orthogonality of the cg-polynomials implies that these iterates can be computed by two evaluations
of F ′(pj) and F ′(pj)

∗ using the cg-algorithm, see, e.g., [7, 22] The REGINN algorithm stops the cg-
iteration if the linear residual ‖F (pj) + F ′(pj)hj − vmeas‖Z is smaller than some tolerance θ ∈ (0, 1)
times the non-linear residual ‖vmeas − F (pj)‖Z , making the algorithm an inexact Newton method.
Finally, the outer iteration in j ∈ N is stopped if the discrepancy principle is satisfied, that is, if
the nonlinear residual ‖vmeas − F (pj)‖Z is smaller than the assumed noise level of the data times a
constant τ > 1, see [23]. Note that all adjoints in these equations are taken with respect to L2-inner
product (see Theorem 7(a)).

Local convergence of this algorithm to a minimum-norm solution to (39) can be shown under
non-linearity conditions on the non-linear operator Ψ◦L which are usually difficult to verify; whether
or not such conditions are satisfied is unclear for many inverse problems in parameter identification
(see [7, 20] and [18,19] for more details). Listing 1 details the REGINN algorithm in pseudo-code.

Listing 1: The REGINN algorithm with inner cg iteration for data vmeas, initial guess p0, noise level
ε and parameters τ > 1 for the discrepancy principle and θ ∈ (0, 1) for the termination of the inner
cg iteration.

1 j = 0 ;
2 // Outer Newton i t e r a t i o n
3 while ‖Ψ(L(pj))− vmeas‖Z > τε‖f‖L2([0,T ],H)

4 {
5 i = 0 ;
6 F (pj) = Ψ ◦ L(pj) ; F ′(pj) = ∇(Ψ ◦ L(pj)) ;
7 hj,0 = 0 ;
8 // inner cg i t e r a t i o n
9 while ‖F (pj) + F ′(pj)hj − vmeas‖Z ≥ θ‖F (pj)− vmeas‖Z

10 {
11 i = i+ 1 ;
12 // compute i th cg−i t e r a t e hj,i by cg−a l gor i thm
13 hj,i = pj,i

(
F ′(pj)

∗F ′(pj)
)
F ′(pj)

∗[vmeas − F (pj)] ;
14 }
15 pj+1=pj + hj,i ;
16 j = j + 1 ;
17 }

14



Tackling (40) with the cg method implies that the adjoint (∇Ψ(L(pj−1)))∗ = (∇L(p))∗Ψ∗ of
the Fréchet derivative is a crucial ingredient of the algorithm; computing (∇L(p))∗Ψ∗g for g ∈ Z
via Corollary 9 makes the entire algorithm feasible since this avoids the need to set up the matrix
representation of the entire gradient. Section 6 details an implementation of this algorithm using
finite elements and presents numerical examples.

6 Implementation and Numerical Examples

As indicated in the introduction, our numerical examples are motivated by non-destructive testing
procedures of plates that aim to identify inhomogeneities in a known and homogeneous linearly elastic
domain. They shall in particular provide a proof of concept that one can approximate crucial features
of spatially varying material parameters from partial measurements of a wave on the boundary of the
domain.

To this end, we will actually somewhat simplify the problem and merely attempt to reconstruct
a Lamé parameter µ depending on the two variables x1,2, defined in a thin plate Ω. For simplicity,
we opted to consider a thin quadratic metal plate that is 0.3m long and 0.005m thick. Thus, Ω =
[0, 0.3]× [0, 0.3]× [0, 0.005] ⊂ R3 and the (background) Lamé parameters equal µ0 = 1.12 · 1010N/m2

and λ0 = 2.18·1010N/m2 (corresponding to the modulus of elasticity E = 30·109N/m2 and the Poisson
ratio ν = 0.33). Perturbations of these parameters by inclusions will yield parameters to approximate;
the density % = %0 of 2.7 · 103kg/m3 will always be constant. The top and bottom surface of the plate
are traction-free, and the four vertical sides of the plate are fixed, i.e., the displacement field vanishes
there; the fixed part Γ ⊂ ∂Ω introduced in Section 2 hence consists of the four vertical sides of the
plate.

For numerical simulations, the domain Ω is discretized by a uniform tetrahedral finite element
mesh, consisting of tetrahedra with equilateral triangle base and three equal isosceles triangle sides.
The mesh width, i.e., the smallest side of the isosceles triangles, equals 1/700m. This mesh is used to
simulate measured data, and to compute Fréchet derivatives in the reconstruction algorithm; A second
tetrahedral mesh, the so-called coarse mesh, consists of two layers of mesh points with horizontal mesh
width 1/100m. On both meshes, we consider finite element spaces of globally continuous functions that
are piecewise linear on the mesh. As we use the coarse mesh to approximate the Lamé parameter µ
that is always is a function independent of x3, the finite element space on the coarse mesh additionally
imposes periodic boundary conditions on the top and bottom of the plate.

We simulate the generation of an ultrasound wave inside the plate by inducing a pulse at the
center of the plate during a short time interval of approximately 10−5s. More precisely, we model
the induced pulse by a volumetric source term f(t, x) = p(t)s(x) for x ∈ Ω and t > 0. The time-
dependent part p of the source is a modulated sine pulse with a central frequency of 4 · 105Hz, given
by p(t) = sin(4 · 105(t− 7 · 10−6)) exp(−0.06(4 · 105(t− 8.2 · 10−6))2) if |t− 8.2 · 10−6| < 4 · 10−5 and
p(t) = 0 else. The spatial part s of the pulse equals

s(x) =
( x1−0.15
x2−0.15
−1

)
e−700((x1−0.15)2+(x2−0.15)2)),

see Figure 2 for the finite element interpolations of these functions on the coarse mesh.
Taking into account technical restrictions for wave measurements, we assume to measure merely

the normal component of the elastic wave field u(t, xj)·(0, 0, 1)> at 92 equidistributed points xj on the
boundary of the rectangle [0.03, 0.27]2 × {0.05} on the top boundary of the plate. This setting yields
a crude model for contactless measurements of elastic ultrasound waves induced by a laser beam.
Based on these signals we aim to numerically approximate space-dependent material properties of
the plate. The discrete version of the measurement operator Ψ thus provides the values of the third
component of the displacement field at certain points on the top surface of the plate. (The points xj
are chosen as nodes of the finite element mesh in our experiments.)
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(a) First component of s.
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Figure 2: Finite element interpolations of the three components of the spatial part s of the pulse,
plotted on the horizontal mid-surface of the plate Ω.

To generate simulated data, we discretize the equations of linear elasticity by the second order cen-
tral finite difference approximation of the second derivative in time, providing explicit time-stepping
up to the inversion of the mass matrix. The bilinear form aµ,λ on V × V from (10) is discretized by
a finite element space of globally continuous functions that are piecewise linear on the mesh of Ω;
to this end, we rely on the finite element software FreeFEM++, see [24]. The time-step 4t for the
simulation of the displacement field is always set to be 4t = 0.5 ·4tCFL, where 4tCFL is the limiting
time step of the Courant–Friedrichs–Lewy condition. The final time T > 0 for all simulations of
displacement fields, derivatives, and adjoints of derivatives, equals 2.3 · 10−4s. As we did not attempt
to optimize the forward code, an average reconstruction on one core of a workstation with an i7-3770
CPU running at 3.4 GHz took around 110 hours to compute; this could be reduced by, e.g., choosing
an optimal time step 4t with respect to the mesh width, or by working with cubic meshes.

As was noted before, our numerical experiments consider Lamé parameters that are local pertur-
bations of known constant background parameters µ0 = 1.12 · 1010N/m2 and λ0 = 2.18 · 1010N/m2

at constant density %0 = 2700Kg/m3 and, additionally, do not depend on x3. As both µ and λ scale
linearly with the modulus of elasticity, we further assume that the relative perturbations of µ and λ
with respect to the background parameters equal each other, such that µ/µ0 = λ/λ0. Thus, it suffices
to reconstruct µ and to set λ = (µ/µ0)λ0 (more precisely, in an iterative scheme, the jth iterate
µj defines λj by (µj/µ0)λ0). This simplification eases the reconstruction task, as merely one Lamé
parameter needs to be reconstructed.

It is finally important to note that we compute parameter reconstructions on a coarse mesh
with 100 nodes per meter, such that discretizing the formulas from Theorem 7 requires interpolation
operators between different finite element spaces. (FreeFem++ provides such interpolation operators
as built-in feature.) The interpolation operator Ifine→coar from the finite element space on the fine
to the finite element space on the coarse mesh is in particular important for the implementation of
the adjoint (∇L(p))∗Ψ∗ in (9): If Ψcoar denotes the discrete measurement operator on the coarse grid
and ∇Lfine(µ) the Fréchet derivative of the forward operator discretized on the fine grid, the latter
adjoint is implemented numerically as (∇Lfine(µ))∗ ◦ I∗fine→coar ◦ (Ψcoar)

∗.

6.1 Numerical Examples for the REGINN Algorithm

In all our numerical examples shown below, the parameters of the REGINN algorithm in Listing 1
are chosen as τ = 1.05 and θ = 0.95. The chosen value of θ effectively reduces the inner iteration
to very few iterations, which turned out to be more time efficient compared to a smaller θ and more
inner iterations. For all examples, we add artificial noise to the simulated data. To this end, we
scale an array of random numbers that are uniformly distributed in [−1, 1] element-wise such that
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the relative noise level equals 25% in the `2-norm on the data array. The artificial noise level can
indeed be chosen that high, since the adjoint of the Fréchet derivative serves as a sort of low pass
filter: At a given measurement point, the mean of the added random numbers values is almost zero
even for small time intervals, such that solving for the adjoint solution z to (35) filters out most
high-frequency noise contained in the right-hand side. The small choice of τ is partly due to the
relative small discrepancy resulting from the perturbation of the Lamé parameters when compared
with the discrepancy resulting from the artificial noise.

To verify and quantify the reconstruction capabilities of the approach presented in this paper, we
test the algorithm using two different perturbation geometries. Results and discussion are summarized
in the following two paragraphs. As discussed above, we merely reconstruct the parameter µ, a
function depending on (x1, x2), and change λ accordingly. In particular, we merely consider µ in the
remainder of this section.

Large Inclusion

In this first test we place one large square of side length 0.18m in x1-direction and 0.042m in x2-
direction near the center of the plate. The contrast for the material parameter µ is constant and
equals −0.5µ0, see Figure 3(a). Figure 3(b) shows that the reconstruction by the REGINN algorithm
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(a) Finite-element interpolation of exact µ/µ0.
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(b) Approximation of µ/µ0 by the REGINN al-
gorithm.

Figure 3: Approximation of µ/µ0 with a contrast of −0.5µ0 by the REGINN algorithm from Listing 1.
Plots show the mid-surface of the plate Ω.

from Listing 1 is able to correctly identify the position and geometry of the exact parameter µ.
However, the inhomogeneities’ edges are smoothed and the contrast does merely reach about half of
the correct value. Further, the reconstruction features artifacts close to the plate boundaries, even
though the inhomogeneity is placed in the center of the plate. These artifacts may be due to the
interpolation error introduced when interpolating functions defined on the fine mesh in the finite
element space on the coarse mesh when computing updates of µ and λ as described above. The same
comments as apply for the reconstruction shown in Figure 4(b) that has been obtained for the same
geometry but a contrast of 0.2µ0.

Multiple Small Inclusions

The second test problem we consider is the approximation of two small inhomogeneities of size
0.042m×0.042m placed close to two opposite corners of the plate. As in the last example, we aim to
reconstruct this inhomogeneity for the two contrast values −0.5µ0 and 0.2µ0. Figure 5(b) shows the
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(a) Finite-element interpolation of exact µ/µ0.
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(b) Approximation of µ/µ0 by the REGINN al-
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Figure 4: Approximation of µ/µ0 with a contrast of 0.2µ0 by the REGINN algorithm from Listing 1.
Plots show the mid-surface of the plate Ω.

reconstruction results of the REGINN algorithm from Listing 1 for the negative contrast −0.5µ0 and
Figure 6(b) shows the corresponding results for the contrast −0.5µ0.
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(a) Finite-element interpolation of exact µ/µ0.
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(b) Approximation of µ/µ0 by the REGINN al-
gorithm.

Figure 5: Approximation of µ/µ0 with a contrast of −0.5µ0 by the REGINN algorithm from Listing 1.
Plots show the mid-surface of the plate Ω. For better presentation, the colormap has been adjusted
in the reconstruction image

In both cases, the parameter reconstructions allow to correctly identify basic features like position
or extent of the inclusions, that nevertheless lack even more contrast compared to the examples of
Figures 3 and 4. Again, artifacts close to the plate’s boundary affect the reconstructions and edges
of the inhomogeneities are smoothed, such that their original square shape is completely lost.

6.2 Total Variation-Based Regularization

As we have seen from the reconstructions in Figure 3, the REGINN algorithm fails to reconstruct
edges of the Lamé parameter µ from partial measurements of one elastic wave. To promote both the
detection of edges and to suppress smoothing effects in the parameter reconstruction, total variation
(TV) regularization schemes are often used, particularly in image reconstruction when the aim is,
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(a) Finite-element interpolation of exact µ/µ0.
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Figure 6: Approximation of µ/µ0 with a contrast of 0.2µ0 by the REGINN algorithm from Listing 1.
Plots show the mid-surface of the plate Ω. For better presentation, the colormap has been adjusted
in the reconstruction image

e.g., to reduce noise by reducing the total variation of an image, see [25]. Variational regularization
schemes for the solution of inverse problems often use the total variation of a searched-for parameter
by adding this term to a regularizing functional. Our approach here aims to promote the detection
of edges of parameters by coupling the gradient descent step of each individual inner iteration step of
the REGINN algorithm in Listing 1 with a gradient descent step for the (smoothed) total variation
of the parameter. To simplify this approach, we assume that the exact material parameter µ belongs
to H1(Ω) and approximate the total variation TV(µ) =

∫
Ω |∇µ|dx by a smoothed functional with

parameter β > 0,

TVβ(µ) =

∫
Ω

√
β2 + |∇µ|2 dx .

A lengthy but straightforward computation shows that the functional TVβ is Fréchet differentiable
and that the derivative of that functional at µ in direction h ∈ H1(Ω) equals

∇TVβ(µ)h =

∫
Ω

∇µ · ∇h√
β2 + |∇µ|2

dx .

Thus, the (negative) gradient of the functional at µ equals div(
√
β2 + |∇µ|2∇µ), which is merely an

element in the dual of H1
0 (Ω). Discretizing this expression for small β > 0 yields a gradient descent

direction for the total variation of the searched-for parameter. Alternating this gradient descent step
in this direction with the (first) inner iteration of the REGINN algorithm (see Listing 1) then yields a
alternating gradient descent method with respect to the squared discrepancy ‖Ψ(L(µ))− vmeas‖2 and
the total variation of µ. This gradient method is purely heuristic and we do not attempt to support
it by any theoretic statement.

We further aim to suppress the undesired artifacts close to the boundary that showed up in
Figures 3(b)–6(b) by fixing the values of the parameter approximation at the four vertical boundaries
of the plate to µ0 during the iterative reconstruction procedure.

For all computational examples presented below, the parameter β for the TV regularization is set
to one and the step width for the gradient descent scheme is set to 8 · 104 for the inclusions from
Figures 3(a) and 4(a), and to 8 · 103 for those of Figures 5(a) and 6(a) (These choices are found by
trial and error.)

Figure 4 shows that the resulting reconstructions of the four material parameters introduced
above show significantly improved edges that are roughly correctly located at the boundaries of the
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inclusions, at least for the boundaries closest to the plate’s boundary. As the reconstruction appears
generally smoother, and in particular almost completely flat outside the inhomogeneity, these recon-
structions approximate the exact parameter shapes more accurately than those in Figures 3(b)–6(b).
The approximation quality of the reconstructed contrasts depends on the simulated perturbation: In
Figure 7(a) and (b) the exact contrasts are better matched compared to the reconstructions shown
in Figures 3(a) and 4(a), respectively, while in Figures 7(c) and (d) the contrasts got slightly worse
compared to the reconstructions in Figures 6(a) and 6(a), respectively.
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(a) Approximation of µ/µ0 from Figure 3(a) by
the gradient descent scheme with fixed boundary
values.
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(b) Approximation of µ/µ0 from Figure 4(a) by
the gradient descent scheme with fixed boundary
values.
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(c) Approximation of µ/µ0 from Figure 5(a) by
the gradient descent scheme with fixed boundary
values.
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Figure 7: Reconstructions of µ/µ0 using the alternating gradient descent scheme with respect to the
squared discrepancy and the total variation norm of µ. Boundary values of µ/µ0 are fixed to one
during the iterative reconstruction scheme. Plots show the mid-surface of the plate Ω.

7 Conclusion

Based on finite element implementations of solution operator for the elastic wave propagation problem
and its Fréchet derivative with respect to the Lamé parameters, we showed that the Newton-like
reconstruction algorithm REGINN is able to identify perturbations of constant elastic background
parameters, in particular when it is coupled with a smoothed total variation gradient descent. Of
course, similar algorithms can be set up for variants of the measurement and/or excitation setup.
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As the reconstruction quality of the Lamé parameters depend considerably on the position of the
measurement points, the identification of optimal measurement positions might improve the presented
results. Further extensions of the presented work are the reconstruction of anisotropic, non-linear or
time-dependent elastic material parameters; in particular the last two classes of materials require
different approaches, both analytically and algorithmically.
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