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Abstract. Imaging mass spectrometry (IMS) is a technique of analytical
chemistry for spatially-resolved, label-free and multipurpose analysis of biological
samples, which is able to detect spatial distribution of hundreds of molecules in
one experiment. The hyperspectral IMS data is typically generated by a mass
spectrometer analyzing the surface of the sample. In this paper, we propose
a compressed sensing approach to IMS which potentially allows for faster data
acquisition by collecting only a part of pixels in the hyperspectral image and
reconstructing the full image from this data. We present an integrative approach
to perform both peak-picking spectra and denoising m{z-images simultaneously,
whereas the state of the art data analysis methods solve these problems separately.
We provide a proof of the robustness of the recovery of both spectra and individual
channels of the hyperspectral image and propose an algorithm to solve our
optimization problem which is based on proximal mappings. The paper concludes
with numerical reconstruction results for a IMS dataset of a rat brain coronal
section.

PACS numbers: 02.30.Zz, 82.80.Rt, 87.85.Ng, 07.05.Pj, 02.60.Cb

AMS classification scheme numbers: 47A52, 68U10, 94A12, 49N30, 49N45

1. Introduction

1.1. Mass spectrometry

Mass spectrometry is a widespread technique of analytical chemistry used to determine
the molecular composition of a biological or chemical sample. The way this task is
accomplished is through experimental measurement of the mass-to-charge ratio of
gas-phase ions produced from molecules from the underlying analyte.

Apart, mass spectrometry is a technique of choice in various fields of biology
and medicine. Among prominent applications are protein sequencing and discovery of
novel biomarkers in urine, serum, or blood for such diseases as cancer, diabetes and
neurodegenerative disorders.
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Figure 1. Imaging mass spectrometry data acquired from a rat brain tissue
section, adapted from [3]. Each spot on the x, y-grid on the sample in (a)
corresponds to one spectrum (b). An m{z-image corresponding to a m{z-value
represents the spatial distribution of the ions with this m{z-value, (c) and (d).

1.2. Imaging mass spectrometry

Imaging mass spectrometry (IMS) is a mass spectrometry-based technique for spatially
resolved chemical analysis. In this paper, we consider MALDI-IMS which uses the
MALDI-TOF (time-of-flight) mass spectrometer. Given a tissue section, a MALDI
imaging mass spectrometer acquires mass spectra at discrete spatial points across
the sample surface, providing a so-called datacube or hyperspectral image with a
mass spectrum acquired at a single pixel [1, 2], see figure 1. A mass spectrum
represents relative abundances of ionizable molecules with various mass-to-charge
ratios (m{z), ranging from several hundred up to tens of thousands m{z. A channel
of a MALDI datacube corresponding to a particular m{z-value is called an m{z-image
or a molecular image and expresses the relative spatial abundances of molecular ions
with this m{z-value.

MALDI-IMS data is large, with a typical dataset containing 10,000-100,000
spectra across 10,000-100,000 m{z-values. In this paper, we propose a compressed
sensing approach to MALDI-IMS which would allow for faster data acquisition by
collecting only a part of a hyperspectral image and reconstructing the full image from
this data. Instead of acquiring spectra independently for each pixel, we propose to
perform a sequence of measurements which results in so called measurement-mean
spectra. We then show how to reconstruct the full dataset from these spectra.

1.3. Compressed sensing and its applications to hyperspectral imaging

The combination of classical Shannon-Nyquist sampling and compression steps is one
of the main ideas of compressed sensing (CS). It turns out that it is possible to
represent or reconstruct data using sampling rates much lower than the Nyquist rate
[4, 5, 6]. More formally, given a signal or data x P R

n, we do not need to acquire n
periodic samples to return to the discretized signal x. Instead, it suffices to take only
k “ 1, . . . ,m ! n linear measurements yk P R using linear test functions ϕk P R

n (i.e.
yk “ xϕk, xy ` zk), with some additive noise zk P R and noise level }z} ď ε. In matrix



Compressed Sensing in Imaging Mass Spectrometry 3

notation this reads

y “ Φx` z, (1.1)

where Φ P R
mˆn is called the measurement matrix and has rows filled with the

functions ϕk. Using the a-priori information that the signal x is sparse or compressible
in a basis Ψ P R

nˆn, we can then recover the signal x under suitable assumptions on Φ
and Ψ from the measurements yk with the basis pursuit approach, that is, by solving
the following convex optimization problem

argmin
λPRn

}λ}1 subject to }y ´ ΦΨλ}2 ď ε. (1.2)

One of the many applications of CS is in hyperspectral imaging. A hardware
realization of CS in that hyperspectral situation applying the single-pixel camera [7]
has been studied in, for example, [8]. From the theoretical point of view mathematical
models have been studied for CS in hyperspectral image reconstruction under certain
priors [9, 10, 11]. Suppose that we have a hyperspectral datacube X P R

nxˆnyˆc

whereas nx ˆ ny denotes the spatial resolution of each image and c the number of
channels. By concatenating each image as a vector we haveX P R

nˆc with n :“ nx¨ny .
In the context of CS, we aim to take m ! n measurements for each spectral channel
1 ď j ď c [10, 11] and formulate a reconstruction strategy based on hyperspectral
data priors. For example in [11] the authors assume the hyperspectral datacube to
have low rank and piecewise constant channel images. Therefore the following convex
optimization problem is presented

argmin
X̃PRnˆc

}X̃}˚ ` τ
c

ÿ

j“1

}X̃j}TV subject to }Y ´ ΦX̃}F ď ε, (1.3)

where } ¨ }˚ and } ¨ }TV denote the nuclear norm (the sum of the singular values) and
the TV semi-norm respectively. Furthermore the notation

X̃j :“ ΩjX̃ :“ pΩ ˝ CjqX̃, j “ 1, . . . , c, (1.4)

is used, where Cj maps from a hyperspectral data matrix to its j-th image in vectorized
form and Ω concatenates it to an nx ˆ ny image. τ is some positive balancing
parameter, and the linear operator Φ is the measurement matrix as previously
described. The reason for using the nuclear norm as one of the regularization terms
arises from the fact that hyperspectral data often has high correlations in both the
spatial and the spectral domains.

Another application of CS in hyperspectral imaging is in calculating a compressed
matrix factorization or a (blind) source separation of the data X P R

nˆc, for example

X “ SHT , (1.5)

where S P R
nˆp is a so called source matrix, H P R

cˆp is a mixing matrix and
p ! mintn, cu denotes the number of sources in the data (known a priori). This model
has been recently studied in the case of known mixing parameters H of the data X
in [12] and with both matrices unknown in [9]. If H is known and if the columns of S
are sparse or compressible in a basis Ψ, the problem in [12] becomes

argmin
λPRn̄

}λ}1 subject to }Y ´ ΦH̄Ψλ}2 ď ε, (1.6)
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Figure 2. An illustration of a peak-picking approach in mass spectrometry,
first published in the proceedings of SampTA 2013 published by EURASIP [17].
Instead of finding a reconstruction X̃ via X̃T “ ΨΛ̃, we aim to directly recover
the features Λ̃. Dashed line (- - -): Reconstruction of the i-th spectrum, i.e.
X̃T

pi,¨q “ pΨΛ̃qp¨,iq. Solid line (—— ): Only the main features of the i-th spectrum

Λ̃p¨,iq, i.e. the main peaks, are extracted.

where n̄ “ p ¨n, H̄ “ HbIn, with denoting b the usual Kronecker product and In the
nˆ n identity matrix. The authors in [12] also studied the case where the ℓ1-norm in
(1.6) is replaced by the TV norm with respect to the columns of S,

řp

j“1 }Sj}TV , where
Sj is defined as in (1.4) with proper dimensions. In this instance, solving (1.6) yields
a decomposition as in (1.5), where the columns of S contain the p most representative
images of the hyperspectral datacube and the rows of H contain the corresponding
pseudo spectra.

In this paper we investigate a reconstruction model for hyperspectral data similar
to (1.3) and (1.6), but with special motivation for IMS data. Let X P R

nˆc
` be the

hyperspectral IMS data and assume that there exists a sparse decomposition of the
spectra Xpi,¨q P R

c
` for i “ 1, . . . , n with respect to some basis Ψ P R

cˆc
` , i.e.

XT “ ΨΛ (1.7)

where Λ P R
cˆn
` . By applying compressed measurements via Φ P R

mˆn and (1.4), our
minimization problem then becomes

argmin
ΛPRcˆn

}Λ}1 `
c

ÿ

j“1

}Λj}TV subject to }Y ´ ΦΛTΨT }F ď ε, Λ ě 0. (1.8)

Since we know a-priori that mass spectra in IMS are typically nearly sparse or
compressible, we use the ℓ1-norm as one regularization term [13, 14]. The TV-term is
used because the m{z-images have sparse image gradients [15]. A detailed derivation
of the functional (1.8) is presented in sections 3.3 and 3.4.

1.4. Contributions and paper organization

This paper introduces a novel compressed sensing model able to reconstruct a full
IMS dataset from only partial measurements. Moreover, with respect to (1.7) and the
related work of Louis [16], we aim to directly reconstruct the main features Λ from the
measured data Y without inverting the operator Ψ with a sparsity constraint as done
in [13]. More precisely, we aim to directly reconstruct the features Λ̃ from X̃T “ ΨΛ̃
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from only m ! nx ¨ ny measurements, see figure 2. Usually in compressed sensing for
hyperspectral imaging, the restriction on the number of measurements m is weaker
since the number of channels is also taken into account, i.e. m̂ “ m ¨ c ! nx ¨ ny ¨ c,
see e.g. [9, 12]. In our case the number of measurements does not scale with the
number of channels since in MALDI-IMS we are restricted to measure a spectrum at
each pixel.

While reconstructing the data, we extract its features in both the spectral and the
spatial domains by peak-picking using the ℓ1-norm as well as image denoising with the
TV semi-norm, both of which are common IMS postprocessing steps [15, 13]. We also
prove, under certain assumptions, the robustness of the recovery of both the spectra
and the m{z-images.

Since we would like to reconstruct the full dataset we do not need to know the
number p of the mixing signatures of the underlying data, which makes this approach
different from [9, 12]. Moreover, unlike in [9, 12] we assume our spectra rather than
the images of the channels to be sparse or compressible in some known basis.

This paper is organized as follows: In section 2 we give the mathematical notation
and background used in this paper. In section 3 we derive our mathematical model for
compressed sensing in IMS in which peak-picking in the mass spectra as well as spatial
denoising in the m{z-images is applied simultaneously. We also prove the robustness
of the reconstruction of both the spectra and the m{z-images. Numerical results on
an IMS test dataset are presented and discussed in section 5. Section 6 concludes with
a general discussion on our proposed model as well as ideas for future work.

2. Preliminaries

For p ě 1, we denote the matrix p-norm by }A}p “ přm

i“1

řn

j“1 |aij |pq1{p for a matrix

A P R
mˆn, which is induced by the ℓp-vector norm }x}ℓp :“ p

ř

i |xi|pq1{p for some
x P R

n. For p “ 0 this is }x}0 :“ }x}ℓ0 :“ |supppxq| :“ |txj | xj ‰ 0u|, but it is
neither a norm nor a semi-norm. However, we will refer to it as the ℓ0-“norm” [18].
The corresponding ℓ0-“norm” for matrices can be defined accordingly. In the case of
p “ 2, this is the Frobenius norm, denoted by } ¨ }F . This norm is generated by the
inner product

xA,By “ tracepABT q “
ÿ

1ďiďm
1ďjďn

Ai,jBi,j .

where A “ pAi,jq P R
mˆn and B “ pBi,jq P R

mˆn.

We introduce the notation X :“ rX1, . . . , Xcs for a stack of images Xi P R
ni
xˆni

y ,
i “ 1, . . . , c. A natural extension for the p-norm of these objects is then given as
}X}p :“ přc

i“1 }Xi}ppq1{p.
The discrete total variation (TV) semi-norm of A is defined by

}A}TV “ }∇A}1,

In the paper we will use the anisotropic variant of the total variation norm which is
given by

}∇A}1 “
ÿ

i,j

}p∇Aqi,j}1,
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where p∇Aqi,j denotes the discretized gradient. More precisely we have the discrete
directional derivatives

Ax : Rmˆn Ñ R
pm´1qˆn, pAxqi,j “ Ai`1,j ´Ai,j ,

Ay : Rmˆn Ñ R
mˆpn´1q, pAyqi,j “ Ai,j`1 ´Ai,j .

The discrete gradient transform ∇ : Rmˆn Ñ R
mˆnˆ2 is then defined component wise

as follows

p∇Aqi,j “

$

’

’

’

&

’

’

’

%

ppAxqi,j , pAyqi,jq, 1 ď i ď m ´ 1, 1 ď j ď n´ 1

p0, pAyqi,jq, i “ m, 1 ď j ď n´ 1

ppAxqi,j , 0q, 1 ď i ď m ´ 1, j “ n

p0, 0q, i “ m, j “ n.

In the isotropic case one would have

}∇A}1 “
ÿ

i,j

}p∇Aqi,j}2,

which is equivalent to the anisotropic case up to a factor
?
2. The results presented

in the paper are therefore valid for both versions up to a factor including
?
2.

We say that x P R
n is s-sparse when it has at most s ď n non-zero entries.

We write x À y to say that there exists some constant C ą 0 such that x ď Cy.
Accordingly we define the notation x Á y. We also make use of the notation
R` “ tx P R | x ě 0u.

For a Hilbert space H, we denote Γ0pHq as the set of all proper lower
semicontinous convex functions from H to s ´ 8,`8s.

For a function f P Γ0pHq and a point x P H the proximity operator [19] is defined
as the operator proxf : H Ñ H for which proxf pxq is the unique point in H that
satisfies

proxf pxq “ argmin
yPH

1

2
}x´ y}2 ` fpyq.

The existence of a minimizer of the function f is guaranteed because f is convex and
lower semicontinous. The uniqueness of proxf pxq follows from the additional quadratic
data fidelity term which makes the underlying functional strictly convex. In the case
of f “ } ¨ }ℓ1 and H “ R

n the proximity operator is a soft thresholding [20]

proxγ}¨}ℓ1
pxq “

ˆ

max

"

0,

ˆ

1 ´ γ

|xk|

˙*

xk

˙

1ďkďn

, (2.1)

where γ is the threshold.

3. Compressed sensing model for imaging mass spectrometry

3.1. Imaging mass spectrometry data

Recall that IMS data is a hyperspectral datacube consisting of one mass spectrum for
each pixel. The length of each spectrum depends on the number c ą 0 of m{z-bins
that have been selected before MS data acquisition. By fixing one specific m{z-value,
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we have an m{z-image that represents the spatial distribution of the given mass in
the biological sample, see figure 1. More formally, for r1, . . . , nxs ˆ r1, . . . , nys Ă Z

2
`

and c P N`, the IMS datacube X P R
nxˆnyˆc
` consists of m{z-images Xp¨,¨;kq P R

nxˆny

`

for k “ 1, . . . , c of image resolution nx ˆ ny. Since in MALDI measurement process
one counts the (relative) number of charged particles of a given mass that reaches the
detector, it is natural to assume the data to be non-negative. By concatenating each
image as a vector the hyperspectral data becomes

X P R
nˆc
` (3.1)

where n :“ nx ¨ny, so that each column in X corresponds to one m{z-image and each
row corresponds to one spectrum.

3.2. The compressed sensing process

As described in section 1, part of the IMS measurement process consists of the
ionization of the given sample. In MALDI-IMS, for instance, the tissue is ionized
by a laser beam, which hits each of the n pixel of a predefined grid, producing n
independently measured spectra. Our main goal is to use the theory of compressed
sensing [21, 4, 5, 6, 22] to reduce the number of spectra required but still be able to
reconstruct a full MALDI-IMS datacube X .

In the context of compressed sensing, each entry yij of the measurement vectors
yi P R

c for i “ 1, . . . ,m and j “ 1, . . . , c is the result of an inner product between the
data X P R

nˆc
` and a test function ϕi P R

n with components ϕik, i.e.

yij “ xϕi, Xp¨,jqy. (3.2)

From the IMS perspective these yi for i “ 1, . . . ,m are called the measurement-mean
spectra since they are calculated by the mean intensities on each channel, see figure 3.
This can be seen by rewriting (3.2) as

yTi “ ϕT
i X “

n
ÿ

k“1

ϕikXpk,¨q, (3.3)

which directly shows that the measurement vectors yTi are linear combinations of the
original spectra Xpk,¨q. We are looking for a reconstruction of the data X based on
these m measurement-mean spectra, each measured by one linear function ϕi. In
matrix form (3.2) or (3.3) becomes

Y “ ΦX P R
mˆc, (3.4)

where Φ P R
mˆn is the measurement matrix. Clearly, by (3.3), each row in Y can

be interpreted as a measurement-mean spectrum. By incorporating inherent noise
Z P R

mˆc
` that arises during the mass spectrometry measurement process, (3.4)

becomes

Y “ ΦX ` Z P R
mˆc, (3.5)

with }Z}F ď ε. We explicitely assume this noise to be Gaussian for simplicity, but it
should be noted that perhaps a Poisson noise framework might be more suitable to
IMS data [15].
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Figure 3. Compressed sensing measurements in imaging mass spectrometry.
Each measurement ϕi on the sample (left) (triangle (△), circle (˝ ), square ([\))
leads to a measurement yi (right) called a measurement-mean spectrum.

Finding a reconstruction of the data X from the measurements Y in (3.4) is
hopeless due the ill-posed nature of the problem. Therefore, we need additional a-
priori knowledge to find at least those reasonable solutions which also fulfils the given
data properties. To remedy this, the next two subsections introduce two notions of
sparsity that arises in imaging mass spectrometry.

3.3. First assumption: compressible spectra

For each pixel in the sample, we obtain a mass spectrum with positive real entries, i.e.

Xpk,¨q P R
c
`, k “ 1, . . . , n.

As motivated in figures 2 and 4, IMS spectra are compressible in spectral domain.
We therefore assume that these spectra are sparsely presented by a suitable choice
of functions ψi P R

c
` for i “ 1, . . . , c. More concretely, this means that there exists

a matrix Ψ P R
cˆc
` such that for each spectrum Xpk,¨q we have a coefficient vector

λk P R
c
` with }λk}0 ! c, such that

XT
pk,¨q “ Ψλk, k “ 1, . . . , n. (3.6)

In this paper, we assume the basis functions to be shifted Gaussians [13, 23, 24, 15]

ψkpxq “ 1

π1{4σ1{2
exp

ˆ

´ px´ kq2
2σ2

˙

, (3.7)

where the standard deviation σ needs to be set based on the data [15]. However, in
matrix form, the sparsity property (3.6) can be written as

XT “ ΨΛ, (3.8)
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Figure 4. An example of a pixel spectrum from the rat brain sample dataset
and its peak-picking result via ℓ1 minimization with Gaussians as basis elements
ψkp¨q with σ “ 0.75 (see (3.7)), (a). (b) presents a detailed view of the marked
region in (a), in which a basis element as well as the coefficients of the detected
peak are visualized.

where Λ P R
cˆn
` is the coefficient matrix. The single-spectrum case from (3.6) can

simply be found in (3.8): One column in XT corresponds to one spectrum. The
multiplication of Ψ with one column of Λ is exactly the same as in (3.6). However, in
light of the compressible spectra, our aim should be to minimize each column Λp¨,iq of
Λ with respect to the l0-“norm”, since each represents the sparse peak-list information
based on Ψ. Thus, for one spectrum we have }Λp¨,iq}0 and for all spectra this reads

}Λ}0. (3.9)

Note that the notation from spectra and images (the order in the brackets in the
index) changes for Λ due to the transposition in (3.8).

Putting (3.5) and (3.8) together leads to

Y “ ΦΛTΨT ` Z. (3.10)

3.4. Second assumption: sparse image gradients

By fixing one m{z-value i0 P t1, . . . , cu we get a vector Xp¨,i0q P R
n
` (one column of

the dataset X), which by (1.4) is also an m{z-image Xi0 P R
nxˆny

` that represents the
spatial distribution of the fixed mass m0 in the measured biological sample. A priori,
we know that thesem{z-images are sparse with respect to their gradient. Additionally,
we also note the large variance inside each individual m{z-image [15]. To handle both,
we want to make use of the total variation (TV) model introduced by Rudin, Osher
and Fatemi [25]. So we want each m{z-image to be minimized with respect to its TV
semi-norm.

The matrix Ψ is columnwise filled with the shifted Gaussian kernels from (3.7)
and it can therefore be interpreted as a convolution operator. With respect to (3.8),
this means that the spectra Xpk,¨q, k “ 1, . . . , n, are only sums of the shifted Gaussian
kernels, see figure 2. From the spatial point of view this means that regions in an
m{z-image are not seperated sharply. In fact, they overlap each other, and this can
also be observed in real measured data. However, the multiplication of Ψ in (3.8)
only convolves or smoothes the boundaries in the m{z-images and does not effect the
structure of each m{z-image Xi. Therefore, instead of minimizing

}Xi}TV “ }pΨΛqTi }TV ,
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Figure 5. An example of a TV denoised m{z-image. Left: Noisym{z-image from
the rat brain dataset. Right: TV denoised image using the algorithm described
in [26].

we conclude that it suffices to minimize the TV norm of the c images given through
the coefficients Λ, i.e.

c
ÿ

i“1

}Λi}TV . (3.11)

3.5. The final model

In total, we are now able to formulate our model for CS in IMS. We seek a positiv
coefficient matrix Λ̃ P R

cˆn
` such that

1. the reconstructed datacube X̃T “ ΨΛ̃ is consistent with the observed measure-
ments Y up to a certain noise level ε, see (3.10)

2. the m{z-images Xi for i “ 1, . . . , c or, more precisely, the deconvoluted analogs
Λi, have sparse image gradients, see (3.11)

3. each spectrum Xpi,¨q can be represented by only a few peaks indicating sparse
coefficient vectors Λp¨,iq

This leads us to the following optimization problem

argmin
ΛPRcˆn

}Λ}0 `
c

ÿ

i“1

}Λi}TV subject to }Y ´ ΦΛTΨT }F ď ε, Λ ě 0. (3.12)

It turns out that minimizing with respect to the ℓ0-“norm” is NP-hard [27].
Furthermore, this norm is not convex. To obviate this it is common to replace this
norm with the ℓ1-norm [28, 29]. By introducing further the linear mapping

DΦ,Ψ : Rcˆn
` Ñ R

mˆc,Λ ÞÑ ΦΛTΨT , (3.13)

(3.12) becomes

argmin
ΛPRcˆn

}Λ}1 `
c

ÿ

i“1

}Λi}TV subject to }Y ´ DΦ,ΨΛ}F ď ε, Λ ě 0. (3.14)
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3.6. Robust recovery

We now show that the ℓ1 reconstruction of the unknown matrix Λ P R
cˆn
` in (3.14) is

robust with respect to noise. In our case of compressed MALDI hyperspectral imaging,
this means that the pixel spectra as well as the m{z-images are stably reconstructed.
For this we need to generalize the results from [4, 30] and we will also assume, similar
to [30], to have measurements on the image gradients.

One of the fundamental ideas in CS is the following restricted isometry property
(RIP) whose definition is as follows.

Definition 3.1. The linear operator A : Rnxˆny Ñ R
mˆp has the restricted isometry

property of order s and level δ P p0, 1q if

p1 ´ δq}X}2F ď }ApXq}2F ď p1 ` δq}X}2F for all s-sparse X P R
nxˆny .

The smallest δ for which this holds is the restricted isometry constant for the operator
A and is denoted by δs.

We will make use of the following notation from [30]. For a matrix Φ, we denote
Φ0 and Φ0 to be the matrices which arise from Φ by concatenating a row of zeros
at the bottom or on top, respectively. The following lemma establishes a relation
between measurements of directional gradients and these padded matrices.

Lemma 3.2. Let X P R
nxˆny , Φ P R

pnx´1qˆny and Ψ P R
pny´1qˆnx . Then

xΦ, Xxy “ xΦ0, Xy ´ xΦ0, Xy

and

xΨ, XT
y y “ xΨ0, XT y ´ xΨ0, X

T y,

where Xx and Xy are defined as in the preliminaries.

Proof. Using the definitions of the directional derivatives and the inner product from
section 2, simple algebraic manipulations lead to

xΦ, Xxy “
ÿ

1ďiďnx´1

1ďjďny

Φpi,jqpXxqi,j

“
ÿ

1ďiďnx´1

1ďjďny

Φpi,jqpXi`1,j ´Xi,jq

“
ÿ

1ďiďnx
1ďjďny

´

Φ0
pi,jqXi`1,j ´ Φ0,pi,jqXi,j

¯

“ xΦ0, Xy ´ xΦ0, Xy.

The other equality follows similarly.

We we also make use of the asymmetric isometry property (A-RIP), the restricted
condition number of a dictionary D as well as the dictionary restricted isometry
property (D-RIP) as proposed in [31, 12, 32].
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Definition 3.3. A matrix D P R
nxˆnx satisfies the asymmetric restricted isometry

property (A-RIP), if for all s-sparse X P R
nxˆny the following inequalities hold:

LpDq}X}F ď }DX}F ď UpDq}X}F ,

where LpDq and UpDq are the largest and the smallest constants for which the above
inequalities hold. The restricted condition number of D is defined as

ξpDq “ U

L
.

The D-RIP extends the notion of the standard RIP to matrices adapted to a
dictionary.

Definition 3.4. A linear operator A : Rnxˆny Ñ R
mˆp has the D-RIP of order s and

level δ˚ P p0, 1q, adapted to a dictionary D, if for all s-sparse X P R
nxˆny it holds

p1 ´ δ˚q}DX}2F ď }ApDXq}2F ď p1 ` δ˚q}DX}2F .

The robustness result that will be shown in theorem 3.6 rests mainly on the
following proposition. They are generalizations of proposition 2 and theorem 4
in [30, 33]. The following proposition states, that if a family of noisy D-RIP-
measurements fulfils generalized cone and tube constraints as introduced in [30], then
robust recovery is possible.

Proposition 3.5. Fix the parameters εi ą 0, σ ą 0, δ˚
i ă 1{3, Ci ą 0 as well as

ki, nx, ny, t, p P N. Suppose that for every i “ 1, . . . ,m Ai : R
ni
xˆni

y Ñ R
tˆp satisfies

the D-RIP of order 5kiγ
2 and level δ˚

i , that each given dictionary Di P R
ni
xˆni

x

satisfies the A-RIP with constants LpDiq and UpDiq and suppose that each image

DiXi P R
ni
xˆni

y satisfies a tube constraint

}AipDiXiq}F ď Ciεi. (3.15)

Set C :“ maxCi, δ
˚ “ max δ˚

i , ε :“ max εi, k :“ min ki, K :“ max ki, U :“
maxUpDiq, L :“ minLpDiq, ξ “ U{L, and suppose that γ ě ξ

b

K
k
. Further suppose

that for each subset Si of cardinality |Si| ď ki for i “ 1, . . . ,m a cone constraint of
the form

m
ÿ

i“1

}Xi
SC
i

}1 ď
m
ÿ

i“1

}XiSi
}1 ` σ (3.16)

is satisfied, where Xi
SC
i

and XiSi
denotes the matrix Xi P R

ni
xˆni

y restricted to the

index set SC
i and Si, respectively. Then

m
ÿ

i“1

}Xi}F À mε` σ?
K

(3.17)

and

m
ÿ

i“1

}Xi}1 À
?
Kmε` σ. (3.18)
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Proof. Let si “ kiγ
2 and let Si Ă rNis, with Ni “ ni

x ¨ ni
y, be the support set of an

arbitrary si-term approximation. For each image Xi, i “ 1, . . . ,m, we will decompose
its complement SC

i “ rNiszSi as

Xi
SC
i

“ Xi
S1
i

`Xi
S2
i

` . . . `Xi
S
ri
i

where ri “
Z

N

4si

^

.

Note that Xi
S1
i

consists of the 4si largest magnitude components, i.e the four largest

coefficients in 1-norm of Xi over S
C
i , Xi

S2
i

then consists of the 4si largest magnitude

components of Xi over S
C
i zS1

i and so on. By definition, the average magnitude of the
nonzero components of Xi

S
j´1

i

is larger than the magnitude of each of the nonzero

components of Xi
S
j
i

, thus

}Xi
S
j
i

}F ď
}Xi

S
j´1

i

}1
2

?
si

, j “ 2, 3, . . . , ri.

Together with the cone constraint (3.16), we obtain

m
ÿ

i“1

ri
ÿ

j“2

}Xi
S
j
i

}F ď
m
ÿ

i“1

ri
ÿ

j“2

}Xi
S
j´1

i

}1
2

?
si

“
m
ÿ

i“1

}Xi
SC
i

}1
2γ

?
ki

ď 1

2γ
?
k

m
ÿ

i“1

}XiSi
}1 ` σ

2γ
?
k

ď
?
K

2γ
?
k

m
ÿ

i“1

}XiSi
}F ` σ

2γ
?
k
.

In combination with the tube constraints (3.15), the D-RIP for each Ai as well as the
A-RIP for each Di, we see

Cmε ě
m
ÿ

i“1

}AipDiXiqq}F

ě
m
ÿ

i“1

}AipDipXiSi
`Xi

S1

i

qq}F ´
m
ÿ

i“1

ri
ÿ

j“2

}AipDiXi
S
j
i

q}F

ě
m
ÿ

i“1

b

1 ´ δ˚
i }DipXiSi

`Xi
S1
i

q}F ´
m
ÿ

i“1

ri
ÿ

j“2

b

1 ` δ˚
i }DiXi

S
j
i

}F

ě L
?
1 ´ δ˚

m
ÿ

i“1

}XiSi
`Xi

S1
i

}F ´ U
?
1 ` δ˚

˜ ?
K

2γ
?
k

m
ÿ

i“1

}XiSi
}F ` σ

2γ
?
k

¸

ě
˜

L
?
1 ´ δ˚ ´ U

?
K

2γ
?
k

?
1 ` δ˚

¸

m
ÿ

i“1

}XiSi
`Xi

S1
i

}F ´ U
?
1 ` δ˚

σ

2γ
?
k
.

Further calculations require that the bracket term is strictly positive, or

?
1 ´ δ˚ ´ ξ

?
K

2γ
?
k

?
1 ` δ˚ ą 0.
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With γ ě ξ
?
K{

?
k it is sufficient to have δ˚ ă 1{3. For this it follows

m
ÿ

i“1

}XiSi
`Xi

S1

i

}F ď 5
C

L
mε` 3ξ

σ

γ
?
k
.

Because of the inequality

m
ÿ

i“1

›

›

›

›

ri
ÿ

j“2

Xi
S
j
i

›

›

›

›

F

ď
m
ÿ

i“1

ri
ÿ

j“2

}Xi
S
j
i

}F

ď
?
K

2γ
?
k

m
ÿ

i“1

}XiSi
`Xi

S1
i

}F ` σ

2γ
?
k

ď 1

2ξ

m
ÿ

i“1

}XiSi
`Xi

S1
i

}F ` σ

2γ
?
k

and the fact that ξ ě 1, it follows that

m
ÿ

i“1

}Xi}F ď 8
C

L
mε` 5ξ

σ

γ
?
k

ď 8
C

L
mε ` 5

σ?
K

which proves (3.17). Using the cone constraint (3.16), we conclude that

m
ÿ

i“1

}Xi}1 “
m
ÿ

i“1

}XiS `Xi
SC

}1

ď
m
ÿ

i“1

}XiSi
}1 `

m
ÿ

i“1

}Xi
SC
i

}1

ď 2
m
ÿ

i“1

}XiSi
}1 ` σ

ď 2
?
K

ˆ

8
C

L
mε` 5

σ?
K

˙

` σ,

which proves (3.18).

Theorem 3.6. Consider nx, ny, c, k0, ki,m1,m2 P N and K :“ maxtřc
i“1 ki, k0u,

k :“ mintřc

i“1 ki, k0u for i “ 1, . . . , c. Let Λ P R
cˆn, where each row of Λ is

the concatenation of an image of size nx ˆ ny. Let the dictionary Ψ fulfill the A-

RIP of order 5k0γ
2 with constants L and U . Let γ ě ξ

?
K{

?
k. Furthermore let

A : Rpnx´1qˆny Ñ R
m1 and A1 : Rpny´1qˆnx Ñ R

m1 be shifted measurements on the
images Λi, i “ 1, ..., c, such that the operator B :“ rA A1, . . . ,A A1s, consisting of c
concatenations of rA A1s, has the RIP of order 5

řc

i“1 kiγ
2 and level δ ă 1{3. Let the

operator DΦ,Ψ : Rcˆn Ñ R
m2ˆc possess the D-RIP of order 5k0γ

2 and level δ ă 1{3.
Consider the linear operator MpΛq : Rcˆn Ñ R

4cm1 ˆ R
m2ˆc with components

MpΛq “
ˆ

A
0Λ1,A0Λ1,A

10Λ1,A
1
0Λ1, . . .

A
0Λc,A0Λc,A

10Λc,A
1
0Λc,DΦ,ΨΛ

˙

.

(3.19)
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If noisy measurements Y “ MpΛq ` Z are observed with noise level }Z}F ď ε, then

Λ˛ “ argmin
WPRcˆn

}W }1 `
c

ÿ

i“1

}Wi}TV s.t. }MpW q ´ Y }F ď ε, (3.20)

satisfies both

}Λ ´ Λ˛}F `
c

ÿ

i“1

}∇Λi ´ ∇Λ˛
i }F

À 1?
K

˜

}Λ ´ ΛS0
}1 `

c
ÿ

i“1

›

›∇Λi ´ p∇ΛiqSi

›

›

1

¸

` ε,

(3.21)

and

}Λ ´ Λ˛}1 `
c

ÿ

i“1

}Λi ´ Λ˛
i }TV

À}Λ ´ ΛS0
}1 `

c
ÿ

i“1

›

›∇Λi ´ p∇ΛiqSi

›

›

1
`

?
Kε.

(3.22)

Proof. For X P R
cˆn define X̃ :“ r∇X1, . . . ,∇XcsT . To simplify the notation later

on we define

}X̃}p,Σ :“
ˆ c

ÿ

i“1

}∇Xi}pp
˙1{p

.

With respect to proposition 3.5, since B as well as DΦ,Ψ satisfy the RIP, it suffices

to show that for D “ Λ ´ Λ˛, both D and D̃ satisfy the tube and cone constraints.
Write Li “ rpDiqx, pDiqTy s and let P denote the map which maps the indices of non-

zero entries of ∇Di to their corresponding indices in Li. Let L :“ rL1, . . . , LcsT and
extend the and A1, A2, . . . , Am1

, A1
1, A

1
2, . . . , A

1
m1

be such that for an image W

ApW qj “ xAj,W y, and A
1pW qj “ xA1

j,W y.

We now show that D as well as that D̃, satisfy the tube and cone constraints.
Cone constraint: Let S0 be the support of the s0 largest entries of Λ, and for

i “ 1, . . . , c, let Si denote the support of the si largest entries of ∇Λi and Sc
i its

complement and set S :“ Ť

Si. Using the minimality property of Λ˛ “ Λ ´ D, it
follows that

}ΛS0
}1 ´ }DS0

}1 ´ }ΛSc
0
}1 ` }DSc

0
}1`

}Λ̃S}1,Σ ´ }D̃S}1,Σ ´ }Λ̃Sc}1,Σ ` }D̃Sc}1,Σ
ď }ΛS0

´DS0
}1 ` }ΛSc

0
´DSc

0
}1 ` }Λ̃S ´ D̃S}1,Σ ` }Λ̃Sc ´ D̃Sc}1,Σ

“ }Λ˛}1 ` }Λ̃˛}1,Σ

“ }Λ˛}1 `
c

ÿ

i“1

}∇Λ˛
i }1

ď }Λ}1 `
c

ÿ

i“1

}∇Λi}1

“ }ΛS0
}1 ` }Λ̃S}1,Σ ` }ΛSc

0
}1 ` }Λ̃Sc}1,Σ.
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Rewriting this equality leads to

}DSc
0
}1 ` }D̃Sc}1,Σ ď }DS0

}1 ` 2}ΛSc
0
}1 ` }D̃S}1,Σ ` 2}Λ̃Sc}1,Σ

“ }DS0
}1 ` }D̃S}1,Σ ` 2}Λ ´ Λs0}1 ` 2}Λ̃ ´ Λ̃S}1,Σ,

Using the definition of } ¨ }p,Σ for p “ 1 yields

}DSc
0
}1 `

c
ÿ

i“1

}p∇DiqSc
i
}1

ď }DS0
}1 `

c
ÿ

i“1

}p∇DiqSi
}1 ` 2}Λ ´ ΛS0

}1 ` 2
c

ÿ

i“1

}∇Λi ´ p∇ΛiqSi
}1.

Now set σ :“ 2}Λ ´ ΛS0
}1 ` 2

řc

i“1 }∇Λi ´ p∇ΛiqSi
}1. Using the projection P of the

non-zero entries of ∇Di on each Li with |P pSiq| ď |Si|, we have that D and L satisfy
the cone constraint

}DSc
0
}1 ` }LP pSqc}1 ď }DS0

}1 ` }LP pSq}1 ` σ.

Tube constraint: First, D immediately satisfies a tube constraint by feasibility
since

}MpDq}F ď }MpΛq ´ Y }F ` }MpΛ˛q ´ Y }F ď 2ε.

Using lemma 3.2 for the j-th measurement of the derivative in both the x and y
directions of each image Di, i “ 1, . . . , c, it follows that

|xAj , pDiqxy|2 “ |xA0
j , Diy ´ xAj,0, Diy|2

ď 2|xA0
j , Diy|2 ` 2|xAj,0, Diy|2

and

|xA1
j , ppDiqyqT y|2 “ |xA10

j , pDiqT y ´ xA1
j,0, pDiqT y|2

ď 2|xA10
j , pDiqT y|2 ` 2|xA1

j,0, pDiqT y|2.

Thus, L satisfies a tube constraint

}BpLq}2F “
c

ÿ

i“1

m1
ÿ

j“1

|xAj , pDiqxy|2 ` |xA1
j , pDiqyqT y|2 ď 2}MpDq}2F ď 8ε2.

To apply proposition 3.5, it remains to show that D also satisfies a tube constraint
under the measurements DΦ,Ψ. But this easily holds since

}DΦ,ΨD}F ď }MpDq}F ď 2ε.

Remark 3.7. A nonnegativity condition can be easily incorporated into theorem 3.6,
since we only need feasibility of the true solution and the minimizer.

For theorem 3.6 it remains to validate that DΦ,Ψ satisfies the D-RIP, B the RIP
and Ψ the A-RIP. First note, that we can equivalently rewrite our problem as follows:
Note that using the Kronecker product b and the identity [34, lemma 4.3]

pCDEqvec “ pET b CqDvec,
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(3.12) or (3.14) can be formulated as in (1.8). The notation pZqvec emphasizes the
vectorized form of the matrix Z by stacking the columns of Z into a single column
vector. With respect to the equations (3.4) and (3.8) we have

y :“ Yvec “ pΦ b IcˆcqXvec

“ pΦ b IcˆcqpΛTΨT qvec
“ pΦ b IcˆcqpInˆnΛ

TΨT qvec
“ pΦ b Icˆc

looomooon

:“Φ̃

qpΨ b Inˆn
loooomoooon

:“Ψ̃

q pΛT qvec
loomoon

:“λ̃

.

Then, the resulting matrix Φ̃ is a mcˆnc blockdiagonal matrix with entries Φ on the
diagonal. If we now can show the D-RIP for Φ̃ holds, it also follows that DΦ,Ψ fulfils
the D-RIP, since

}ΨTΛT }2F “ }Ψ̃λ̃}22 and }Φ̃Ψ̃λ̃}22 “ }DΦ,ΨΛ}2F .

In [35] it has been shown that the RIP (or also the D-RIP) holds with overwhelming
probability also for blockdiagonal matrices, if the elements of the matrix Φ are
independently drawn at random from subgaussian distributions and

mc Á Kc log2pncq log2pKq. (3.23)

As the authors state in [35], the results there may not be optimal and can be improved
most likely. In fact, for our problem, the estimate for m in (3.23) is way to restrictive
if we take a priori information about our problem into account and would always yield
a measurement of the full data set.

Concerning the A-RIP, note that our dictionary is invertible and therefore its
condition number κ provides an upper bound for all ξ. Therefore, Ψ fulfils the A-RIP
and ξ from theorem 3.6 can be estimated from above by κ. In our case, the condition
number is reasonably small if σ from (3.7) is small, e.g. σ “ 0.75.

In theorem 3.6 we require γ ě ξ
?
K{

?
k. If γ is too big, it would require m to

be big as well according to the D-RIP of order 5Kγ2. The value ξ has already been
discussed before, so we need

?
K{

?
k to be small as well. Since Λ can be interpreted

as the deconvoluted version of the datacube X (see figure 2 and (3.8)), it inherents
the same physical structures. It is therefore reasonable to assume that the sparsity
prior

řc

i“1 ki « k0 holds for Λ as well and this implies
?
K «

?
k.

Regarding the RIP of B, one could transform the operator into four blockdiagonal
matrices with a structure similar to Φ̃. Then, a discussion about the RIP can be done
as before. These gradient measurements could theoretically be obtained by shifting
the measurement mask. However, in the acquisition process of MALDI-TOF, an
ionization of the biological sample is performed. Therefore, the sample is damaged at
the ionized points and further measurements would make no sense. As the authors of
[30], we believe that the additional 4m1 measurements A0,A0,A

10,A1
0 in theorem 3.6

are not necessary. Indeed our numerical results in section 5 seem to confirm this.

4. Numerical implementation

In this paper we make use of the parallel proximal splitting algorithm (PPXA) [36]
to solve the proposed optimization problem (3.14). To improve the ℓ1- as well as the
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TV -minimization effects, we introduce additional regularization parameters α, β ą 0.
Thus, the optimization problem becomes

argmin
ΛPRcˆn

α}Λ}1 ` β
c

ÿ

i“1

}Λi}TV subject to }Y ´ DΦ,ΨΛ}F ď ε, Λ ě 0. (4.1)

PPXA is an iterative method for minimizing a finite sum of lower semicontinous
convex functions. It is easy to implement and has the possibility to be parallelized.
At each iteration of the algorithm one needs to calculate the proximity operator of
each function and to average their results for updating the previous iterate.

To translate the optimization problem (4.1) in the PPXA context, we rewrite it
to the sum of four lower semicontinous convex functions

argmin
ΛPRcˆn

f1pΛq ` f2pΛq ` f3pΛq ` f4pΛq, (4.2)

where f1pΛq “ α}Λ}1, f2pΛq “ β
řc

i“1 }Λi}TV , f3pΛq “ ιBε
2
pΛq and f4pΛq “ ιB` pΛq.

Here, ιC is simply the indicator function which is defined as

ιCpΛq “
#

0 if Λ P C

`8 otherwise
. (4.3)

The indicator function is applied to the convex sets Bε
2,B` Ă R

cˆn, corresponding to
the matrices that satisfy the fidelity constraint }Y ´ DΦ,ΨΛ}F ď ε and to the ones
lying in the positive orthant, respectively.

Algorithm 1: The Parallel Proximal Algorithm (PPXA) for solving (4.1)

Input: Y,Ψ,Φ, α, β, ε, γ ą 0
Initializations: k “ 0; Λ0 “ Γ1,0 “ Γ2,0 “ Γ3,0 “ Γ4,0 P R

cˆn
`

repeat

for j “ 1 : 4 do

Pj,k “ proxγfj pΓj,kq
end

Λk`1 “ pP1,k ` P2,k ` P3,k ` P4,kq{4
for j “ 1 : 4 do

Γj,k`1 “ Γj,k ` 2Θk`1 ´ Θk ´ Pj,k

end

until convergence

The PPXA algorithm adapted to our problem is shown in algorithm 1. We will
now shortly state the proximity operators of each of the function fi, i “ 1, . . . , 4, and
refer the reader to [37, 36, 38] for further information.

The proximity operator of f1pΛq “ α}Λ}1 is given via the well-known soft-
thresholding operator as presented in (2.1) in the preliminaries. For the proximity
operator of the sum of TV norm, namely f2pΛq “ β

řc

i“1 }Λi}TV , we use an efficient
implementation from [26]. Since the proximal operator of an indicator function ιCpΛq
is the orthogonal projection onto the convex set C, the proximal operator of ιB` pΛq is
simply given as

proxγιB`p¨q
pZq “

`

maxt0, Zi,ju
˘

1ďiďc
1ďjďn

.
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For the projection onto the ℓ2 ball we use a forward backward scheme as proposed in
[39]. Note that all implementations are given within the UNLocBoX [40].

5. Numerical results

In this section we present reconstruction results for an example IMS dataset based
on the proposed model. The well-studied dataset X P R

nˆc
` was acquired from a

rat brain coronal section (see figure 1) which consists of c “ 2,000 data bins ranging
from m{z 4,213 to m{z 9,104. The m{z-images have a spatial resolution of 121ˆ 202.
Therefore, we have n “ 24,442 pixels. The spectra were normalized using total ion
count (TIC) normalization, which is the normalization with respect to the ℓ1-norm
[41]. Furthermore, they were baseline-corrected using the TopHat algorithm with a
minimal baseline width set to 10%; for more details, see [15, 3].

In the following experiments, the mass spectra are assumed to be sparse or
compressible with respect to shifted Gaussians as in (3.7), where we set the standard
deviation σ “ 0.75. By this, we still keep the idea of the peak picking as well as a
low conditioning number ξ « 8, since the last is an important factor in the robustness
theorem 3.6. The measurement matrix Φ is randomly filled with numbers from an i.i.d.
standard normal Gaussian distribution. The initial guess Λ0 for the desired solution Λ
was set as a random matrix whose negative elements were set to zero. By experience,
the noise level ε was set to 3.75 ¨ 103 and we have applied 30 outer loop iterations
in the PPXA 1. The regularization parameters in (4.1) were set for each amount of
measurements by hand as follows: 20%: α “ 0.15, β “ 0.3, 40%: α “ 1.3, β “ 1.6,
60%: α “ 2.0, β “ 2.3, 80%: α “ 3.2, β “ 3.5 and 100%: α “ 4.8, β “ 5.1.

Figure 6 presents the mean spectrum, i.e. the sum over all pixel spectra Xpi,¨q for
i “ 1, . . . , n, of the rat brain data as well as the mean spectrum of the reconstruction,
based on 20%, 40% and 60% measurements taken. The triangles in figure 6(a) show
the peaks which are detected based the 20% level. 6(b) and 6(c) show which peaks
are additionally extracted during reconstruction, visualized by additional squares
and circles. We can clearly see the influence of more measurements on the feature
extraction of the main peaks in the mean spectrum. As an example, the peak at m{z
7,060 is only slightly extracted in 6(a). More measurements not only lead to a higher
intensity of this peak, but also in additional local information, see figure 6(b)-(c).
Note that the described effect is only caused by the amount of samples and does only
slightly alter with the regularization parameters.

The effect of this increasing peak intensities can be visualized, for example, by
looking at the corresponding m{z-image at m{z 7,060, see figure 8. At the 20% level
we extract the main spatial features of this image, but we miss details such as in the
lower portion of the data. Increasing the number of measurements clearly leads to
better reconstruction results. With 40 % of taken measurements we get almost all
main features of the m{z-image.

Finally, figure 9 and figure 10 show images for six additional m{z-values and their
corresponding reconstructions at the different measurement levels (20%, 40%, 60%,
80% and 100%). These six m{z-values correspond to six detected high intensity peaks
in the mean spectrum as visualized in figure 6(a). Moreover, the m{z-images present
main structures within the rat brain, as shown in the rat brain schematic in figure 7,
adapted from [15]. As we can see, regions of high intensity pixels are mostly detected
as such and were reconstructed well when using 40% measurements. In figures 9 and
10, we can also notice a slight loss of details when applying 40% measurements, as
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Figure 6. Original mean spectrum (black dashed line) and its reconstruction
based on different number of taken measurements (blue line). The spectra
are both normalized to r0, 1s and we leave out the upper half for better
visualization. (a) Reconstruction based on 20% out of n “ 24,442 taken com-
pressed measurements. The triangles (▽) are set manually and visualize which
peaks are mainly detected. (b) and (c) show reconstruction results for 40% and
60%, respectively. The squares ([\) and circles (˝ ) show which peaks appear to
be additionaly detected.

Figure 7. Schematic representation based on the rat brain atlas. Reprinted with
permission from [15]. Copyright 2010 American Chemical Society.
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Figure 8. Influence of the number of taken measurements on the reconstruction
of the full dataset; an m{z-image corresponding to m{z 7,060 is shown. (a) shows
the original image. The images in (b), (c), (d), (e) and (f) show the reconstructions
with respect to 20%, 40%, 60%, 80% and 100% taken measurements, respectively.

seen previously in figure 8. This loss clearly reduces with the amount of measurements
taken. The image atm{z 4,385 illustrates the reconstruction results on a smaller peak,
compared to the other selected. It is recognizable that 20% taken measurements lead
to only an idea of where regions appear in the measured image slice, see also 6(a)
in comparison with 6(b). In contrast, 40% taken measurements lead to reasonable
reconstruction results. This behaviour can be observed on the other reconstructed
m{z-images as well.

Note that we have not acquired any additional measurements on the gradients as
they are required in theorem 3.6. As it is mentioned in section 3.6, we believe that
they are not required in practice. Moreover, the actual theoretical bound in (3.23) on
the number of measurements seems to be too pessimistic. Whereas the bound would
lead to near full number of measurements, in our example, only few (around 40%) are
needed for good reconstruction results.

6. Conclusions

In this paper, we proposed a compressed sensing model for imaging mass spectrometry.
In reconstructing the data from less than the half of measurements than normally
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Figure 9. Reconstructions of three different m{z-images based on 20%, 40%,
60%, 80% and 100% of taken measurements. First row, m{z 4,936 with main
structures in the middle and the lower part; second row,m{z 6,274 with structures
at the boundaries and small regions of high intensity pixels in the middle and
bottom part; third row, m{z 7,534 with high intensities at the boundary as well
as in the middle and the bottom.
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Figure 10. Reconstructions of three different m{z-images based on 20%, 40%,
60%, 80% and 100% of taken measurements. First row, m{z 8,563 with structures
at the boundary as well as in the middle and the lower part; second row,m{z 6,717
with one main structure in the center and less intensive regions at the boundary;
third row, m{z 4,385 with only small spots of high intensity pixels in the middle
and the very bottom.
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needed, we applied peak-picking in mass spectra and TV-denoising on the m{z-images
at the same time. Both the reconstructed images as well as the spectra were shown to
capture the features both in the spatial and the spectral domains. As visually judged,
taking 40% to 60% of the typical number of measurements led to only a slight loss of
spatial features even of small size.

Currently there are no mass spectrometers which allow for the acquisition of data
in such manner. However, considering the recent developments of the single pixel
camera [8, 7], one could theoretically implement such a mass spectrometry by splitting
the laser into several beams analogously as it is done in the digital micromirror device
used in the single pixel camera. Then, instead of analyzing each pixel separately,
one could analyze several pixels simultaneously and accumulate a measurement-mean
spectrum for such a measurement. Note that modern mass spectrometers indeed
use complex optics to achieve non-flat structured laser profile as in Bruker Daltonics
smartbeam mass spectrometers [42], although the current optics does not allow to
change the profile during an experiment.

We have theoretically proven that both the reconstruction of the spectra and the
reconstruction of the m{z-images are robust. Further research might investigate the
analysis of how the additional measurements of the gradients in theorem 3.6 could be
omitted. Also, the actual bound in (3.23) on the number of measurements to take
for robust recovery could be improved. The numerical results presented in this paper
suggest that it is too pessimistic.

We have used the parallel proximal algorithm [36] to solve our optimization
problem. To improve the regularization effects, we have added regularization
parameters α and β and set them by hand for each different amount of measurements.
As it can be slightly seen in the results (e.g. 20% in figure 9), it is not feasible to set
α by hand for all images. A future direction of investigation should therefore involve
regularization terms with locally-dependent parameters αi “ αpXiq for i “ 1, . . . , c
for the m{z-images as in [15] for locally-adaptive denoising, and βj “ βpXpj,¨qq for
j “ 1, . . . , N for the spectra.

Future work might also replace the Gaussian noise model with a Poisson statistics
approach [43]. As it has been mentioned in [15], this model might be more suitable
for MALDI-TOF spectrometry.
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