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Abstract

We consider a point-electrode model for electrical impedance tomography and
show that current-to-voltage measurements from finitely many electrodes are suffi-
cient to characterize the positions of a finite number of point-like inclusions. More
precisely, we consider an asymptotic expansion with respect to the size of the small
inclusions of the relative Neumann-to-Dirichlet operator in the framework of the
point electrode model. This operator is naturally finite-dimensional and models
difference measurements by finitely many small electrodes of the electric potential
with and without the small inclusions. Moreover, its leading-order term explicitly
characterizes the centers of the small inclusions if the (finite) number of point
electrodes is large enough. This characterization is based on finite-dimensional
test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion
centers. We show both feasibility and limitations of this imaging technique via
two-dimensional numerical experiments, considering in particular the influence of
the number of point electrodes on the algorithm’s images.

1 Introduction

The Multiple Signal Classification (MUSIC) algorithm is a well-known technique to
image small inclusions or obstacles in various settings. Starting with the pioneering
work [Sch86], this algorithm has been applied to inverse scattering and inverse source
problems [ML99, Dev00, AK04, Kir02, HR04, AIL05, Gri08], to electrical impedance
tomography [BHV03, AGH07], and to inverse problems in elasticity [AKNT02, ACI08,
GST12], to merely indicate some applications. While most of these papers consider the
characterization of small objects in an infinite-dimensional setting by working in function
spaces on a measurement surface, we propose an alternative in the context of impedance
tomography working on finite-dimensional data gained by finitely many point electrodes.
Arguably, results of this kind are somewhat natural, as the finite number of points to be
characterized represents a finite-dimensional unknown, too. Our results are motivated
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by corresponding theory in inverse scattering from [Kir02], see also [KG08, Section 4.1],
where a finite number of far field measurements is used to characterize a finite number
of point-like scatterers.

Despite measured data for any inverse problem is always finite-dimensional, quite
few results on what can actually be characterized from finite datasets can be found in
the literature. Thus, a first motivation of this paper is to show that in the framework of
a point electrode model the positions of finitely many small inclusions can be rigorously
characterized from finitely many difference measurements of the electric potential with
and without inclusions. (The required number of measurements implicitly depends on
the number of inclusions.) Due to an explicit range characterization via special test
vectors, these inclusions can further be imaged with the help of the MUSIC algorithm,
such that a second motivation is to numerically study the dependence of the resulting
images on some parameters of the problem as, e.g., the number of point electrodes.

Our dimension-independent approach applies to the so-called point-electrode model
of electrical impedance tomography (EIT), which can be considered as the limit case
of the complete electrode model when the electrode size shrinks to zero, see [HHH11].
Given J inclusions in a connected domain Ω ⊂ Rd, d = 2, 3, that are scaled by a small
parameter ε > 0 and centered at fixed points {z1, . . . , zJ}, we consider the difference of
the Neumann-to-Dirichlet maps for the background conductivity and its perturbation
by the J inclusions. If rescaled correctly, this difference, the so-called relative Neumann-
to-Dirichlet operator, tends to a limit operator as ε tends to zero; this limit operator
hence can be considered as a good measurement model for sufficiently small inclusions,
see [CMV98, AK04, HS12].

When dealing with N ∈ N point electrodes, both the relative Neumann-to-Dirichlet
operator and, upon rescaling, its limit ΛN are symmetric matrices of size N×N that pos-
sess a one-dimensional kernel, i.e., the measured data is finite-dimensional and provides
at most N(N − 1)/2 degrees of freedom. The main result of the paper (see Theorem 6)
shows that the matrix ΛN characterizes the positions of the J small inclusions in the
limit case as ε → 0 via explicit test vectors Vz,θ ∈ RN for points z ∈ Ω and directions
θ ∈ Sd−1 = {x ∈ Rd, |x|2 = 1}: Roughly speaking, for N large enough there holds for
all z ∈ Ω away from the boundary that

Vz,θ ∈ Rg(ΛN) ⇐⇒ z ∈ {z1, . . . , zJ}. (1)

The MUSIC algorithm exploits this characterization for imaging the centers zj by pro-
jecting the test vectors onto the kernel of (a noisy version of) ΛN for points z in a grid
covering Ω and then plotting the inverse of the norm of these projections on the grid
points. The resulting plot indicates the positions of the inclusions, that is, the center
points zj, by strong peaks.

Our technique to prove (1) is motivated by [KG08, Section 4.1], where a similar
problem has been considered for scattering from small acoustic scatterers. As in [KG08],
a cornerstone of our analysis is a unique continuation argument, which implies that no
estimate on the number of point electrodes required to characterize the positions of J
small inclusions can be derived from our analysis. However, our numerical experiments
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indicate rules of thumb on the required ratio between the number of electrodes and the
number of inclusions such that the MUSIC algorithm works properly.

Let us finally note two important recent results on EIT in the framework of point
electrode models: First, [HPS12, Sei14] prove that in two dimensions, roughly speaking,
the knowledge of difference data for an infinite number of point electrodes characterizes
the conductivity distribution entirely. A fundamental difference between their results
and ours is that our analysis relies on the finite-dimensional leading-order term ΛN of the
relative Neumann-to-Dirichlet operator. As merely this leading-order term can be stably
measured whenever the inclusions are small enough, results on what can be recovered
from this limited dataset are of importance. In this regard, Theorem 6 shows that J
inclusion centers are explicitly characterized by ΛN if N is large enough compared to J .

Second, the recent paper [CHS14] constructively shows an interesting invisibility
result for a setting similar to ours: For any fixed point electrode configuration, there
always exists a conductivity different from the constant background conductivity that
gives the same relative Neumann-to-Dirichlet data as the background conductivity. In
contrast, we fix J point-like inclusions from the beginning and then vary the number of
electrodes to characterize these inclusions.

Let us also note that the extension of our result to small inclusions with complex-
valued or anisotropic material parameters or to impenetrable inclusions is straightfor-
ward, but will not be considered in this paper. It is also possible to generalize the setting
to non-homogeneous background conductivities, at the expense of more involved tech-
nicalities to define (and to compute) the Neumann function. Moreover, our smoothness
assumption that all domains are C∞-smooth can be relaxed to, e.g., C2-smoothness.

The structure of the rest of the paper is as follows: We introduce the setting that
has already been sketched above in Section 2 and cite the necessary results on the
asymptotics of the point electrode model in Section 3. That section also serves to define
the finite-dimensional operators required for the characterization of the small inclusions
in Section 4. Finally, we introduce and numerically test the MUSIC algorithm for EIT
with point-electrode data in Section 5.

Notation: All vectors will be column vectors if nothing else is stated when defining
them, and (a; b) denotes the concatenation of two vectors a ∈ RN and b ∈ RM to a
column vector in RN+M . By | · |2 and | · |∞ we denote the Euclidean norm and the
maximum norm on RN , respectively. Matrices are set in bold letters and the spectral
norm of a matrix is denoted by | · |2 as well.

2 The Point Electrode Model for EIT

We consider static voltage potentials governed by the conductivity equation in a con-
nected domain Ω ⊂ Rd, d = 2, 3, with C∞-smooth boundary ∂Ω. For a set {z1, . . . , zJ} ⊂
Ω of J ∈ N pairwise disjoint points, a set of two-dimensional domains Dj ⊂ R2,
j = 1, . . . , J , with smooth boundary such that each Dj contains the origin, and a scaling
parameter ε > 0, we define

Dj,ε = zj + εDj = {y ∈ R2, (y − zj)/ε ∈ Dj} ⊂ R2.
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Figure 1: Sketch of the domain Ω containing J = 4 inclusions {z1, . . . , z4} with N = 6
point electrodes p1, . . . , p6 on the boundary.

Further, we choose ε0 > 0 such that for 0 < ε ≤ ε0 all domains Dj,ε are contained in Ω
and pairwise disjoint. Hence, for 0 ≤ ε < ε0,

Dε =
J⋃
j=1

Dj,ε ⊂ Ω

is the union of J small inclusions contained in Ω. The conductivity in Ω equals

σε =

{
1 in Ω \Dε,

1 + qj in Dj,ε, j = 1, . . . , J,
with constants qj 6= 0 such that qj > −1. (2)

We define ν to be the exterior unit normal field to Ω and, by abuse of notation, to
each Dj, too. To each inclusion Dj we associate a polarization tensor MDj ,qj ∈ Rd×d,
explicitly given by

MDj ,qj =

∫
∂Dj

ν

(
2 + qj

2qj
−KDj

)−1

y> dS(y),

where KDj is the double-layer operator for the Neumann function of Laplace’s equation
(see (5) and (24)), the inverse operator is applied component-wise to the row vector y>,
and integration of the resulting matrix is done element-wise, see [HS12]. It is well-known
that MDj ,qj is positive definite and thus invertible.

Consider a set of N ≥ 2 disjoint points p1, . . . , pN on the boundary of Ω that model
the positions of infinitesimally small electrodes (see Figure 1 for a sketch), together with
a current vector I ∈ RN

� = {F ∈ RN ,
∑N

n=1 Fn = 0}. (The sum of the injected currents
vanishes due to conservation of charge.) Denote further by δpn ∈ H(1−n)/2−α(∂Ω), α > 0,
the Dirac distribution supported at the nth point electrode pn, defined by δpn(v) = v(pn)
for v ∈ C0(∂Ω). In [HHR11] it is shown that the point electrode model

div(σε∇u) = 0 in Ω,
∂u

∂ν
=

N∑
n=1

Inδpn on ∂Ω, (3)

possesses a unique distributional solution u in the quotient space H2−d/2−α(Ω)/R that
satisfies the estimate ‖u‖H2−d/2−α(Ω)/R ≤ C(α)|I|2 for arbitrary α > 0. Further, [HHH11]
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shows that the so-called complete electrode model approximates the point electrode
model in (3) when N extended electrodes shrink to the N points p1, . . . , pN . Thus, this
model is of practical relevance for EIT when small electrodes are considered.

The corresponding problem for the background conductivity γ ≡ 1,

∆u0 = 0 in Ω,
∂u0

∂ν
=

N∑
n=1

Inδpn on ∂Ω, (4)

possesses a unique distributional solution u0 in the quotient spaceH2−d/2−α(Ω)/R as well,
which is again bounded in terms of the current vector I ∈ RN

� , i.e., ‖u‖H2−d/2−α(Ω)/R ≤
C(α)|I|2. As the conductivity in (4) equals one, the solution u0 can be explicitly ex-
pressed using the Neumann function N to Ω. For all y ∈ Ω, this Green’s function for
Neumann boundary conditions satisfies

∆xN (·, y) = −δy in D′(Ω),
∂N (·, y)

∂ν
= − 1

|∂Ω|
on ∂Ω and

∫
∂Ω

N (·, y) dS = 0. (5)

(The differential equation is satisfied in the distributional sense.) From [CK13] it follows
that N (·, y) is symmetric in its two arguments, that N (x, y) = N (y, x) for x 6= y in Ω
and standard interior regularity theory for the Laplacian implies that N (·, y) is infinitely
differentiable in Ω \ {y}. In particular, ΦN (·, y) ∈ H1(Ω \ Br(y)) for all r > 0 (but, as
one can show, not for r = 0). By symmetry and smoothness, the Neumann function N
can be extended to a continuous function in Ω × Ω \ {(x, x), x ∈ Ω}. We finally note
that [Sei11, Theorem 4.10] implies that the solution to (4) equals

u0 =
N∑
j=1

N (·, pn)In in Ω. (6)

To check this formula, note that
∫
∂Ω
u0 dS = 0 by definition of N (the trace is integrable

over ∂Ω.) In particular, the solution u0 to (4) is smooth inside Ω.

Remark 1. We denote the gradient of N with respect to the first variable by ∇xN
while ∇yN is the gradient with respect to the second variable. Note that ∇xN (x, y) =
∇yN (y, x) holds for x 6= y ∈ Ω.

3 Asymptotic Expansion of Potentials

Consider now the more general boundary value problem for the conductivity equation

div(σε∇u) = 0 in Ω,
∂u

∂ν
= f on ∂Ω, (7)

with Neumann boundary values f ∈ Hs
�(∂Ω) = {f ∈ Hs(∂Ω), 〈f,1〉 = 0}, where 1

denotes the constant function equal to one everywhere, 〈·, ·〉 denotes the duality product
between Hs(∂Ω) and H−s(∂Ω) for arbitrary s ∈ R, and σε has been defined in (2).
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By elliptic regularity and duality arguments relying on the smoothness of ∂Ω, each
boundary datum f ∈ Hs

�(∂Ω) defines a unique solution u ∈ Hs+3/2(Ω)/R. We also
introduce the corresponding Neumann problem for conductivity γ ≡ 1 and its solution
in Hs+3/2(Ω)/R, that is again denoted by u0,

∆u0 = 0 in Ω,
∂u0

∂ν
= f on ∂Ω. (8)

The Neumann-to-Dirichlet operator Λ(ε) : f 7→ u|∂Ω, usually defined between the

spaces H
−1/2
� (∂Ω) and H1/2(∂Ω)/R, extends to a bounded operator from Hs

�(∂Ω) into
Hs+1(∂Ω)/R. The analogous operator for background conductivity σ ≡ 1 is denoted
by Λ(0). Since σε ≡ 1 in some small neighborhood U of ∂Ω and since u − u0 satisfies
homogeneous Neumann boundary conditions on ∂Ω, the difference u − u0 is a smooth
function in U by elliptic regularity results (see [HK11, Lemma 2.1] or the appendix
of [HHR11]). An application of the trace theorem hence shows that (u− u0)|∂Ω belongs
to Hr

�(∂Ω)/R for arbitrary r ∈ R, and the estimate

‖u− u0‖Hr(∂Ω)/R ≤ C(r, s)‖f‖Hs(∂Ω) holds for arbitrary r, s ∈ R. (9)

The relative Neumann-to-Dirichlet operator Λ(ε) − Λ(0) : f 7→ (u− u0)|∂Ω is hence
bounded from Hs

�(∂Ω) into Hr(∂Ω)/R for arbitrary r, s ∈ R.
Turning back to the above-introduced small inclusions Dj,ε, Theorem 3.6 in [HS12]

shows the following expansion result.

Theorem 2 (Theorem 3.6 in [HS12]). Let f, g ∈ H−s� (∂Ω) and denote by uf and ug
the solution to (8) with boundary datum f and g, respectively. Then the expansion

〈g, (Λ(ε) − Λ(0))f〉 = εd
J∑
j=1

∇ug(zj)>MDj ,qj∇uf (zj) +O(εd+1) as ε→ 0

holds uniformly in f and g ∈ H−s� (∂Ω).

Restricting ourselves in the following to currents f of the form
∑N

n=1 Inδpn for I ∈
RN
� , we assume to possess measurements of difference potentials at the same N point

electrodes p1, . . . , pN . These measurements define a finite-dimensional relative Neumann-
to-Dirichlet map (Λ(ε) −Λ(0))N from RN

� into RN/R: For I = (I1, . . . IN)> ∈ RN
� ,(

(Λ(ε) −Λ(0))NI
)
m

=

[(
Λ(ε) − Λ(0)

)( N∑
n=1

Inδpn

)]
(pm) for 1 ≤ m ≤ N .

Theorem 2 transfers to this setting as follows.

Corollary 3. Let I, I ′ be current vectors in RN
� and denote the unique solution to the

conductivity problem (4) for current vector I and I ′ by uI and uI′ ∈ H2−d/2−α(Ω)/R ∩
C∞(Ω), respectively. Then the expansion

I ′ · (Λ(ε) −Λ(0))NI = εd
J∑
j=1

∇uI′(zj)>MDj ,qj∇uI(zj) +O(εd+1) as ε→ 0

holds uniformly in I and I ′ ∈ RN
� .
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Thus, for sufficiently small inclusions, difference measurements of the potentials u
and u0 for the same current vector I ∈ RN

� can be modeled with high accuracy by the
scaled, finite-dimensional limit operator ΛN of (Λ(ε) −Λ(0))N ,

I ′ · (Λ(ε) −Λ(0))NI ≈ εd I ′ ·ΛNI if ε� 1, (10)

where the linear mapping ΛN : RN
� → RN/R is defined by

I ′ ·ΛNI =
J∑
j=1

∇uI′(zj)>MDj ,qj∇uI(zj) for all I ′ ∈ RN
� . (11)

To determine a matrix representation of ΛN with respect to the standard basis of RN ,
we fix the mean value of ΛNI ∈ RN/R to be zero, such that ΛN maps RN

� into RN
� . For

a given basis I1, . . . , IN−1 of RN
� with entries In = (In,1, . . . , In,N)> and corresponding

solutions u1, . . . , uN−1 to (4), the matrix representation of ΛN with respect to this basis
then factorizes into the matrices

HN :=

∇u1(z1) · · · ∇uN−1(z1)
...

...
∇u1(zJ) · · · ∇uN−1(zJ)

 ∈ RdJ×N−1,

and a block-diagonal matrix M ∈ RdJ×dJ with d × d blocks on its diagonal containing
the polarization tensors MDj ,qj ∈ Rd×d,

M =

MD1,q1 0
. . .

0 MDJ ,qJ

 ∈ RdJ×dJ . (12)

(When applying M to a vector φ ∈ RdJ we will write φ ∈ (Rd)J to emphasize that
φ = (φ1; . . . ;φJ) contains J polarizations acting on the polarization tensors MDj ,qj .)
Indeed, (11) directly implies that the representation of ΛN with respect to I1, . . . , IN−1

reads H>
NMHN , because

(H>
NMHN)i,j =

J∑
k=1

∇ui(zk)>M(Dk,qk)∇uj(zk) for 1 ≤ i, j ≤ N − 1.

In the sequel it will however be more convenient to deal with ΛN as an operator mapping
electrode currents in RN

� ⊂ RN to N electrode voltages, i.e., to represent ΛN as an
N × N -matrix. To determine the matrix representation of ΛN with respect to the
standard basis of RN , consider again the basis I1, . . . , IN−1 of RN

� with corresponding
solutions u1, . . . , uN−1 to (4). Define further IN to be the N ×N -unit matrix and IN =
(1, . . . , 1)> ∈ RN . As I1, . . . , IN−1, IN is a basis of RN , the matrix (I1 . . . IN−1 IN) ∈
RN×N is invertible and there is a unique matrix BN ∈ RN−1×N and a unique vector
b ∈ Rn−1 that satisfy(

BN

b>

) (
I1 . . . IN−1 IN

)
= IN and

(
I1 . . . IN−1 IN

) (BN

b>

)
= IN . (13)
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This implies that b = (1/N, . . . , 1/N)>, and hence BN

(
I1 . . . IN−1

)
= IN−1. Note

that Ker(BN) = span{b} = Rg(B>N)⊥, such that B>N maps RN−1 into RN
� . Due to (6),

we further know that the entries of HN can be represented as

∇uk(zj) = ∇x

N∑
n=1

N (zj, pn)Ik,n =
N∑
n=1

∇yN (pn, zj)Ik,n (14)

for 1 ≤ k ≤ N − 1 and 1 ≤ j ≤ J . As BNI yields the representation of a current
vector I ∈ RN

� in the basis I1, . . . , IN of RN
� , the vector HNBNI yields the current flow

at the points zj due to the current vector I. For a vector φ = (φ1; . . . ;φJ) ∈ (Rd)J , the
matrix-vector product B>NH

>
Nφ ∈ RN

� on the other hand equals

B>NH
>
Nφ = B>N

( J∑
j=1

∇uk(zj) · φj
)N−1

k=1

= B>N

( J∑
j=1

N∑
n=1

∇yN (pn, zj) · φjIk,n
)N−1

k=1

= B>N

(
Ik ·
( J∑

j=1

∇yN (pn, zj) · φj
)N
n=1

)N−1

k=1

(13)
=

( J∑
j=1

∇yN (pn, zj) · φj −
1

N

N∑
`=1

J∑
j=1

∇yN (p`, zj) · φj
)N
n=1

.

(15)

Thus, the vector B>NH
>
Nφ contains the point values of the potential

∑J
j=1∇uk(zj) · φj

at the electrodes p1, . . . , pN , shifted by a constant such that their sum has mean-value
zero. The matrix representation of ΛN in the standard basis of Rn thus reads

ΛN = B>NH
>
NMHNBN . (16)

As BNb = 0, this representation indeed provides an N × N matrix mapping RN
� into

RN
� .

Theorem 4. The ranges of ΛN and B>NH
>
N coincide.

Proof. Since M is block-diagonal with symmetric and positive definite diagonal blocks
MDj ,qj ∈ Rd×d, there is a unique Cholesky decomposition M = G>G of M with an
invertible matrix G ∈ RdJ×dJ . Setting L = GHNBN implies by (16) that ΛN = L>L,
such that Rg(ΛN) ⊂ Rg(L>) = Ker(L)⊥ = Ker(L>L)⊥ = Ker(ΛN)⊥ = Rg(ΛN) due to
symmetry of ΛN . All subspaces of RN in this inclusion chain hence equal each other.
Invertibility of G implies that Rg(L>) = Rg(B>NH

>
N), which implies the claim.

4 Characterization of Small Inclusions

Our main theorem is going to characterize the range of ΛN via suitable test vectors that
we introduce next: For z ∈ Ω and θ ∈ Sd−1 = {x ∈ Rd, |x|2 = 1},

Vz,θ := (∇yN (pn, z) · θ)Nn=1 ∈ RN . (17)
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We further introduce the set ΩΓ,η := {x ∈ Ω, dist(x,Γ) ≥ η} for an arbitrary parameter
η > 0 and define the orthogonal projection ΠN onto vectors with mean value zero,

ΠN : RN → RN
� ⊂ RN , ΠNV = V − 1

N

N∑
k=1

Vk.

Finally, fixing a sequence (pn)n∈N ⊂ ∂Ω of pairwise distinct point electrodes on the
boundary of Ω, the matrix ΛN is from now on defined via the first N point electrodes
p1, . . . , pN for arbitrary N ≥ 2. The proof of our main theorem below relies on the
following assumption.

Assumption 5. The closure Γ = {pn, n ∈ N} ⊂ ∂Ω has non-empty relative interior.

Theorem 6 (Characterization of Rg(ΛN)). If Assumption 5 holds, then for all η > 0
there is N0 ∈ N such that for z ∈ ΩΓ,η, arbitrary θ ∈ Sd−1, and all N ≥ N0 there holds

z ∈ {z1, . . . , zJ} ⇐⇒ ΠNVz,θ ∈ Rg(ΛN).

Proof. If z = zk for some k ∈ {1, . . . , J}, the representation of HN shows that for
φ = (φ1; . . . ;φJ) with φj = δj,kθ there holds

B>NH
>
Nφ

(15)
=

( J∑
j=1

δj,k∇yN (pn, zj) · θ −
1

N

N∑
n=1

J∑
j=1

δj,k∇yN (pn, zj) · θ
)N
n=1

=

(
∇xN (pn, zk) · θ −

1

N

N∑
n=1

∇yN (pn, zk) · θ
)N
n=1

= ΠNVz,θ.

Thus, ΠNVz,θ ∈ Rg(B>NH
>
N). In the subsequent Lemmas 8 and 9 we further prove that

there is N0 = N0(J, η), such that for N ≥ N0 and z ∈ ΩΓ,η \ {z1, . . . , zJ} the projection
ΠNVz,θ does not belong to Rg(B>NH

>
N). The claim of the theorem then follows from

Theorem 4, stating that the ranges of ΛN and B>NH
>
N coincide if N is large enough.

The following auxiliary lemma will be convenient to prove Lemmas 8 and 9.

Lemma 7. Assume that Assumption 5 holds and choose any finite set of M pairwise
distinct points z(1), . . . , z(M) ∈ Ω \Γ. Then there is N0 ∈ N such that for all N ≥ N0 the
dipole potential v =

∑M
j=1∇yN (·, z(j)) · φj with φ = (φ1; . . . ;φM) ∈ (Rd)M is constant

on the point electrodes p1, . . . , pN if and only if φ = 0.

Proof. We argue by contradiction, exploiting the unique continuation principle.
(1) Assume that for arbitrarily large N ∈ N there is φN = (φN1 ; . . . ;φNM) ∈ (Rd)M

such that the indicated dipole potential is constant on the set {pn, 1 ≤ n ≤ N}, i.e.,

vN(pn) =
M∑
j=1

∇yN (pn, z
(j)) · φNj = cN for some cN ∈ R.
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We divide this equation by the maximum norm of φN and, for simplicity, denote the
normalized vector again by φN and the constant on the right again by cN . Due to
normalization, we can then extract a convergent subsequence of the vectors (φN)N∈N ⊂
(Rd)M that we denote, by abuse of notation, again by (φN)N∈N: φN → φ ∈ (Rd)M as
N →∞ and |φ|∞ = |φN |∞ = 1 by continuity of the norm. The corresponding pointwise
limit of vN equals

v(x) :=
J∑
j=1

∇yN (x, zj) · φj, x ∈ Ω \
J⋃
j=1

{zj}. (18)

As vN takes a constant value at all points pn, 1 ≤ n ≤ N , there is c ∈ R such that
v(pn) = c for all n ∈ N. (Clearly, c equals the limit of the cN .)

(2) The continuity of v in a neighborhood of ∂Ω implies that v is constant on the
closure Γ of the points {pn, n ∈ N} ⊂ ∂Ω and, due to Assumption 5, the relative interior
of Γ in ∂Ω is non-empty. Since the normal derivative of N (·, z) is constant on ∂Ω and
independent of z ∈ Ω, the normal derivative of both components of ∇yN (·, z) vanishes
on Γ for all z ∈ Ω. Thus, the normal derivative of v vanishes on Γ, too, and the unique
continuation property for solutions to Laplace’s equation implies that v = c is constant
in Ω\

⋃J
j=1{zj}. Consequently, the singularity of ∇yN (·, zj) at zj implies that φj = 0 for

all j, i.e., φ = 0. This contradicts the fact that |φ|∞ = 1, such that our initial assumption
was wrong. For arbitrary pairwise distinct points z(1), . . . , z(M) there is hence a minimal
number N0 ∈ N of point electrodes such that the dipole potential v from (18) is constant
at p1, . . . , pN0 if and only if φ = (φ1; . . . ;φM) vanishes.

The next lemma treats points in ΩΓ,η, defined after (17), that are far from all centers.

Lemma 8. If Assumption 5 holds, then for all η > 0 there is N0 ∈ N such that for
all z ∈ ΩΓ,η \

⋃J
j=1B(zj, η) and all θ ∈ Sd−1, the projection ΠNVz,θ does not belong to

the range of B>NH
>
N .

Proof. (1) We argue again by contradiction and consider, in a preparatory step, the
matrix-valued function

KN(z) := B>N

 ∇u1(z1)> . . . ∇u1(zJ)> ∇u1(z)>

...
...

...
∇uN−1(z1)> . . . ∇uN−1(zJ)> ∇uN−1(z)>

 ∈ RN×d(J+1)

for points in z ∈ Ω \ ({z1, . . . , zJ} ∪ Γ) that neither belong to the centers zj nor to the
closure of the point electrodes.

If KN(z)φ vanishes for some non-zero φ = (φ1; . . . ;φJ+1) ∈ (Rd)J+1, then the dipole
potential v =

∑J
j=1∇yN (·, z(j)) ·φj +∇yN (·, z) ·φJ+1 takes a constant value at all point

electrodes p1, . . . pN due to the construction of BN . Thus, Lemma 7 shows that for every
z ∈ Ω \ ({z1, . . . , zJ} ∪ Γ) there is N0(z) such that KN(z) is injective for all N ≥ N0(z).
In other words, the nullity nullKN(z) := dim Ker KN(z) satisfies nullKN(z) = 0 for
N ≥ N0(z).
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The mapping z 7→KN(z) depends continuously on z ∈ Ω\Γ, because each potential
un is continuous in Ω \ Γ due to (14). As the dimension of the null space of a matrix
is moreover an upper semicontinuous function of the matrix entries, the composition
z 7→ nullKN(z) is upper semicontinuous in Ω \ Γ, too, i.e.,

if z(k) → z in Ω \ Γ then lim sup
k→∞

nullKN(z(k)) ≤ nullKN(z).

Consequently, for any z ∈ Ω \ Γ there is r(z) > 0 such that nullKN(z′) ≤ nullKN(z)
holds for all z′ in U(z) := B(z, r(z))∩[Ω\Γ]. As the nullity is decreasing in N , there holds
for all z ∈ Ω \ ({z1, . . . , zJ} ∪ Γ) and all z′ ∈ U(z) that nullKN(z′) ≤ nullKN0(z) = 0
for all N ≥ N0(z).

For arbitrary η > 0, the union {z′ ∈ U(z), z ∈ Ω \ ({z1, . . . , zJ} ∪ Γ)} of rel-
atively open sets covers the compact set ΩΓ,η \

⋃J
j=1B(zj, η) from the claim, such

that ΩΓ,η ⊂
⋃L
j=1 U(z(j)) for points z(1), . . . , z(L) in Ω \ ({z1, . . . , zJ} ∪ Γ). Setting

N0 := maxj=1,...,LN0(z(j)) hence implies that N0(z) ≤ N0 for all z ∈ ΩΓ,η and choosing
N ≥ N0 shows that KN(z) is injective for all z ∈ ΩΓ,η.

(2) Assume, for contradiction, that B>NH
>
Nφ = ΠNVz,θ for some N ≥ N0, z ∈

ΩΓ,η \
⋃J
j=1 B(zj, η), θ ∈ Sd−1, and φ = (φ1; . . . ;φJ) ∈ (Rd)J . As in (15), one shows that

ΠNVz,θ =

(
∇yN (pn, z) · θ −

1

N

N∑
`=1

∇yN (pn, z) · θ
)N
n=1

= B>N

(
Ik ·
(
∇yN (pn, z) · θ

)N
n=1

)N−1

k=1

= B>N
(
∇uk(z) · θ

)N−1

k=1
,

and, due to the representation of HN , our assumption B>NH
>
Nφ = ΠNVz,θ implies that

the matrix-vector product of KN(z) and (φ1; . . . ;φJ ;−θ) ∈ Rd(J+1) vanishes. Thus,
(φ1; . . . ;φJ ;−θ) ∈ (Rd)J+1 must vanish because KN(z) is injective due to the first part
of this proof, which is impossible as |θ|2 = 1.

Lemma 9. If Assumption 5 holds, then there are η > 0 and N0 ∈ N such that ΠNVz,θ
does not belong to the range of B>NH

>
N for all N ≥ N0, all z ∈

⋃J
j=1[B(zj, η) \ {zj}] and

all θ ∈ Sd−1.

Proof. (1) Assume, on the contrary, that there are vectors (φN)N∈N ⊂ (Rd)J , points
(zN)N∈N ⊂

⋃J
j=1[B(zj, η) \ {zj}], and directions (θN)N∈N ⊂ Sd−1 such that

B>NH
>
Nφ

N = ΠNVzN ,θN holds for arbitrarily large N ∈ N. (19)

(To simplify notation, we assume (19) to hold even for all N ∈ N.) By construction of
BN , HN , and VzN ,θN , (19) implies that vN :=

∑J
j=1∇yN (·, zj) · φNj satisfies

vN(pn) =
J∑
j=1

∇yN (pn, zj) · φNj = ∇yN (pn, zN) · θN + cN , n = 1, . . . , N, (20)

11



for some sequence (cN)N∈N ⊂ R.
(2) The norms |φN |∞ are uniformly bounded in N , because the maximum norm of

VzN ,θN ∈ RN
� is also uniformly bounded. To prove this statement, assume that |φN |∞

grows over all bounds as N → ∞. Divide (19) by |φN |∞ and extract a convergent
subsequence of φN/|φN |∞ with non-trivial limit 0 6= φ = (φ1; . . . ;φJ) ∈ (Rd)J . Since
ΠNVzN ,θN/|φN |∞ tends to zero as N →∞, one shows as in the second part of the proof

of Lemma 8 that v(x) :=
∑J

j=1∇yN (x, zj) ·φj is constant on Γ. Lemma 7 hence implies

that φ must vanish, which is a contradiction. Thus, (φN)N∈N ⊂ (Rd)J is bounded.
(3) Due to the boundedness of the vectors φN ∈ (Rd)J we can extract a convergent

subsequence with limit φ ∈ (Rd)J , and, by abuse of notation, denote that subsequence
again by (φN)N∈N. Proceeding in the same way with the points (zN)`∈N and the directions
(θN)`∈N yields convergent sequences (zN)N∈N with limit z ∈

⋃J
j=1B(zj, η) and (θN)N∈N

with limit θ ∈ Sd−1, respectively.
If the limit point z does not equal one of the centers zj, we can directly pass to the

limit in (20) and conclude by Lemma 7 that both φ ∈ (Rd)J and the limiting direction
θ must vanish, which is a contradiction as θ ∈ Sd−1. Thus, zN must tend to a center zk
for some k ∈ {1, . . . , N}, and taking the limit as N →∞ in (20) shows that∑

1≤j 6=k≤J

[∇yN (pn, zj) · φj] +∇yN (pn, zk) · φk −∇yN (pn, zk) · θ = c, n ∈ N,

where c is the limit of the constants cN . Thus, Lemma 7 implies that φj = 0 for
1 ≤ j 6= k ≤ J and φk = θ. Fixing n ∈ {1, . . . , N}, we rewrite (20) as∑

1≤j 6=k≤J

∇yN (pn, zj) · φNj +∇yN (pn, zk) · (φNk − θN)

+
[
∇yN (pn, zk)−∇yN (pn, zN)

]
· θN = cN . (21)

Because z 7→ ∇yN (pn, z) · θ is continuously differentiable in Ω, the mean value theorem
implies existence of ξNn ∈ [zk, zN ] := {tzN + (1− t)zk, t ∈ [0, 1]} such that

[∇yN (pn, zk)−∇yN (pn, zN)] · θN = θN · ∇2
yN (pn, ξ

N
n )(zk − zN); (22)

here ∇2
yN (pn, ξ

N
n ) ∈ Rd×d is the Hessian of N at (pn, ξ

N
n ) with respect to the second

variable. First rewriting (21) by inserting (22) and then dividing by dN :=
∑

j 6=k |φNj |∞+

|φNk − θN |∞ + |zk − zN |∞ > 0 shows that

∑
1≤j 6=k≤J

∇yN (pn, zj) ·
φNj
dN

+∇yN (pn, zk) ·
φNk − θN
dN

+θN ·∇2
yN (pn, ξ

N
n )
zk − zN
dN

=
cN
dN

.

By definition of dN , all fractions on the left of the last equation are bounded by one,
either in the maximum norm or in absolute value. Thus, we can extract convergent
subsequences of φNj /dN , (φNk − θN)/dN , and (zk − zN)/dN with limits φ̂j ∈ Rd, θ̂ ∈ Rd

and ẑ ∈ R2 independent of n ∈ N. At least one of these limits must be non-trivial

12



because
∑

j 6=k |φNj |∞/dN + |φNk − θN |∞/dN + |zk − zN |∞/dN = 1. As ξNn ∈ [zk, zN ] tends
to zk as N →∞,∑

1≤j 6=k≤J

∇yN (pn, zj) · φ̂j +∇yN (pn, zk) · θ̂ + θ · ∇2
yN (pn, zk)ẑ = c for all n ∈ N.

As in the proof of Theorem 7, this implies that the multipole

x 7→
∑

1≤j 6=k≤J

∇yN (x, zj) · φ̂j +∇yN (x, zk) · θ̂ + θ · ∇2
yN (x, zk)ẑ

is constant in Ω \ {z1, . . . , zk}. Due to the singularities of the latter function at the
centers zj and the different order of singularity of the dipole x 7→ ∇yN (x, zk) · θ̂ and

the quadrupole x 7→ θ · ∇2
yN (x, zk)ẑ, this is only possible if φ̂ = (φ̂1; . . . ; φ̂J), θ̂, and ẑ

vanish. (Note that θ ∈ Sd−1 cannot vanish.) However, we argued above that at least
one of these quantities must be non-trivial, such that our initial assumption of the proof
was wrong, proving the lemma’s statement.

5 The MUSIC Algorithm

Theorem 6 states that if N ∈ N is large enough, then ΠNVz,θ ∈ RN
� belongs to the

range of ΛN if and only if z ∈ ΩΓ,η is one of the centers {z1, . . . , zJ} of the J small
inclusions. This motivates the basic idea of the MUSIC algorithm: The norm of the
orthogonal projection of ΠNVz,θ onto the null space of ΛN is an indicator function that
peaks precisely at the centers {z1, . . . , zJ}.

A crucial tool for the implementation of the MUSIC algorithm is the singular value
decomposition ΛN = UDV > factorizing ΛN into a diagonal matrix D ∈ RN×N contain-
ing the singular values (σj)

N
j=1 ⊂ R≥0 of ΛN in decreasing order and orthogonal matrices

U and V in RN×N containing the corresponding left- and right singular vectors (uj)
N
j=1

and (vj)
N
j=1 ⊂ RN in their columns, respectively. Note that Corollary 3 implies that J

small inclusions in Ω lead to precisely dJ non-zero singular values σ1, . . . , σdJ .
As measured data is always contaminated by instrumental noise, and as voltage

difference measurements provide approximations to (Λ(ε) − Λ(0))N instead of ΛN , the
exact matrix ΛN is never at hand in practice. We hence assume to possess measurements
(Λ(ε)−Λ(0))δN ∈ RN×N that satisfy |(Λ(ε)−Λ(0))δN−(Λ(ε)−Λ(0))N |2 ≤ δ|(Λ(ε)−Λ(0))N |2
for some relative noise level δ > 0. The corresponding singular value decomposition is
(Λ(ε) − Λ(0))δN = U δDδ(V δ)> with singular values (σδj )

N
j=1 ⊂ R≥0 and singular vec-

tors (uδj)
N
j=1 and (vδj )

N
j=1 ⊂ RN . Perturbation theory for the singular value decom-

position [Ste06, Li98] shows that if ε � 1 and δ � 1 are sufficiently small, then
the singular values (σδj )

N
j=1 are close to those of εdΛN and the orthogonal projections

PV :=
∑dJ

j=1[V · uj]uj and P δV :=
∑dJ

j=1[V · uδj ]uδj onto the singular subspace spanned
by the largest dJ right singular vectors are close as well. This allows in particular to
identify the number of inclusions from the singular values of (Λ(ε)−Λ(0))δN , as the largest
dJ singular values of (Λ(ε)−Λ(0))N all have a magnitude of about εd|ΛN |2 whereas σδdJ+1

is about a factor of ε smaller.
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In its simplest form, the MUSIC-algorithm uses the projection P δ to project the
test function ΠNVz,θ onto the orthogonal complement of span{uδ1, . . . , uδdJ} and plots
the indicator function

z 7→ 1

|(IN − Pδ)ΠNVz,θ|2
(23)

on a grid of points z inside Ω for some fixed θ ∈ Sd−1. If N is large enough and both
the inclusion size ε and the noise level δ � 1 are small enough, then this indicator
shows strong peaks at the center points z1, . . . , zJ of the inclusions. Various improved
or adapted variants exist, see, e.g., [ML99, BHV03], but will not be discussed here.

We demonstrate feasibility, performance, and limitations of the MUSIC algorithm
for dimension d = 2 and the unit disc Ω = {x ∈ R2, |x|2 < 1}, such that

N (x, y) =

{
− 1

2π

[
log |x− y|2 + log

(∣∣x|y|2 − y
|y|2

∣∣
2

)]
for x 6= y ∈ Ω, y 6= 0,

− 1
2π

log |x|2 for x ∈ Ω \ {0}, y = 0,
(24)

is the explicitly known Neumann function. In Ω, we consider four circular inclusions
Dj,ε = {x ∈ R2, |x − zj|2 ≤ ε} for j = 1, . . . , 4 with centers z1 = (−0.45,−0.35)>,
z2 = (−0.45, 0.45)>, z3 = (0.45, 0.05)>, and z4 = (0.20,−0.45)>. We choose the radius
ε of these circles among the three values 0.1, 0.05, and 0.02. All contrasts qj equal
−0.8 and we choose 32 equidistant points on the boundary ∂Ω as point electrodes, see
Figure 2(a). To compute numerical approximations to (Λ(ε) − Λ(0))32 we use the finite
element software FreeFem++ (see [Hec12]) and directly approximate (Λ(ε) − Λ(0))32In
for a basis I1, . . . , I31 of R32

� via a single source problem for the corresponding difference
potential. (The current vectors are chosen as sine and cosine patterns.) Figures 2(b)–(d)
show the 31 non-zero singular values (marked by filled dots) of numerical approximations
to (Λ(ε)−Λ(0))32 for the three radii under consideration. The theoretically predicted gap
between the eighth and ninth singular value of Λ32 is visible in the singular spectrum of
(Λ(ε)−Λ(0))32 for all three radii, such that the correct number of inclusions can in each
case be deduced from the singular values of these non-perturbed matrices. Figures 2(b)–
(d) also show the perturbed singular values of (Λ(ε) − Λ(0))δ32 for relative noise levels δ
equal to 0.001, 0.01, and 0.05. While for δ = 0.001 there is a significant gap between
the eighth and ninth perturbed singular value, this gap reduces when increasing the
noise level. For δ = 0.05, the seventh and eighth singular value is strongly affected by
the artificial noise, such that the resulting images are likely to have low quality. Apart
from this, the relative noise level of five percent is clearly too high to deduce the correct
number of inclusions from the perturbed singular values.

In our numerical experiments, it turned out to considerably improve the resolution
of the resulting images if instead of choosing a fixed dipole direction θ ∈ S1 one mini-
mizes the right-hand side of (23) over several directions. Algorithmically, we do so by
computing the corresponding indicators for M = 10 equidistant directions in the set
ΘM = {(cos(2π`/M), sin(2π`/M))>, ` = 1, . . . ,M} ⊂ S1. We hence set

IδN(z) =
1

minθ∈ΘM |(IN − Pδ)ΠNVz,θ|2
(25)
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(a) Setting (b) ε = 0.1

ε = 0.05 ε = 0.02

Figure 2: (a) Positions of the four inclusions with radius 0.05 in the unit circle. Dots
mark the 32 point electrodes. (b)–(d) Singular values of (Λ(ε)−Λ(0))32 for ε = 0.1, 0.05,
and 0.02 in (b), (c), and (d), marked by filled dots. In each plot, stars, diamonds and
squares mark the corresponding perturbed singular values for noise levels δ = 0.001,
0.01, and 0.05. Singular values less than 10−10 and not plotted and horizontal lines
indicate the relative noise levels.

This modified indicator function is efficiently implemented in two dimensions via matrix-
vector multiplications since the corresponding arrays easily fit into the memory of a
standard desktop computer, such that optimization algorithms can be avoided. Even if
further increasing M is cheap, this number turned out to be sufficient to guarantee a
sufficient level of directional independence of the reconstructions, as Figure 3 indicates.
(The evaluation of IδN with M = 10 at about 31.400 points takes less than 1.5 seconds
on a single core of an Intel i5 processor (4 cores, 3.2 GHz) using MATLAB, once the
test vectors are precomputed.)

Figure 4 shows the indicator z 7→ IδN(z) from (25) for radii 0.02, 0.5, and 0.1 and
relative noise levels 0.001, 0.01, and 0.05. The images for δ = 0.001 all peak at the

15



(a) M = 1 (b) M = 4 (c) M = 10

Figure 3: The modified indicator Iδ32 from (25) for M = 1, 4, and 10 in (a), (b), and (c).
Fixed parameters are ε = 0.02 and δ = 10−8.

inclusion centers and, arguably, are of the same quality; for δ = 0.01, all indicators all
lose contrast compared to the smaller noise level. Further, several elongated artifacts
towards the electrodes become more pronounced compared to the images for δ = 0.001;
they seem to a be a particular feature of the algorithm in the framework of the point
electrode model. Increasing δ to 0.05 yields images where none of the four inclusions
is anymore detectable; interestingly the resulting plots however still take small values
outside the convex hull of the small inclusions. By carefully checking the plots for
δ = 0.001 or 0.01 one notes that their peaks, i.e., their local maxima, are slightly shifted
towards to center of the circular domain when compared to the true inclusion centers,
except for the top right inclusion.

We next explore limitations of the MUSIC algorithm with respect to the number N
of point electrodes and fix the radius of the inclusions from now on to ε = 0.02. In a
first step, we reduce N from 32 to 16 by omitting every second point electrode. Figure 5
plots the exact singular values of (Λ(ε) − Λ(0))N for ε = 0.02 and N = 16, as well as
their perturbations for noise levels 0.001, 0.01, and 0.05. The same comments on the
perturbation of the first dJ = 8 singular values as in Figure 2(d) apply. However, the
reduction of N from 32 to 16 implies a reduction from 15 to 7 of the dimension of the
singular subspace linked to those singular values σδdJ+1, . . . , σ

δ
N−1 corresponding to the

kernel of ΛN . Since the MUSIC algorithm relies on the orthogonal projection onto this
so-called noise subspace, its dimension is as crucial for the algorithm as the dimension
of the subspace linked to the largest dJ singular values. Figures 5(b) and (c) show that
for noise levels 0.001 and 0.01 the MUSIC algorithm is still able to peak at roughly the
correct positions of the inclusions. For δ = 0.01, the image quality reduces to about the
same level as in Figure 4(d), with arguably slightly extended artifacts towards the point
electrodes, such that a noise subspace of dimension seven still provides reasonable images
of four inclusions. However, further reducing the number of electrodes to N = 12 results
in a drastic decrease of image quality, as the noise subspace is merely three-dimensional
anymore. This low dimension implies that the indicator function depends significantly
on the added artificial noise, which is not the case for the previously considered examples.
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(a) ε = 0.02, δ = 0.001 (b) ε = 0.05, δ = 0.001 (c) ε = 0.1, δ = 0.001

(d) ε = 0.02, δ = 0.01 (e) ε = 0.05, δ = 0.01 (f) ε = 0.1, δ = 0.01

(g) ε = 0.02, δ = 0.05 (h) ε = 0.05, δ = 0.05 (i) ε = 0.1, δ = 0.05

Figure 4: Indicator Iδ32 for different radii ε and different relative noise levels δ. For plots
in the left column ε equals 0.2, and ε = 0.05 and 0.1 for the middle and right column,
respectively. The top row corresponds to δ = 0.001, the middle row to δ = 0.01, and
the bottom row to δ = 0.05.

Figures 5(e) and (f) show representative indicators for noise levels δ = 0.001 and 0.01
that do neither allow to deduce the correct number of inclusions nor their positions.

If one keeps the N = 12 point electrodes fixed but reduces the number of inclusions
to J = 3 by omitting the top right one centered at z4, the number of singular values
of size ε reduces to 6, such that the noise subspace becomes five-dimensional. In this
setting, the indicator function Iδ12 from (25) is again able to identify the positions of the
three inclusions at least roughly, see Figures 5(h) and (i). Due to artifacts close to the
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peaks at the inclusion centers it is however difficult to precisely estimate these centers
for the relative noise level δ = 0.01, see Figure 5(i).

(a) Singular values (N = 16) (b) δ = 0.001 (c) δ = 0.01

(d) Singular values (N = 12) (e) δ = 0.001 (f) δ = 0.01

(g) Sing. val. (J = 3, N = 12) (h) δ = 0.001 (i) δ = 0.01

Figure 5: (a) Filled dots mark singular values of (Λ(0.02) −Λ(0))16, i.e., N = 16 and ε =
0.02; perturbed singular values are marked by stars (δ = 0.001), diamonds (δ = 0.01),
and squares (δ = 0.05). (b)–(c) Indicator Iδ16 for relative noise levels δ = 0.001 and 0.01.
(d) Filled dots mark singular values of (Λ(0.02)−Λ(0))12, i.e., N = 12; perturbed singular
values are marked as in (a). (e)–(f) Indicator Iδ12 for δ = 0.001 and 0.01. (g) Filled dots
mark singular values of (Λ(0.02)−Λ(0))12 when only three inclusions are present (the top
right one is omitted); perturbed singular values are marked as in (a). (h)–(i) Indicator
Iδ12 computed from the data (Λ(0.02) −Λ(0))12 from (g) for δ = 0.001 and 0.01.

Let us finally summarize the presented numerical experiments by two conclusions
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on the required number of electrodes: If the dimension of the noise subspace as well as
the number of inclusions can clearly be identified from the singular values of the data
matrix, then a clear indication that the number of point electrodes is sufficiently large
to correctly image the inclusions is that the dimension of the noise subspace is at least
about the number of inclusions. If these subspaces are not clearly identifiable, then either
the size of the inclusions or the noise level might be too large to obtain clear pictures
from the indicator function IδN in (25). In this situation, according to our experiments,
a good test for any guess of the number of inclusions is whether the indicator function
IδN shows stable peaks under small random perturbations of the data matrix.
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